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ABSTRACT The ‘‘cocktail party problem’’ refers to the ability of human listeners to separate the acoustic
signal reaching their ears into its individual components, corresponding to individual sound sources in the
environment. Despite this phenomenon appearing trivial for humans, solving the cocktail party problem
computationally remains an ambitious challenge. The approach used in this paper takes inspiration from
human strategies for separating an acoustic environment into distinct perceptual auditory streams. A series of
time-frequency-based features, analogous to those thought to emerge at various stages in the human auditory
processing pathway, are derived from biaural auditory inputs. These feature vectors are used as inputs to an
unsupervised cluster analysis used to group feature values that are assumed to correspond to the same object.
Reconstructed auditory streams are then correlated to the original components used to create the auditory
scene. Our model is capable of reconstructing streams that correlate to the original components (r= 0.3-0.7)
used to create the complex auditory scene. The success of the reconstructions is largely dependent on the
signal-to-noise ratio of the components of the auditory scene.

INDEX TERMS Biomedical signal processing, clustering algorithms, machine learning, machine learning
algorithms, pattern clustering, signal processing algorithms.

I. INTRODUCTION
In everyday listening environments, we are often challenged
with separating a myriad of sound signals that arrives at our
ears into distinct sound sources. This phenomenon, called
auditory stream segregation, allows humans to focus on a sin-
gle voice or sound source from within a noisy environment.
Themanner in which we are able to perform such a separation
is commonly referred to as the cocktail party problem [1], [2],
aptly named after the capacity to carry on a conversation with
another individual during a noisy cocktail party. Whereas this
task seems intuitive and effortless for most human listeners,
perfect computational replication of this effect has remained
elusive and is the focus of the field of computational auditory
scene analysis (CASA) [10].

To address this challenge, multidisciplinary efforts across
the fields of audiology, engineering, neuroscience, and psy-
chology have resulted in the development of a two-stage
methodology for auditory stream segregation. The strategy
begins with processing the acoustic input in a feature analysis
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stage, which breaks down an auditory waveform into descrip-
tive features. The descriptive features are then input into a
cluster analysis stage [3]–[8] that seeks to describe the values
of the features with a limited number of distribution sets.
Whereas the two-step process is a well-established practice
for stream segregation, the specifics of how the features
and clusters are defined and analyzed differs considerably
across disciplines. The feature analysis stage is dominated
by the application of signal processing methods to obtain
features used to distinguish auditory objects. In biologically
inspired models, the features extracted from the source sig-
nal have a physiological and/or psychological basis for the
formation of auditory streams [9]. Such features may be
based on frequency selectivity of the basilar membrane of the
cochlea [10], the spectrotemporal receptive fields (STRFs)
of the auditory cortex [4], [11], [12], measurements of pitch
and timbre [13], and localization via measuring the interaural
time difference (ITD) [14]. These features are fed into a
cluster analysis stage that attempts to create groupings of
similar features within the space; the goal is to form groups
that correspond to individual auditory objects. This cluster-
ing has been performed via linear combination of feature
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FIGURE 1. Model Outline. Beginning with left and right auditory waveforms, the inputs are filtered through a gammatone filterbank
to obtain a time-frequency representation that is then processed into a variety of features. These features are input into a cluster
analysis stage that results in the segregated auditory streams that comprise the auditory scene.

spaces [5], [7], Kalman-filter estimation [6], and artificial
neural networks [8], [15].

Many approaches tend to focus on a single aspect of
scene analysis, for example, using a single type of feature
(e.g., STRFs, spectrotemporal contrasts) as the input for
the cluster analysis stage and utilize some form of super-
vised clustering method to group separate auditory streams
within a scene. In this way, current computational models
are fragmented in their approach to mimicking the human
auditory pathway [16]. The approach used in this study is
novel in that we extract many different types of psychoa-
coustic inspired features and sort them into clusters using
unsupervised statistical clustering methods such as Gaussian
Mixture Models or K-Means, which seek to separate clusters
based on feature coherence. We base this on the assumption
that, in humans, different features of an acoustic signal are
computed at various stages along the auditory pathway and
that coherence between these features is a fundamental basis
for stream segregation. We hypothesize that the proposed
model will be capable of segregating auditory streams from
noisy backgrounds using unsupervised cluster analysis on
features thought to be analogous to information used by the
auditory pathway.

