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ABSTRACT TheManta ray foraging optimization (MRFO) is a novel swarm-based metaheuristic optimizer.
It is mainly modeled by simulating three foraging behaviors of the Manta rays, which has a good perfor-
mance. However, several drawbacks of MRFO have been noticed by analyzing its mathematical model.
Random selection of reference points in the early iterations weakens the exploitation capability of MRFO.
Chain foraging tends to lead the algorithm into local optimum. In addition, the algorithm suffers from the
deficiency of decreasing population diversity in the late iteration. To address these shortcomings, a modified
MRFO using three strategies, called m-MRFO, is proposed in this paper. An elite search pool (ESP) is
established in this paper to enhance exploitation capability. By using adaptive control parameter strategies
(ACP), we expand the range of MRFO’s exploration in the early iterations and enhance the accuracy of
exploitation in the later iterations, balancing exploiting and exploring capabilities. Furthermore, we use a
distribution estimation strategy (DES) to adjust the evolutionary direction using the dominant population
information to promote convergence. The m-MRFO performance was verified by selecting 23 classical
test functions and CEC2017 test suite. The significance of the results was also verified by Friedman test,
Wilcoxon test and Iman-Davenport test. Moreover, we have confirmed the potential of m-MRFO to solve
real-world problems by solving three engineering design problems. The simulation results show that the
improvement strategy proposed in this paper can effectively improve the performance of MRFO. m-MRFO
is highly competitive.

INDEX TERMS Manta rays foraging optimizer, metaheuristic, swarm intelligence algorithm, engineering
optimization problems.

I. INTRODUCTION
Global optimization problems can be found in almost every
field of finance, engineering, and science. With the develop-
ment of science and technology, increasingly complex opti-
mization problems are emerging. Many realistic optimization
problems are accompanied by several difficulties: expen-
sive computational costs, complex non-linear constraints,
dynamic objective functions and huge search ranges [1].
In this case, it is a challenge to efficiently find a solution
that satisfies the constraint. Conventional mathematical or
numerical programming methods are overwhelmed when
faced with multiple types of non-integrable, non-continuous
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problems [2]. In addition, they have difficulty in bal-
ancing accuracy and time cost when solving large-scale
real-world multimodal problems. Metaheuristic optimization
algorithms, as a class of stochastic optimization algorithms,
perform better in balancing the quality of solution and time
cost. It has been widely used to solve complex optimization
problems in natural and engineering fields due to its simple
structure and its non-reliance on the gradient information
of specific problems [3]. More and more scholars are pay-
ing attention to and working on metaheuristic optimization
algorithms.

In the past decades, various algorithms have been pro-
posed one after another. In general, meta-heuristic opti-
mization algorithms can be divided into three groups [4]:
evolution-based algorithms, physics-based algorithms, and
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swarm-based algorithms. Genetic algorithm (GA) [5] that
simulates the survival of the fittest mechanism in nature
is a widely used evolutionary algorithm. In addition, other
evolutionary algorithms have been proposed, including dif-
ferential evolution (DE) [6], evolutionary programming
(EP) [7], and evolutionary strategies (ES) [8]. The pop-
ularity of these evolutionary algorithms has also encour-
aged more and more researchers to study and propose other
evolutionary algorithms[9]–[11]. The physics-based algo-
rithms construct optimization models by emulating the phys-
ical laws of the universe. Simulated annealing (SA) [12]
inspired by annealing phenomena in metallurgy is one of
the best-known physics-based algorithms. Apart from SA,
other physics-based algorithms have been proposed, such
as gravity search algorithm (GSA) [13], nuclear reaction
optimizer (NRO) [14], sine cosine algorithm (SCA) [15],
black hole algorithm (BOA) [16], and water cycle algorithm
(WCA) [17]. The swarm-based optimization algorithm per-
forms by simulating the social behavior of the population.
Particle swarm optimization (PSO) [18] and ant colony opti-
mization (ACO) [19] are two classical swarm-based opti-
mization algorithms. They perform by simulating a bird
colony and an ant colony cooperating in foraging, respec-
tively. There are other swarm intelligence optimization algo-
rithms including: grey wolf optimizer (GWO) [20], whale
optimization algorithm (WOA) [21], sparrow search algo-
rithm (SSA)[22], firefly algorithm (FA) [12], artificial bee
colony algorithm (ABC) [23], and so on [24]–[27].

Recently, a swarm-based algorithm calledManta ray forag-
ing optimization (MRFO) that emulates the foraging behavior
of manta rays is proposed by Zhao in 2020 [28]. As a newly
proposed algorithm, MRFO is quickly applied to solve vari-
ous engineering optimization problems. Abd Elaziz et al. [29]
use fractional order calculus to enhance MRFO and
applies it to multilevel thresholding image segmentation.
Ghosh et al. [30] propose a binary version of MRFO and
solves the feature selection problem. An improved version of
MRFO is proposed by Xu et al. [31] and high-temperature
proton exchange membrane fuel cell is analyzed and opti-
mized. Hassan et al. [32] propose an improved MRFO
with a hybrid gradient-based optimizer and uses it to solve
the economic emission dispatch problem. The global max-
imum power point tracker based on MRFO is proposed by
Fathy et al. [33].

