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ABSTRACT Urban rail transit has become an important traffic mode in large cities and has brought great
conveniences to urban residents, however traffic accidents often occur in daily operations, therefore the
safety and robustness must be paid more attention. In this paper, the network utilization of urban rail transit
networks (URTNs) is expressed by the travel time difference between user equilibrium and optimal system,
and the travel time difference is considered as the assessment indicator of robustness. Meanwhile, Shanghai
metro network is taken as the example to analyze the robustness of URTNs under different disturbances,
such as node attack, link-demand attack and overall-demand attack. The results show that URTNs have
better robustness subjected to the random link-demand attack than node attack, and the robustness decreases
with the increase of the attack intensity when the network suffers overall-demand attack. Moreover, we find
that the critical stations and links can be identified, and URTNs can be paralyzed when the attack intensity
exceeds the critical threshold.

INDEX TERMS Robustness, user equilibrium, optimal system, urban rail transit networks.

I. INTRODUCTION
With the expansion of the scale of urban rail transit networks
(URTNs), people pay more and more attention to the research
on the robustness and safety of network. Natural disasters,
human errors, equipment failures and other reasons will have
an impact on the URTNs, and even damage people’s property
and lives. In the transportation network, the changes in pas-
senger flow caused by different disturbances can intuitively
reflect the changes in the transportation performance of the
transportation system. This paper mainly analyzes the robust-
ness of URTNs from the perspective of network resource
utilization.

Recent years, more and more researchers focused on char-
acteristics and robustness from the structure and function
of URTNs, and the corresponding researches directly or
indirectly improved the security and robustness of URTNs.
Guidotti et al. proposed a probabilistic methodology to
quantify the network reliability based on topological net-
work and complex network theory and this method was
applied to analyze a highway transportation network reli-
ability [1]. Jing et al. proposed the mean-excess criticality
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probability as a risk measure to identify the critical stations
in metro network considering the routing redundancy and
the result show that the critical stations are not necessarily
transferred stations or those with a high degree, and the
important stations based on betweenness, passenger flow
and network efficiency are not necessarily critical for the
network redundancy [2]. Zhang and Wang studied the func-
tional vulnerability of URTNs based on the moving-block
technology which resolves the control problems of safe dis-
tance between the forward and the following trains and
it can improve the reliability of URTNs [3]. Zhou et al.
developed a hybrid cascading failure model to analyze the
robustness of interdependent networks considering loads,
group effects, and coupling preferences and the mean size
of dependency groups is the key to the robustness of interde-
pendent networks [4].Wandelt et al. systematically evaluated
the robustness of transportation networks by analyzing com-
munity structure and identified the important roles of inter-
community nodes/edges for robustness improvements [5].
Hong et al. introduced a vulnerability analysis method to
investigate the complementary bus and subway systems in
Wuhan [6] and proposed three types of accessibility metrics
based on departure time to investigate the vulnerability of
the integrated metro and high-speed rail system in China [7].

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 129161

https://orcid.org/0000-0002-4356-1057
https://orcid.org/0000-0003-4424-1220
https://orcid.org/0000-0001-7673-1502
https://orcid.org/0000-0001-5486-5702


W. Shao et al.: Robustness Assessments of Urban Rail Transit Networks Based on Network Utilization

Yu et al. [8] andWang et al. [9] constructed the super network
model of URTNs and proposed a multi-source least trans-
ferred algorithm to study the robustness of the network under
different attacks. And the results show that the protection
of traffic hub stations and trunk lines could enhance the
anti-fault ability of the super metro network.

Meanwhile, many scholars also studied the network char-
acteristics from the perspective of passenger flow. Xu et al.
analyzed the layered multi-center structure formed by the
passenger flow data of the Beijing subway network and
summarized the urban human mobility pattern within a large
subway network [10]. Fan et al. combined the passenger flow
dynamics and network topological structure to build a tempo-
ral network of the Shanghai metro network and used the linear
threshold model to analyze the impact of cascading failure
on network robustness, and the results show that the large
volume of passenger flow can increase the impact of failure
on the Shanghai temporal subway network robustness [11].
Yuan et al. developed effective flow control strategies by
considering the time-dependent passenger demands to reduce
the total waiting time in URTNs [12]. Zhang et al. build a
weighted network model based on passenger flow and path
distance to identify the critical lines of URTNs and provided
suggestions for recovery strategies [13]. Liu et al. proposed
a passenger flow delay reallocation algorithm to analyze the
impacts of different station interruption time and the num-
ber of passenger flow redistribution on the vulnerability of
URTNs and the result show that the interruption that lasts
more than 30 minutes exerts a great impact on the traffic
efficiency of the URTNs and exhibits a wide scope [14].
Some improved coupled mapping lattice methods are used to
discuss the features of cascading failure ofURTNs [15]–[17].
Moreover, many studies used the analytical method of