II. METHODS
An overview of our stream segregation procedure is described
in detail throughout the methods section and is illustrated
in Fig. 1. In short, a Gammatone filter bank is used to create
a time-frequency approximation of the cochlear response to
the auditory stimulus. From the time-frequency representa-
tions various features, analogous to those which are thought

to emerge at different stages of auditory processing in the
brain, are extracted via signal processing methods. Lastly,
these features are used as inputs in an unsupervised cluster
analysis stage that sorts the auditory scene into individual
components. The result is N output auditory objects, where
N must be defined a priori.

A. GAMMATONE FILTERBANK
The model input is a binaural set of waveforms, correspond-
ing to left and right auditory inputs. The left and right wave-
forms are each filtered through a fourth order gammatone
filterbank to model the impulse response function of auditory
nerve fibers [17]. For this implementation, a gammatone filter
is calculated as follows:

g (f0, t) = tNf−1e−2π∗b(f0) cos (2π f0 + φ) u (t) (1)

where t is time, Nf is the filter order, f0 is the filter center
frequency in Hz, φ is the phase, and u(t) is the unit step
function. The quantity b(f0) is obtained by (3) and determines
the bandwidth for a given center frequency, based on its
equivalent rectangular bandwidth, ERB(f0), value which is
obtained by (2) [10].

ERB (f0) = 21.4 log10 (0.00437f0 + 1) (2)

b (f0) = 1.019 ERB (f0) (3)

The Gammatone filterbank output, cf , t , is obtained by
convolving, with respect to time ∗t , a given input, x(t), with
g(f 0, t), as shown by (4), where f 0 is the center frequency
of the gammatone filter. For this work, 64 center frequencies
with equal distances on the Equivalent Rectangular Band-
width (ERB) scale were selected in the range of 40 Hz
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to 16 kHz, to lie within the human hearing range (20 Hz
to 20 kHz; [2]). Digital implementation of this filterbank
was completed following the procedure proposed by Patter-
son et al. (1992), and Slaney (1993).

c (f0, t) = x (t) ∗tg (f0, t) (4)

B. FEATURE PROCESSING
Gammatone filtering results in a 2Dmatrix, c(f,t) with dimen-
sions corresponding to the number of time points and ERB
channels—for each of the two auditory input channels. These
outputs are processed in the subsequent stage to extract spe-
cific features such as a cochleagram or azimuth. The features
chosen are those commonly cited as important for stream
segregation in auditory perception [6], [8], [18], [19]. For
each feature, a map of the input source is created, to provide a
time-frequency representation of that feature. The following
section details the process of computing each of these feature
maps.

1) COCHLEAGRAM
The cochleagram is a time-frequency representation of the
auditory signal, similar to a spectrogram, which reflects the
tonotopic activation of the basilar membrane in response to
sound. To compute the cochleagram, we rectify the output
of the gammatone filterbank, c(f,t) (5), convert it to decibels
for estimation of the auditory nerve response [20]–[22], and
downsample such that 1t = 10ms [5].

crect (f0, t) =

{
0 if c (f0, t) < 0
c (f0, t) if c (f0, t) ≥ 0

(5)

C (f0, t0) = 20 log

{√
1
W

∑t0+1t

k=t0−1t
crect (f0, k)2

}
(6)

where f0 is a given center frequency of the two-dimmatrix,
t0 is a given time point in the cochlegram such that t1 −
t0 = 1t , and W is the number of samples in the
window.

Evidence indicates that auditory attention influences per-
ception of simultaneously occurring auditory events [2], [25].
One way this has been shown to occur is through attenuation
of center frequencies outside the current focus of attention.
In particular, center frequencies of focused auditory events,
and frequencies within their critical band are unaffected,
while center frequencies outside this band are increasingly
attenuated with distance from the focal center frequency by
as much as 15 dB [23]–[26]. To account for this attenuation
due to exogenous draw of attention, we define the focused
center frequency fpeak of time point t0 as the frequency
with the greatest magnitude in the cochleagram. We then
add a Gaussian window (Gatten

(
fpeak , f

)
) with width σ =

3ERB with a maximum value of 0 dB and minimum value
of −15 dB centered on fpeak to the spectral dimension of
the cochleagram at t0 to obtain an attenuated version of

the cochleagram: Catten (f ,t0).