However, MRFO also has the shortcomings of insufficient
exploitation ability, decreasing population diversity, and easy
to fall into local optimum. These deficiencies are mainly
caused by the imbalance in the exploitation and exploration
of the search space by the algorithm. In order to enhance
the algorithm performance and balance the exploitation and
exploration capabilities, in this paper, a modified MRFO
(m-MRFO) with three improvement strategies is proposed.
An elite search pooling strategy is proposed to improve the
algorithm exploitation ability for the deficiency of too slow
convergence due to random selection of reference points in
the early iterations. To balance the algorithm exploitation and

exploration, an adaptive parameter control strategy is pro-
posed. And a Gaussian probability model is used to describe
the dominant population distribution and modify the evolu-
tionary direction, thus improving the algorithm performance.

To fully verify the performance of m-MRFO, 51 func-
tions and 3 engineering design problems are used. And the
superiority of the algorithm is verified by numerical analysis,
convergence analysis, stability analysis, Wilcoxon test and
Friedman test. The main contributions of this paper are as
follows: (1) An elite search pool is introduced to improve
the exploitation of the algorithm. (2) To balance the exploita-
tion and exploration of the algorithm, an adaptive parameter
control strategy is proposed. (3) The evolutionary direction
is modified using Gaussian probability model to improve the
performance of m-MRFO. (4) The superiority of m-MRFO is
tested on 51 test functions and 3 engineering design problems.

The remainder of this paper is organized as follows.
A review of the basic MRFO is presented in Section II.
Section III provides a detailed description of the proposed
m-MRFO. In Section IV, the effectiveness of the proposed
improvement strategy is verified using the classical test func-
tions and CEC 2017 test suite. Furthermore, the m-MRFO
is applied to solve three engineering design problems in
Section IV. Finally, we summarize this work in Section V and
offer directions for future research.

II. THE BASIC MRFO
In this section, the basic steps ofMRFO are described.MRFO
is performed by simulating three foraging strategies of manta
rays, namely chain foraging, cyclone foraging and somer-
sault foraging. Similar to other swarm-based metaheuristic
algorithms, MRFO generates initial populations randomly in
the search space. Then it is updated by the three strategies
mentioned above. The mathematical models for these three
foraging strategies are given respectively below.

A. CHAIN FORAGING
The manta rays form a foraging chain by linking their heads
and tails in a line. MRFO considers that the best solution is
a higher concentration of plankton, which is the target food
for manta rays. While the first individual moves only towards
food, the rest of the individuals move not only towards food
but also towards individuals located in front of themselves in
the foraging chain. Themathematical model of chain foraging
is described as follows.

xt+1i =


xti + r1 · (x

t
best − x

t
i )

+α · (xtbest − x
t
i ), i = 1

xti + r2 · (x
t
i−1 − x

t
i )

+α · (xtbest − x
t
i ), i = 2, 3, . . .NP

(1)

α = 2 · r3 ·
√
|log(r4)| (2)

where xti is the position of the ith individual at generation t .
ri ∈ [0, 1], i = 1, 2, 3, 4 are uniformly distributed random
vectors. xtbest is the plankton with the highest concentration,
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that is, the optimal individual. NP is the number of popula-
tions. α is a weight coefficient.

B. CYCLONE FORAGING
When manta rays find plankton in deep water, they form long
foraging chains and then move toward food in a spiral. This
behavior is similar to WOA, but in addition to spiraling close
to food, it also follows the individuals in front of it. The
mathematical model of cyclone foraging can be given by the
following equation.

xt+1i =


xtbest + r5 · (x

t
best − x

t
i )

+β · (xtbest − x
t
i ), i = 1

xtbest + r6 · (x
t
i−1 − x

t
i )

+β · (xtbest − x
t
i ), i = 2, 3, . . . ,NP

(3)

β = 2 · exp(r7 · (itermax − iter + 1)/itermax) · sin(2πr7)

(4)

where ri ∈ [0, 1], i = 5, 6 is uniformly distributed random
vectors. β is the weight coefficient. r7 ∈ [0, 1] is a uniformly
distributed random number. itermax and iter are the maximum
number of iterations and the current number of iterations,
respectively.

In Eq. (3), food is mainly used as a reference point for
spiral foraging, which contributes to the full exploitation of
the space near food. In addition, to expand the search range,
a randomly generated location in the search space is used
as a reference location for spiral foraging. This allows all
individuals to search for areas far from their current best
position. The random spiral foraging mechanism focuses
mainly on exploration, allowing MRFO to perform a broad
global search. The specific mathematical model is described
as follows.

xrand = lb+ r8 · (ub− lb) (5)

xt+1i =


xrand + r9 · (xtbest − x

t
i )

+β · (xtbest − x
t
i ), i = 1

xrand + r10 · (xti−1 − x
t
i )

+β · (xtbest − x
t
i ), i = 2, 3, . . . ,NP

(6)

where xrand is a random position randomly produced in the
search space. ri ∈ [0, 1], i = 8, 9, 10 are uniformly dis-
tributed random vectors. ub and lb are the upper and lower
bounds of the search space, respectively.