traffic network flow to study the dynamic characteristics of
the traffic network. Among them, the more classic ones are
user equilibrium and system optimization models [18], [19].
The user equilibrium model is to find the path with the
shortest travel time from the perspective of each user. The
optimal system model may harm the interests of a small
number of users to achieve the shortest total travel time
for all users. And these different models will form different
network flow states according to different passenger flow
distribution mechanisms. The analysis of traffic network per-
formance under different network flow states can combine
with the dynamic fluctuation of passenger flow for more
accurate traffic network analysis. Çolak et al. found that
the congested cities benefit more from incorporating social
good considerations into routing behavior by comparing the
user equilibrium and system optimal [20]. Sumalee and Xu
analyzed marginal cost pricing in traffic networks and com-
pared network performance under different toll regimes [21].
Almotahari and Yazici paid attention to the passenger flow
and developed the link criticality index as a measure to iden-
tify critical components of traffic networks using the convex
combinations solution algorithm [22]. He et al. comprehen-
sively analyzed the robustness of intermodal transportation

by combining user equilibrium and optimal system meth-
ods [23]. Nogal et al. evaluated the resilience of URTNs
by analyzing the time changes when the network reaches
a new equilibrium state according to a dynamic restricted
equilibrium model [24]. However, the influence of different
passenger flow distributions on network robustness has rarely
been examined directly, and this paper mainly analyzes the
network robustness which can be reflected by the different
passenger flow states under different disturbances.

In this paper, the robustness of URTNs is investigated
by comparing the user equilibrium and optimal system,
and Shanghai metro network is considered as an example
to indicate the feasibility and effectiveness of the research
scheme. The robustness of the network means the ability
of the network to maintain stable performance when it is
subjected to external disturbances and the robustness of the
network is mainly reflected in the perspective of resource
utilization in this paper. The remainder of this paper is
organized as follows. Section 2 introduces the mechanism
and solution algorithm of user equilibrium and optimal sys-
tem. Section 3 presents an assessment indicator and research
model on network robustness. Section 4 analyzes the robust-
ness of URTNs under different attacks and conclusions are
given in Section 5.

II. TRAFFIC NETWORK FLOW
In this section, we construct the topological structure graph
of URTNs and set the capacity of each link by integrating
complex network theory and graph theory. According to
the characteristics of the rail transit system, we build the
Space L model to analyze the network performance. Among
them, the node represents the station of the transportation
system, and the edge represents that there is a track directly
connected between the two stations. Then, different network
flow configurations in the network can be obtained according
to the different user selection mechanisms. In this article,
different traffic models will form different passenger flow
configuration states according to different configuration prin-
ciples, namely system optimal and user equilibrium. There-
fore, the robustness of network can be assessed according to
different network flow states.

A. PRIVATE MARGINAL COST AND
MARGINAL SOCIAL COST
In the public transportation service, the entering of an addi-
tional user x will increase the additional user’s own cost and
also affect the normal travel of the users being on the link l.
And the incremental cost borne by the additional user x is
the private marginal cost of the user x, which is defined as
PMC (x), and the incremental cost caused by the additional
user x to the other users (0, x) on the link is the marginal
external cost, which is defined as MEC (x). The sum of the
private cost marginal and marginal external cost of these x
users is defined as the marginal social costMSC (x). This part
explains the cost calculation methods of different passenger
flow distribution methods from the perspective of economics.
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For simplicity, we assume that the cost of a link for user x is
equal to the travel time, c (x) = t (x), where t (x) is the travel
time of user x. The related calculation formulas and relations
are given as follows,

PMC (x) = d
[∫ x

0
c (ω) dω

]
/dx (1)

MEC (x) =
∫ x

0
[c (x)− c (ω)] dω (2)

MSC (x) = PMC (x)+MEC (x) (3)