Gatten
(
fpeak , f

)
= 15e

1
2

( f−fpeak
σ

)2
− 15 (7)

Catten (f , t0) = C (f , t0)+ Gatten
(
fpeak , f

)
(8)

2) SPECTRAL SHAPE ANALYSIS
Next, we applied spectral shape filtering, or ‘‘scale’’ filtering,
onto the cochleagram across the frequency axis for each time
point, using narrow and broad bandwidths [4], [6], [8]. This
analysis is based on the premise that spectral shape is an effec-
tive physical description of timbre [6]. In our model, a second
derivative Gaussian function (9), that has been scaled for the
desired bandwidth ϕ (10), is convolved across the spectral
dimension of the cochleagram at each time point, t0 (11).

hbw (f ) =
(
1− f 2

)
exp

(
f 2

2

)
(9)

Hbw (f , ϕ) =
1
ϕ
hilbert

(
hbw

(
1
ϕ
f
))

(10)

Cbw (f , t0, ϕ) = Catten (f , t0) ∗f Hbw (f , ϕ) (11)

In (9-11), f is the frequency along the tonotopic axis in
units of ERB scale. For the analyses presented here, band-
widths of 1/2 and 2ERBs were used for a total of two
individual bandwidth feature maps. Lastly, for each of these
bandwidth feature maps, we subtracted the map of all broader
bandwidth maps. This action is performed because events
present in the broad bandwidth maps will have some amount
of bleed over into the narrower bandwidth maps; subtracting
broader maps from narrower maps prevents this redundancy.

Lastly, bandwidth masks are modified with bandwidth
intensity masks. Bandwidth intensity masks are driven by the
idea that objects present within an auditory scenewill be char-
acterized by some measurable cohesiveness in the spectral
domain, and that a binary mask can be made to exclude any
events that cannot be characterized by a bandwidth filter. This
is computed by summing the results of the spectral analysis
across the bandwidth (ϕ) dimension and equating any value
above a given threshold, τ , to 1, and all others zero (10).
These masks are then multiplied by each of the following
feature maps to mitigate interference from noisy events.

M (f , t)


= 1, where

ϕn∑
k=ϕ1

Cbw(f , t, k) > τ

= 0, otherwise

(12)

3) ONSET/OFFSET DETECTION
The onset of an auditory event is characterized by a general
increase in intensity, whereas a general decrease in inten-
sity characterizes offset. Onset and offset detection attempts
to generate auditory segments by matching corresponding
onset and offset fronts [10], [18], [27]. From a computational
perspective, this process is similar to image segmentation,
which seeks to identify boundaries of visual objects, where
the ‘‘image’’ is a cochleagram of the original auditory signal.
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FIGURE 2. Effects of gaussian convolution on a single channel of the cochleagram for onsets (blue circles) and offsets (red
asterisks) detection. A) No convolution. B) Gaussian window = 500ms. C) Gaussian window = 1000ms.

To find these sudden changes in intensity, we first compute
the first-order derivative of the power of the cochleagram
with respect to time and then identify the local maximums
and minimums of this derivative. Due to background noise,
however, there are many extrema values that do not corre-
spond to actual event onsets/offsets. To mitigate this effect,
we low-pass filter the signal via convolution with a Gaussian
kernel (13 & 14) before calculating the first order derivative
and identifying local extrema.

G (t, σ ) =
1

√
2πσ

exp
(
−

t2

2σ 2

)
(13)

Cblur = C (f , t) ∗t G (t,σ ) (14)

In (13-14), σ is the width of the Gaussian kernel, and ∗t
denotes convolution in the time domain. The width of the
Gaussian kernel has considerable effect on the performance
of the peak detection algorithm used to find extrema of the
first-order derivative. In particular, convolution with a very
wide Gaussian kernel is effective for detecting large event
onsets/offsets but not for detecting many smaller events.
Similarly, a very narrow kernel is effective for detecting
many small events but will miss larger events that should
be grouped (see Fig. 2 for example). Because it is difficult
to accurately identify events at a single Gaussian width,
it is useful to detect onset/offset at multiple resolutions and
incorporate some form of multiscale integration [18]. For the
computation of this feature space, a set of Gaussian widths
ranging from 60 to 1200 ms was used prior to peak detec-
tion, and the median onset/offset event value of each time-
frequency point throughout all resolutions was used as the
final onset/offset event value.