C. SOMERSAULT FORAGING
In this phase, the food location is considered as a pivot point.
Each individual flip around the pivot and thus searches for
a new location. The mathematical model of this phase is
represented as follows.

xt+1i = xti + S · (r11 · x
t
best − r12 · x

t
i ), i = 1, 2, . . . .,NP

(7)

where S is the somersault factor that decides the somersault
range of manta rays and S = 2. r11 and r12 are two random
numbers in [0, 1].

MRFO regulates the exploration and exploitation behav-
ior by controlling the change of (iter/itermax). When
(iter/itermax) < rand , the exploration behavior is mainly
performed, and food sources are randomly generated as ref-
erence points in the search space. When (iter/itermax) ≥
rand , the optimal individual is used as a reference point,
which facilitates the exploitation of the algorithm. In addition,
a random number is used to select chain foraging or spiral
foraging. After that, Somersault foraging is performed.

III. THE MODIFIED MRFO
To overcome the shortcomings of MRFO, we use an elite
search pool instead of randomly generated individuals as
reference points to improve the algorithm exploitation perfor-
mance. In addition, we make a good transition from explo-
ration to exploitation with an adaptive parameter control
strategy. And a balance between them is achieved. To modify
the evolutionary direction, we use a distribution estimation
strategy. By sampling the dominant population information,
we enhance the population diversity and improve the algo-
rithm performance. The mathematical model of m-MRFO is
described in detail as follows.

A. ELITE SEARCH POOL STRATEGY (ESP)
Analysis of Eq. (5) and Eq. (6) shows that the reference
location of cyclone foraging is randomly generated in the
search space in the early iterative stage. While this facili-
tates the algorithm to search more space, the large range of
random positions weakens the algorithm exploitation ability
and slows down the convergence speed. In order to enhance
the exploitation capability while still retaining its ability to
search large spaces, an elite search pool strategy is proposed
in this paper. We put the current best three individuals into a
set. As shown in Eq. (8).

xesp = {Xesp1,Xesp2,Xesp3} (8)

where Xesp1, Xesp2 and Xesp3 are the best three individuals.
The reference point is chosen randomly from these three

individuals each time. By using the ESP strategy, the position
of the reference point is changed from randomly generated to
one of the best three individuals. This greatly enhances the
algorithm exploitation capability. Meanwhile, the three indi-
viduals are chosen randomly, which to some extent avoids the
prematureness of the algorithm caused by the optimal individ-
ual falling into the local optimum. To balance the algorithm
exploitation and exploration, we also add a new individual to
the ESP. This new individual is randomly composed of the
best three individuals. This retains the possibility to select
dominant individuals and also provides the option to select
positions at a longer range. Thus, the final mathematical
model of the ESP strategy is described as follows:

xesp = {xesp1, xesp2, xesp3, xespr } (9)

xespr = r13 · xesp1 + r14 · xesp2 + r15 · xesp3 (10)

where ri ∈ [0, 1], i = 13, 14, 15 are uniformly distributed
random vectors.
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B. ADAPTIVE CONTROL PARAMETER STRATEGY (ACP)
The original MRFO balances the search behavior by control-
ling the value of (iter/itermax). (iter/itermax) is a linearly
increasing variable, which does not accurately reflect and
accommodate the complex nonlinear search process. The
nonlinear parameter control strategy is an effective measure
to prevent premature. Several researchers have proposed var-
ious nonlinear parametric control strategies for balancing
exploitation and exploration [34]–[36].In this paper, we pro-
pose an adaptive control parameter strategy with a mixture of
sine and cosine functions. The specific mathematical model
of parameter Coef is as follows.

Coef = sin(0.5π · iter/itermax)(2.5cos(iter/itermax )
3) (11)

As shown in Figure 1, the new strategy focuses more on
exploration in the early stage to avoid the algorithm from
falling into local optimum. In the later stage, it keeps the
exploitation of large probability, which helps the algorithm
to accelerate the convergence. Furthermore, we note that the
parameter S is constant when the original MRFO performs
somersault foraging, which is not beneficial for the algorithm
to perform effectively. In the early stages of optimization,
the algorithm performsmore exploratory behavior, so S needs
to be large enough to search more space. In the late itera-
tion, the algorithm needs to be more precise for exploitation.
At this point, too large S will lead to a weakening of the
algorithm’s exploitation ability. Therefore, we need a smaller
value of S. Therefore, we propose a linear decreasing strategy
with parameter S. The mathematical model is as follows.

S = (Smin− Smax)/itermax · iter + Smax (12)

where Smin and Smax are the maximum andminimum values
of the parameter S, respectively.

FIGURE 1. Comparison of control parameters.

C. DISTRIBUTION ESTIMATION STRATEGY (DES)
The originalMRFO’s chain foraging strategy uses the optimal
individual and neighboring individuals for position updating.