B. OPTIMAL SYSTEM
The optimal system is a flow configuration in which the
average travel time of the network is minimized through the
cooperation of all users in the network. The average travel
time under the optimal system can be regarded as the shortest
average travel time in theory and used as a benchmark when
calculating network utilization. The optimal system problem
can be formulated as a convex optimization problem,

min
∑
l∈L

xl · tl (xl)

s.t.
∑
k

f stk = f st

f stk ≥ 0, ∀k

xl =
∑
s

∑
t

∑
k

f stk δ
st
l,k (4)

where L is the set of all link l in a traffic network, tl (xl) is the
link characteristic function which describes the relationship
between the travel time tl(xl) and the passenger flow xl on
link l. In this paper, the BPR function [21] is considered as
the link characteristic function of URTNs. f stk refers to the
passenger flow between the original node s and destination
node t on the path k , f st refers to the total flow between the
original node s and destination node t , and δsta,k = 1 when the
link l lies on path k . And the shape coefficients of the link
characteristic function α = 0.15, β = 8 are set to discuss the
relationship between link travel time and link flow of URTNs
in Eq. (5).

tl (xl) = t0l

(
1+ α

(
xl
cl

)β)
(5)

The optimal objective function of the optimal system is the
sum of the marginal social costs on each link of the network.
When the state of the optimal system is reached, no user can
unilaterally change the travel path to reduce the total network
travel time. Therefore, it is reasonable to use the average
travel time under the optimal system configuration ofURTNs
as the calculation benchmark for network utilization.

C. USER EQUILIBRIUM
Each user in the network independently chooses the path
with the smallest travel time to form a flow configuration
called user equilibrium. The flow distribution under the user
balance network can be regarded as the flow distribution

state of the natural networkwithout external intervention. The
convex programming for the user equilibrium problem can be
formulated as follow,

min
∑
l∈L

∫
xl
0 tl (x) dx

s.t. Constraints in Eq. (4) (6)

The objective function of user equilibrium is the sum of
private marginal costs on each link in the network. When the
state of user equilibrium is reached, the travel time of all used
paths between the same OD pair is equal and minimum, and
the travel time of all unused paths is greater than or equal to
the travel time of the used path.

D. SOLVING ALGORITHM
Frank-Wolf algorithm [20] is to explore the feasible direction
for solving the equilibrium problem and includes two main
aspects: determining the exploration direction and determin-
ing the moving step. Therefore, the Frank-Wolf algorithm
is adopted to solve the user equilibrium problem of URTNs
in this paper, and the solving algorithm is summarized as
follows,

Algorithm 1 Frank-Wolf Algorithm

Input: link characteristic function tl
(
xnl
)

Output: link flow
{
xnl
}

1: Initialization
{
xnl
}
← {0}, tnl = tl

(
xnl
)
,∀ l ∈ L, n=0

2: while convergence test do
3: n = n + 1
4: direction search

{
ynl
}
according to all-or-nothing load

5: linear search λn
6: move xn+1l = xnl + λn

(
ynl − x

n
l

)
7: end while

In this solving algorithm, n is the iteration number, l is the
link, xnl is the passenger flow on link l at the iteration number
n, tnl is the travel time passing through the link l at the iteration
number n, ynl represents another passenger flow on link l at
the iteration number n, which indicates the forward direction
of iteration under the all-or-nothing load distribution rule.
Meanwhile, λn is the optimal move step and λn ∈ [0, 1] by
the linear search.

According to the relationship between the user equilibrium
and optimal system, the Frank-Wolf algorithm can be also
used to solve the optimal system problem by adjusting the
link characteristic function tl (xl) in Eq. (6) to t ′l (xl) which is
defined as follows,

t ′l (xl) = tl(xl)+ xl
dtl(xl)
dxl

(7)

III. ASSESSMENT MODEL
User equilibrium is a balanced state caused by individual
users seeking to maximize their interests, and the optimal
system is a balanced state that achieves the best system effi-
ciency by sacrificing the interests of some individual users.
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Under normal circumstances, the balance of the optimal sys-
tem cannot be achieved unless all users cooperate and follow
the command of the dispatching center. Therefore, we take
the average travel time of the optimal system as the evalu-
ation benchmark of URTNs, which means that the network
resources are optimally used and the network benefits are
maximized. Meanwhile, traffic planners and managers adjust
the network structure and operation plan to make the average
travel time of user equilibrium close to the average travel
time of the optimal system. However, when the network
is disturbed, the difference between these two aspects will
change and this model is to analyze the differences in the
average travel time between the two configurations when the
network is disturbed.

In the model, presented the assumptions of the simulation.
Assumption (i): The relationship between link travel time and
link flow can be expressed by the BPR function. Assump-
tion (ii): When the transportation system changes, users can
compare different paths to form the user equilibrium state.
Assumption (iii): The nodes in the network will not return to
normal state after being attacked.

A. ROBUSTNESS INDICATOR
Here, we discuss the differences about the average travel time
between user equilibrium and optimal system, and we know
that the average travel time of the UTRNs is the smallest
under the optimal system model, therefore the difference of
the average travel time between the two models is presented
by,

δ = TUE − TSO (8)

where TUE and TSO are the average travel time under the user
equilibrium state and optimal system state respectively.