This leads to a premature convergence of the algorithm
if the optimal individual has fallen into a local optimum, then
the chain rule leads all subsequent individuals to approach
the locally optimal individual. In order to enhance the
algorithm performance, a distribution estimation strategy
is proposed in this paper with the following mathematical
model.

xt+1i = mean+ y, y ∼ N (0,Cov) (13)

mean = (xesp + xtmean + x
t
i )/3 (14)

Cov(i) =
1

NP/2

∑NP/2

i=1
(xt+1i − xtmean)× (xti − x

t
mean)

T

(15)

xtmean =
∑NP/2

i=1
ωi × xti (16)

ωi =
ln(NP/2+ 0.5)− ln(i)∑NP/2

i=1 (ln(NP/2+ 0.5)− ln(i))
(17)

where xtmean denotes the weighted position of the domi-
nant population and ω denotes the weight coefficient in the
dominant population in descending order of fitness values.
Cov is the weighted covariance matrix of the dominant popu-
lations. In m-MRFO, the DES and the chain foraging strategy
are randomly selected for execution.

The pseudocode and flow chart of the m-MRFO are shown
in Algorithm 1 and Figure 2.

Algorithm 1 The Procedure of m-MRFO
Initialize search agents (Manta ray) populations i = 1, . . . , n
While termination criteria are not met
Calculate the fitness, construct the elite search pool based on
Equation (9)
Calculate mean and Cov based on equation (14) and
equation (15)

If rand < 0.5
If Coef > rand

Update Manta ray based on equation (3)
Else

Update Manta ray based on equation (6) and
equation (9)

End if
Else

If 0.5 > rand
Update Manta ray based on equation (1)

Else
Update Manta ray based on equation (13)
End if

End
Boundary control; calculate fitness of each agent
Greedy strategy is adopted to select the offspring
Calculate the S based on equation (12)

Update Manta ray based on equation (7)
Boundary control; calculate fitness of each agent
Greedy strategy is adopted to select the offspring

End while
Output the best solution
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FIGURE 2. Flow chart of m-MRFO.

D. TIME COMPLEXITY OF THE MRFO
The time complexity of mrfo can be seen from the
literature [28] as follows.

O(MRFO) = O(T (O(cyclone foraging

+ chain foraging)+ O(somersault foraging)))

(18)

O(MRFO) = O(T (NP · D+ NP · D))

= O(T · NP · D) (19)

In this paper, three improvement strategies are pro-
posed, ESP and ACP do not change the time complexity.
The time complexity of the covariance matrix of DES is
O(T (NP/2·D2)). Therefore, the time complexity ofm-MRFO
is shown below.

O(m−MRFO) = O(T (O(cyclone foraging)

+O(chain foraging+ DES))

+O(somersault foraging))) (20)

O(m−MRFO) = O(T (NP · D)

+T (NP/2 · D+NP/2 · D2)+T (NP · D))

= O(T · NP/2 · D2) (21)

where T is the maximum value of the iteration, NP is the
number of individuals, and D is the number of variables.

IV. EXPERIMENTS RESULTS
To verify the performance of m-MRFO, two different sets
of benchmark functions are used for testing. The first group
includes 23 classical test functions with the information

shown in Table 1. The second group is the CEC2017 test
suite, which has the detailed information shown in Table 2.
There are 51 test functions in total in the two test suites, which
can be divided into unimodal test functions, multimodal test
functions, low-dimensional test functions, hybrid functions
and composite functions. The unimodal test functions have
only one global optimal solution, so they are often applied to
evaluate the exploitation capability of an algorithm. The mul-
timodal test functions, on the other hand, havemultiple global
optimal solutions and are therefore used to test the explo-
ration capability of the algorithms. The low-dimensional test
functions check the algorithm’s ability to explore in low
dimensions. Hybrid and composite functions are more com-
plex and can be used to verify the overall performance of an
algorithm.

There are four parts of the experiment on m-MRFO. In the
first part of the experiment, we need to determine the values
of Smax and Smin. The values of Smax and Smin affect
the development and exploration ability of the algorithm,
so we adopt 23 classical test functions to get their optimal
values. Secondly, to verify the effectiveness of the three
improvement strategies proposed in this paper, we employ the
CEC2017 test suite for testing. In the third and fourth parts
of the experiment, m-MRFO is compared with other algo-
rithms using the classical test functions and the CEC2017 test
suite, respectively. In the last part, three engineering opti-
mization problems are used to test the proposed m-MRFO
performance.

To ensure fair comparison, for the classical test functions,
all algorithms adopt the same dimensions, the maximum
number of iterations is set to 300, the number of popula-
tions is set to 50, and all test functions are run 30 times
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TABLE 1. The classic benchmark functions (M: Multimodal, U: Unimodal, S: Separable, N: Nonseparable, Dim: Dimension, Range: Limits of search space,
Optimum: Global optimal value).

independently. For CEC2017, Dim, itermax , and NP are set
uniformly to 30, 600, and 500, respectively. all test functions
are run independently 51 times. The experiments in this paper
were conducted on a computer with an AMD R7 4800U
processor and 16 GB RAM. Programming was performed
using MATLAB R2016b.

A. ANALYSIS OF Smax AND Smin PARAMETER SETTINGS
The algorithm parameter settings have a great impact on its
performance. In the original MRFO, S is the key parameter
for somersault foraging. We control the variation of S by the
parameters Smax and Smin to balance the algorithm exploita-
tion and exploration. In this section, we need to identify the
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TABLE 2. Descriptions of CEC 2017 test suite.

optimal values of Smax and Smin. Smax determines the max-
imum range of the search and affects the exploration capa-
bility of the algorithm. The optimal values are chosen from
Smax = {2.4, 2.2, 2.0, 1.8, 1.6}. Smin affects the exploita-
tion ability of the algorithm. Here, we discuss six values of
Smin = {1.6, 1.4, 1.2, 1.0, 0.8, 0.6}.

In this part, 23 classical test functions are used to
compare the optimization results of m-MRFO for the
above 30 (5 × 6) different parameter settings. Each test
function was run 30 times independently, and a totally
of 20,700 data were obtained. Due to the large amount
of data, the experimental results are not compared specifi-
cally, but the differences are reflected by ranking the simu-
lation results under different parameter settings by Friedman
test.

Based on the experimental data, the Friedman test results
are given for unimodal test functions and multimodal test
functions, respectively. As shown in Figure 3, for the uni-
modal test functions, the algorithm mostly performs poorly
when Smax = {2.4, 2.2}. And when Smax = {1.8, 1.6},
the algorithm is generally better. On the other hand, the algo-
rithm performs poorly when Smin has a value that is too
large or too small. The algorithms are generally better when
Smin = 1.For the multimodal test functions, the influence
of the parameter settings is exactly the opposite of the case
for the unimodal test functions. In addition, to identify the
optimal values of Smax and Smin, we present the results
of the Friedman test considering all the tested functions.
The results show that the algorithm performs best when
Smax = 2.4, Smin = 1.4.

TABLE 3. m-MRFO variants with different improvement strategies.

B. ANALYSIS OF M-MRFO IMPROVEMENT STRATEGIES
The improvement proposed in this paper for the origi-
nal MRFO consists of three parts: search pool strategy,
adaptive control parameter strategy and distribution esti-
mation strategy. To evaluate the effectiveness of differ-
ent improvement strategies, we propose three m-MRFO
derivation algorithms with different improvement strategies,
as shown in Table 3. m-MRFO-1 utilizes ESP to enhance
the algorithm performance. m-MRFO-2 is used for evalu-
ating the effectiveness of the ACP. The DES is fused into
m-MRFO-3. The performance of the five algorithms is com-
pared using the CEC2017 test suite. The five algorithms
run under the same experimental parameters. Each func-
tion is run independently 51 times. The mean error results
for each algorithm are listed in Table 4, and the Friedman
test results for the five algorithms are given in the last
row.

From the statistical results, it is clear that the m-MRFO
with the complete improvement strategies performs best with
a Friedman test ranking value of 1.25. The ranking values of
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FIGURE 3. Effect of different Smax and Smin on algorithm performance.

the three derived algorithms with one improved strategy are
also better than the original MRFO. The ranking values for
the three derived algorithms are 3.39, 3.57 and 2.25, respec-
tively. Thus, the impact of these three improvement strate-
gies on the performance of the algorithm can be obtained
in descending order: EDS > ESP > ACP. m-MRFO-3

performs the best among the three derived algorithms, prov-
ing that the utilization of DES can effectively enhance the
performance of the algorithm. It generates offspring using
the overall distribution information of the dominant popula-
tion, which effectively avoids the deficiency of falling into
local optimum caused by the population following only the
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TABLE 4. Statistics of the results in CEC2017 30D test.

optimal individual. The performance of m-MRFO-1 in solv-
ing the multimodal test functions is similar to that of
m-MRFO-3 with better results. This is due to the introduction
of ESP, which effectively expands the search range by ran-
domly selecting an individual in the ESP as a reference point,
thus enhancing the algorithm’s ability to solve multimodal
problems. Figure 4 presents the ranking radar diagram of the
five algorithms. It can be observed that the area enclosed
by m-MRFO is the smallest, which visually indicates that
m-MRFO has the best performance.

FIGURE 4. Mean error ranking result.

TABLE 5. Algorithms used for comparative analysis and their parameter
settings.

C. ANALYSIS OF CLASSICAL TEST FUNCTIONS TEST
In this part, the performance of m-MRFO on classical test
functions will be verified. A comparison with m-MRFO is
performed using other advanced algorithms. The parame-
ter settings of each algorithm are given in Table 5. The
experimental parameters and environment are consistent
with Section IV A. The algorithms employed for com-
parison include flower pollination algorithm (FPA) [37],
biogeography-based optimization (BBO) [9], moth-flame
optimization (MFO) [38], multi-verse optimizer (MVO) [39],
sine cosine algorithm (SCA) [15], sparrow search algorithm
(SSA) [22], particle swarm optimization (PSO) [18], whale
optimization algorithm (WOA) [21] and gravitational search
algorithm (GSA) [13].