This difference combines two different passenger flow
configurations of user equilibrium and optimal system, which
can reflect the dynamic selection of passenger flow when the
network changes and can analyze changes in network perfor-
mance based on passenger flow fluctuations. This indicator
can analyze the changes in the robustness of the network
from the perspective of whether the network can make better
use of network resources when the network is disturbed.
When the difference increases due to disturbance, the network
utilization of URTNs will change accordingly. Therefore,
the difference can be used to analyze the robustness of the
network from the perspective of resource utilization. When
the network is under a minor attack, the larger the difference
of average travel time is, the weaker the network robustness
is, and vice versa.

B. NETWORK DISTURBANCES
UTRNs are often affected by sudden accidents in the daily
operations, and this paper mainly considers three different
disturbances, including node failure, the increase of pas-
senger flow on links and the increase of overall passenger
flow, which are called the node attack, link-demand attack
and overall-demand attack respectively. These three different

attacks simulate scenarios that may change the network from
different perspectives, analyze the impact of different types
of disturbances on the choice of passenger flow paths in the
network, and then analyze the robustness of UTRNs.
Node attacks mean that the node is attacked and removed

from the network, and the attacked node loses transportation
ability. Meanwhile, the removal of the failed node may pro-
duce other isolated nodes, which will also lose transportation
functions and be removed accordingly. Moreover, when the
node is attacked and removed from the network, the passenger
flow of the failed node will be allocated to their neighbor
nodes. The link-demand attack refers to a sudden increase of
passenger flow on a certain link, and the influence to the net-
work caused by the local demand changes can be discussed.
To analyze the impact of the increase of passenger flow on
the network, we set different link-demand attack intensities
as 0.1, 0.2, 0.3, 0.4, and 0.5. The overall-demand attack refers
to a sudden increase of the passenger flow on all the OD
pairs of the whole network, and the influence to the network
caused by the global demand changes can be also analyzed.
The overall-demand attack analyzes the changes in network
performance when the total passenger flow of the network
changes. Similarly, the intensity of the overall-demand attack
is also used to analyze the robustness changes of the network.
Three different attacks observe the robustness of the network
in network utilization from many different aspects.

FIGURE 1. Shanghai metro topology map.

IV. RESULT ANALYSIS
In this section, the model described in Section 3 is applied to
assess the robustness ofURTNs, and Shanghai metro network
is taken as an example to illustrate the feasibility and effec-
tiveness of the proposed model. Fig. 1 shows the topological
map of the Shanghai metro in 2016, including 288 stations
and 640 edges. The Shanghai subway topology data and
corresponding OD demand data from 07:30 to 08:30 on
July 1, 2016, come from the Shanghai operating company
and we can also get the free travel time and capacity of each
link according to the actual operation timetable. Therefore,

129164 VOLUME 9, 2021



W. Shao et al.: Robustness Assessments of Urban Rail Transit Networks Based on Network Utilization

we can combine Eq. (5) to calculate the average travel time
of the network under different passenger flow configurations.

This paper uses the difference between the user equilibrium
and the optimal average travel time of the network to quantify
the robustness. When the network is disturbed, the difference
between the average time under the system optimal and the
average time under user equilibrium is small, indicating that
the network can ensure better network utilization under the
disturbance, and the network exhibits high robustness. On the
contrary, the robustness of the network is poor. By compar-
ing the difference of the average travel time between user
equilibrium and optimal system, we analyze the characteristic
changes on robustness of URTNs under different attacks.

FIGURE 2. Time differences under node attacks.

A. ROBUSTNESS ANALYSIS UNDER THE SINGLE
COMPONENT FAILURE
In this subsection, the node attack and the link-demand attack
are adopted to study the robustness of URTNs, and the dif-
ference of the average travel time between user equilibrium
and optimal system is taken as the assessment indicator to
analyze the characteristic changes ofURTNs. Fig. 2 describes
the difference of the average travel time between user equi-
librium and optimal system under the node attacks, and each
point in the figure represents the result of a node attack. And
we discover that the difference of the average travel time
under different node attacks is smaller than 1 minute, and
the most difference is 0.935 when the node 43 is attacked.
However, most of the differences are smaller than 0.2, and
several node attacks can generate small differences which are
smaller than the original difference 0.093 (the red dotted line),
and the smallest difference is 0.058 when node 49 is removed
from the network. In other words, the removal of most nodes
has little effect on network utilization of URNTs, and only
some nodes will reduce the network utilization. Therefore,
the results show that URTNs have the better robustness sub-
jected to random node attacks.