As shown in Table 6, m-MRFO performs best in solving
five of the seven unimodal test functions (F1-F4, F7). The
m-MRFO provides the second-best solution in solving F5
and F6. It is due to the replacement of randomly gener-
ated reference points using ESP, which further enhances the
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TABLE 6. Statistical results of the nine comparison algorithms for classical functions.

exploitation capability. SSA provides satisfactory answers
on F5 and F6. From the statistics of the multimodal test
functions, m-MFRO performs the best in three test functions
(F9-F11). However, m-MFRO gives unsatisfactory results
in solving F8 and F13. The analysis of the results of the
low-dimensional test functions shows that m-MFRO achieves
the best solution on 9 of the 10 test functions (4 first and
5 second). PSO, SSA and MFO are in the second, third and
fourth positions. In addition, we evaluate the performance of
the algorithms using the Friedman test. All algorithms are
ranked according to the mean value. The results show that
m-MRFO ranks first with a ranking value of 2.28. The sta-
tistical results show that m-MRFO has the best performance
compared to the nine algorithms mentioned above for solving
the classical test functions.

D. ANALYSIS OF THE CEC 2017 TEST
The classical test functions can verify the performance of
algorithms to a certain extent. However, with the develop-
ment of intelligent optimization algorithms, more and more
algorithms have better performance in the classical test
functions. In order to further verify the superiority of the
m-MFRO proposed in this paper, more complex test func-
tions are needed for testing. Therefore, we use the IEEE
CEC2017 test suite to further validate the performance of the
improved algorithms. This test set consists of more complex
and difficult test functions. It has beenwidely used to evaluate
the performance of various newly proposed and improved
algorithms. In this part, eight recently proposed algo-
rithms are evaluated for comparison with m-MRFO. These
state-of-the-art algorithms include artificial ecosystem-based
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TABLE 7. Algorithms used for comparative analysis and their parameter
settings.

optimization (AEO) [40], harris hawks optimization
(HHO) [41], virus colony search (VCS) [42], arithmetic
optimization algorithm (AOA) [43], slime mould algorithm
(SMA) [44], jellyfish search (JS) [45], pathfinder algorithm
(PFA) [46] and tunicate swarm algorithm (TSA) [47]. All
algorithm parameters are set the same as the original liter-
ature, as shown in Table 7. In this paper, the performance
of m-MRFO is comprehensively evaluated by numerical
analysis, convergence analysis, stability analysis, Wilcoxon
test, Friedman test, and Iman-Davenport test.

Table 8 lists the numerical statistics for each algorithm
independently solving the CEC2017 test suite 51 times.
Analysis of Table 8 shows that although m-MRFO does
not achieve the optimal value of 0 for the unimodal test
function F24, it provides the best solution of the nine algo-
rithms. This demonstrates the superiority of m-MRFO in
solving pathological functions and once again validates that
improved strategies can effectively improve the exploitation
capability. In the multimodal test functions F25-F31, all
algorithms perform differently. The m-MRFO performs best
on F25 and F30. SMA provides the best solutions for F26,
F28 and F31. JS achieves the best answers for F27 and F29.
The average rank of m-MRFO in solving the multimodal test
functions is better than all the comparison algorithms, which
indicates the competitive exploration capability of m-MRFO.
In the hybrid functions and composite functions, m-MFRO
outperforms the comparison algorithm overall. Specifically,
m-MFRO achieves the best results on eight of the nine
hybrid functions. m-MFRO ranks in at least the top three
of all 11 composite functions. The results for the hybrid
and composite functions illustrate that m-MRFO achieves a
good balance between exploitation and exploration behaviors
and has a strong potential for solving complex real-world
optimization problems.

To analyze the distribution characteristics of the solutions
solved by the improved algorithms, the box diagrams are
shown in Figure 5 based on the results of each algorithm
solving the test function 51 times independently. For each
algorithm, the center mark of each box indicates the median
of the results of 51 solving functions, the bottom and top
edges of the box indicate first and third-degree points, and the

symbol ‘‘+’’ indicates bad values that are not inside the box.
As can be seen from Figure 5, for F24, F25, F30, F35, F37
and F42, there are no bad values for m-MRFO, which
indicates that the distribution of solutions obtained from
m-MRFO is more concentrated and m-MRFO has better
stability. For other test functions with some bad values, the
distribution of the m-MRFO solutions is also more concen-
trated compared to the comparison algorithm. In conclusion,
the variance of the m-MRFO solving test functions is much
lower and the stability is better than that of the comparison
algorithm.

Convergence speed and convergence accuracy are impor-
tant indicators of algorithm performance. Figure 6 shows the
mean error convergence curves for each algorithm solving the
test functions. It can be seen that m-MFRO has a faster con-
vergence speed and better convergence accuracy. In the con-
vergence curve of the unimodal test function F24, m-MFRO
has the fastest convergence speed and the highest accuracy.
This indicates that m-MFRO has better exploitation capa-
bility. The convergence curves of the multimodal functions
show that m-MFRO can explore well and thus avoid the local
optimum. In most hybrid and composite functions, m-MRFO
can achieve a better result quickly. This demonstrates that
m-MFRO transitions well from exploration to exploitation,
balancing the behaviors of exploration and exploitation in the
search space.

The literature [48], [49] show that analyzing algorithm
performance based on mean values alone is not sufficient.
To avoid coincidence in the test, we adopt a variety of sta-
tistical analyses to verify algorithm performance.

In this paper, the Wilcoxon signed-rank test is first
used to verify whether m-MRFO is significantly differ-
ent from the comparison algorithms in statistical sense.
Table 8 presents the results of the Wilcoxon signed rank
test for each algorithm and m-MRFO at the significance
level α = 0.05. In the Table 9, the symbol ‘‘+’’ indicates
that m-MRFO outperforms the comparison algorithm. The
symbol ‘‘-’’ indicates that m-MRFO underperforms the com-
parison algorithm. The symbol ‘‘=’’ indicates that m-MRFO
performs similarly to the comparison algorithm. The sym-
bol ‘‘R+’’ is a positive rank value indicating the extent to
which m-MRFO is better than the comparison algorithm,
and ‘‘R-’’ indicates the opposite result. Counting the num-
ber of ‘‘+/=/-’’ for each algorithm, it can be seen that
m-MRFO has the best performance among the algorithms
involved in the test. m-MRFO outperforms all the compar-
ison algorithms on at least 15 functions, which shows that
m-MFRO is statistically significantly different from the other
algorithms.

In addition, to check the differences and rankings between
several algorithms, another non-parametric multiple compar-
ison method is used in this paper: the Friedman test. A lower
ranking in the Friedman test means a better performance,
and the Friedman test compares three aspects: mean, stan-
dard deviation and time. As shown in Table 9, the proba-
bility of significance for the three aspects of the Friedman
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TABLE 8. Statistical results of the eight comparison algorithms for CEC2017.
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FIGURE 5. Boxes diagram of CEC2017.

test is significantly less than 0.05. Therefore, the hypothe-
sis is rejected and the performance of the seven compared
algorithms is significantly different. In terms of mean and
time, m-MRFO performed best. As for standard deviation,
m-MRFO ranks behind JS, but still outperforms the rest of
the algorithms. To further analyze the differences between the
algorithms, a post-hoc Iman-Davenport’s test was employed.
The Iman-Davenport test is based on the F-distribution with
(k− 1) and (k− 1)(N − 1) degrees of freedom. It can be seen
from Table 10, the F distributions with 8 and 216 degrees

of freedom in terms of mean, standard deviation and time
are: 67.05, 31.49 and 989.06. The corresponding p-values are
7.7715e-16, 9.4705e-12 and 0, respectively. To find differ-
ences in all algorithms, critical difference (CD) based on the
Nemenyi test was used. The critical value qα is 2.3053, so the
CD is 1.6873. A post-hoc test concludes that if the difference
in Friedman ranking values between the two algorithms is
less than the CD value, there is no significant difference
between the two algorithms; conversely, there is a significant
difference between the algorithms. Figure 7 provides a visual
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FIGURE 6. Convergence curves of CEC2017.

representation of the significant differences between the nine
algorithms, with similarly performing algorithms connected
by thick solid lines of length CDvalues. As shown in Figure 7,
m-MFRO ranks first, second and first in Mean, Std and Time,
respectively. The m-MRFO and JS have similar performance
in terms of Mean and Std. In addition, m-MRFO and VCS
have similar time costs. In conclusion, m-MRFO shows a
superior performance.

E. ANALYSIS OF ENGINEERING DESIGN PROBLEMS TEST
The engineering design problem is a nonlinear optimization
problem with complex geometry, many design variables,
and many real engineering constraints. The performance
of m-MRFO is evaluated by solving real-world engineer-
ing problems. Considering that these engineering design
problems are constrained optimization problems involv-
ing inequality and equality, we use penalty functions
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TABLE 9. Wilcoxon sign rank test results for CEC2017.

to transform the constrained optimization problems into
unconstrained optimization problems. These engineering
design problems are completely described in the following
sections.

The pressure vessel design problem shown in Figure 8,
presented by [50], is a typical hybrid optimization

problem where the objective is to reduce the total cost
including forming cost, material cost and welding cost.
There are four different variables: vessel thickness Ts (x1),
head thickness Th (x2), inner diameter R (x3) and ves-
sel cylindrical section length L (x4). The problem can be
described as Eq. (22). The comparison results are shown
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FIGURE 7. Algorithm comparison using a post-hoc test for CEC 2017.

in Table 11 and Table 12.

min f (x1, x2, x3, x4) = 0.6224x1x3x4 + 1.7781x2x23
+ 3.1661x21x4 + 19.84x21x3

Subject to g1(X ) = −x1 + 0.0193x3 ≤ 0
g2(X ) = −x2 + 0.00954x3 ≤ 0

g3(X ) = −πx23x4 −
4
3
πx23 + 1, 296, 000 ≤ 0

g4(X ) = x4 − 240 ≤ 0
Variable ranges : 1× 0.0625 ≤ x1,

x2 ≤ 99× 0.0625, 10 ≤ x3, x4 ≤ 200 (22)

The tension/compression spring design problem is a
mechanical engineering design optimization problem [65],
which can be used to evaluate the superiority of the algorithm.
As shown in Figure 9, the goal of this problem is to reduce
the weight of the spring. It includes four nonlinear inequal-
ities and three continuous variables: wire diameter w (x1),
coil average diameter d (x2), coil length or number L (x3).