Fig. 3 shows the difference of the average travel time
between user equilibrium and optimal system under the
link-demand attacks and different point types are used to
indicate the results of different attack intensities. We find
that the difference of the average travel time under different

FIGURE 3. Time differences under different intensity link-demand attacks.

link-demand attacks is very small, and the number of dif-
ferences larger than the original difference (0.093) becomes
more and more with the increase of the link-demand attack
intensity. Meanwhile, we discover that the largest differ-
ences are 0.1065, 0.1315, 0.1375, 0.1375, 0.2030 for dif-
ferent link-demand attack intensities 0.1, 0.2, 0.3, 0.4,
0.5 respectively, and the corresponding attacked links are
l288, l288, l290, l209, l113. However, the smallest differ-
ences are 0.0914, 0.0882, 0.0820, 0.0737, 0.0639 for different
link-demand attack intensities 0.1, 0.2, 0.3, 0.4, 0.5 respec-
tively, and the corresponding attacked links are the same link
l123. Moreover, Fig. 3 also illustrates that URTNs have the
better robustness subjected to random link-demand attacks.

Compared Fig. 2 with Fig. 3, we can declare that the overall
difference resulted from node attacks is larger than the overall
difference generated by the link-demand attacks, therefore we
can declare thatURTNs have better robustness when suffering
the random link-demand attacks than random node attacks.
Furthermore, the results show URTNs have a large network
utilization and possess better robustness when they suffer
random attacks on a single component.

B. ROBUSTNESS ANALYSIS UNDER
OVERALL-DEMAND ATTACKS
In this subsection, the overall-demand attack is involved
to analyze the characteristic changes in the robustness of
URTNs based on the attack intensity belonging to [−0.2,
1.4]. Fig. 4 shows that the difference of the average travel
time between user equilibrium and optimal system under the
overall-demand attack, and it indicates that when the attack
intensity is smaller than 1, the difference of the average travel
time between two models increases with the increase of the
attack intensity, and the most difference is 0.7 when the attack
intensity equals 1, and this phenomenon illustrates that the
robustness of the URTNs will decrease as the overall passen-
ger flow increases within a certain range. However, we find
that when the attack intensity is larger than 1, the difference
becomes smaller and smaller with the increase of the attack
intensity, this phenomenon indicates that the passenger flow
is very congested in the overall network, even has exceeded
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FIGURE 4. Time differences under different intensity overall-demand
attacks.

FIGURE 5. Average travel time under different attack intensities.

the network transportation ability, therefore the difference
becomes smaller and smaller with the increase of the attack
intensity.

Meanwhile, we calculate the average travel time of
the optimal system under different attack intensities of
overall-demand attacks shown in Fig. 5. The intensity of -0.2
means that the overall network demand, that is, the total
passenger flow, is 0.8 times the initial network demand and
when the attack intensity is 0, which is the initial demand,
the average travel time in the network is 19.8 minutes, and
we find that the average travel time becomes larger and larger
with the increase of the attack intensity, which indicates that
the robustness of URTNs to the overall-demand attack will
decrease as the attack intensity increases. Moreover, we also
find that when the attack intensity exceeds 1, the average
travel time is very large and fast rises, which means that the
network is already crowded to maintain the normal operation.
The phenomenon indicates that the robustness of URTNs
under the overall-demand attack is very worse when the
attack intensity exceeds 1, and shows the same characteristics
between user equilibrium and optimal system according to
Fig. 4 and Fig. 5.

V. CONCLUSION
This paper investigates the robustness of URTNs from the
perspective of the network utilization by the travel time

difference between user equilibrium and optimal system.
Meanwhile, the principles and solving algorithms of user
equilibrium and optimal system are detailed described in this
paper. Moreover, Shanghai metro network is taken as the
example to illustrate the feasibility and effectiveness of the
proposed schemes and three aimed attacks called node attack,
link-demand attack and overall-demand attack are adopted to
imitate the network failures. We find that URTNs have the
better robustness subjected to random attacks under the node
attack and the link-demand attack, and we also discover that
URTNs have better robustness when suffering the random
link-demand attacks than random node attacks. Furthermore,
the results also show that the robustness of URTNs will
decrease with the increase of the attack intensity when suffer-
ing the overall-demand attack, and there is a critical threshold
about attack intensity that URTNs have the worst robustness
when the attack intensity exceeds this critical threshold. The
robustness analysis framework of URTNs applies to a variety
of transportation networks and can provide suggestions in
transportation planning and design.
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