FIGURE 8. Schematic of the pressure vessel design problem.

The comparison results are shown in Table 13 and
Table 14. The mathematical model of this problem can be
described as Eq. (23).

min f (x1, x2, x3) = (x3 + 2)x21x2

Subject to g1(X ) = 1−
x32x3

71785x41
≤ 0
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TABLE 10. Average ranks of m-MRFO and eight algorithms for CEC 2017 test according to the Friedman test (α = 0.05).

FIGURE 9. Schematic of tension/compression spring design problem.

FIGURE 10. Schematic of welded beam design problem.

g2(X ) =
x2(4x2 − x1)

12566x31 (x2 − x1)
+

1

5108x21
− 1 ≤ 0

g3(X ) = 1−
140.45x1
x22x3

≤ 0

g4(X ) =
2(x1 + x2)

3
− 1 ≤ 0

Variable range : 0.05 ≤ x1 ≤ 2,

0.25 ≤ x2 ≤ 1.3, 2.0 ≤ x3 ≤ 15.0 (23)

As shown in Figure 10, the main purpose of the welded
beam design problem is to reduce the manufacturing cost
of the welded beam, which mainly involves four variables:

TABLE 11. Comparisons of statistical results using reported optimizers in
the literature for pressure vessel design.

TABLE 12. Comparisons of best solutions offered by reported optimizers
for pressure vessel design.

the width h (x1) and length l (x2) of the weld zone, the
depth t (x3) and the thickness b (x4), and subject to the
constraints of bending stress, shear stress, maximum end
deflection and load conditions. The comparison results are
shown in Table 15 and Table 16. the mathematical model of
the problem is described as Eq. (24).

minf (x1, x2, x3, x4) = 1.10471x21x2
+ 0.04811x3x4(14.0+ x2)

subject to g1(X ) = τd − τ (X ) ≥ 0
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TABLE 13. Comparisons of statistical results using reported optimizers in
the literature for tension/compression spring design.

TABLE 14. Comparisons of best solutions offered by reported optimizers
for tension/compression spring design.

TABLE 15. Comparisons of statistical results using reported optimizers in
the literature for welded beam design problem.

TABLE 16. Comparisons of best solutions offered by reported optimizers
for welded beam design problem.

g2(X ) = σd − σ (X ) ≥ 0

g3(X ) = x4 − x1 ≥ 0

g4(X ) = Pc(X )− P ≥ 0

g5(X ) = δd − δ(X ) ≥ 0 (24)

where

τ (X ) =

√√√√ (τ ′(X ))2 + (τ ′′(X ))2 + x2τ ′(X )τ ′′(X )/√
0.25(x22 + (x1 + x3)2)

σ (X ) = 50400/x23x4
Pc(X ) = 64746.002(1− 0.0282346x3)x3x34
δ(X ) = 2.1952/x23x4
τ ′(X ) = 6000/(

√
2 x1x2)

τ ′′(X ) =
6000(14+ 0.5x2)

√
0.25(x22 + (x1 + x3)2)

2(0.707x1x2(x22/12+ 0.25(x1 + x3)2))

V. CONCLUSION
This paper proposes a new improvedMRFO variant with ESP
strategy, ACP strategy and DES strategy, namely m-MRFO.
First, ESP enhances MRFO exploitation during the cyclone
foraging phase by using the three optimal individuals and
their random synthetic individuals as reference points. Sec-
ond, the ACP strategy balances exploitation and exploration
capabilities by controlling the key parameters of MRFO.
Finally, the DES strategy effectively utilizes the dominant
population information to guide the evolutionary direction of
the population and improve MRFO performance.

Classical test functions and the CEC2017 test suite are
used to verify the effectiveness of the improvement strategies
and the superiority of m-MRFO. Simulation results show
that the ESP strategy can effectively improve the exploita-
tion capability. ACP achieves the balance of exploitation
and exploration. DES improves the convergence speed and
convergence accuracy of MRFO. To indicate whether the
performance differences between the algorithms are statis-
tically significant, the CEC2017 test results are analyzed
using the Wilcoxon sign rank test, Friedman test, and post
hoc Iman-Davenport test. The statistical results show that
the proposed m-MRFO significantly outperforms the other
algorithms. To demonstrate the performance of the proposed
m-MRFO on real optimization problems three engineer-
ing design problems were employed. The results demon-
strate m-MRFO can effectively solve real-world optimization
problems.

In the subsequent study, we can address the following ques-
tions. First, the DES strategy increases the time complexity of
MRFO. How to reduce the complexity with guaranteed per-
formance is what we need to study further. The number and
composition of individuals stored in the ESP strategy can be
further investigated. Moreover, m-MRFO can be extended to
solve multi-objective optimization problems. For real-world
optimization problems, we plan to use m-MRFO for solving
the multi-UAV cooperative path planning problem and the
multi-UAV cooperative target allocation problem.
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