4) AZIMUTHAL LOCATION
The percept of a sound’s azimuthal location has been shown
to arise through computation of interaural time differences
(ITDs) [14], [28], [29], that is, the location of a sound is based
on the difference in its arrival time between two ears. To com-
pute the ITD for a given time point, t0, and center frequency,
f 0, we first cross-correlate the gammatone-filtered auditory
signals of the right and left channel inputs, cR(f 0, t0) and
cL(f 0, t0) respectively, in a window of time, W , centered

around t0 (15). We then find the peak of the resulting cross-
correlation and its associated lag, τ , which corresponds to the
time delay (16).

CCF (f0; t0, τ )=
1
W

t0+W
2∑

k=t0−W
2

cR (f0, k) � cL (f0, k + τ) (15)

ITD
(
f0, t0

)
= τ (argmax [CCF (f0; t0, τ )]) (16)

C. CLUSTER ANALYSIS
Multiple considerations informed our selection of a cluster-
ing algorithm. Specifically, our decisions were guided by a
broad survey of unsupervised and semi-supervised cluster-
ing algorithms [30]. First, the nature of the observed data
points is that of continuous numerical data, therefore any
algorithms that emphasize categorical data were excluded
from consideration. Additionally, it is assumed that a single
data point can potentially belong to more than one clus-
ter/stream since the input auditory signal is an amalgamation
of individual signals. Therefore, only algorithms capable of
providing ‘‘fuzzy clusters’’ (clusters with overlapping bor-
ders) were considered. Lastly, due to the multidimensional
nature of the feature space, it is difficult to ascertain the
precise shape and density of clusters. Thus, we considered
both a distributive mixture model approach (e.g., Gaussian
Mixture Models [31])—which makes assumptions about the
shape of the clusters but not the density—and density-based
approaches (e.g., DBSCAN, OPTICS [32], [33])—which
make assumptions about the density of the clusters but not the
shape. Ultimately, we selected Gaussian Mixture Modeling
as our preferred clustering approach because, compared to
density-based methods, it is not as sensitive to initial param-
eters. We evaluated model performance by comparing the
separated auditory streams and the original input components
used to create the auditory scene. This comparison was car-
ried out via 2-dimensional correlation [34]–[36] where the
original source cochleagram is compared pixel-by-pixel to
the cochleagram of the reconstructed stream (section 2.3.3).

D. MODEL EVALUATION
For initial testing of our model, we constructed scenes from
a set of 13 auditory events (single pure tone, harmonic tones,
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FIGURE 3. Cochleagrams of the individual components of an auditory scene involving a piano (top – original components) and a noisy
bus ride background (bottom - original components), the cochleagram of the auditory scene (mixed auditory scene), and the results of the
separations (separated components) when the mixed auditory scene (SNR = 0 dB) is analyzed with our model.

male voice, female voice, drums, saxophone, piano, recipro-
cating saw, pig grunt, pneumatic drill, ratchet tool, a passing
train, and the ‘‘Wilhelm scream’’) over three backgrounds
(Gaussian noise, a bus ride, and a busy restaurant); taking
every combination of event and background resulted in 39 dif-
ferent scenes. Because the ideal number of clusters for any
scene assessed in this section is two – one auditory event and
the background - we manually set the number of clusters to
two. To test the limits of our model’s stream separation capa-
bilities, we adjusted the signal-to-noise ratio (SNR) between
event and background. For each of the 39 scenes, we tested
8 SNRs: −3, −6, −9, 0, 3, 6, 9, and 12 dB.
Continued testing involved adding a second auditory event

to the scene shortly after the initial event. Scenes were created
using the same 13 original components and 3 backgrounds;
taking every combination of two events and a background
thus resulted in 81 different scenes. Because the ideal number
of clusters for any scene assessed in this section is three –
two auditory events and a background – we manually set the
number of clusters to three. For each scene, we again tested
segregation at the 8 aforementioned SNRs.

We evaluated overall performance of the model at each
SNR level via 2-dimensional correlation analysis, as in
Krishnan et al. [8]. Here, we correlated the cochleagrams
of the original components used to create each auditory
scene with the segregation outputs of the model. This set
of correlations was evaluated for each original component
of a particular auditory scene. In scenes composed of one
auditory event over a background, the ideal result is one
high and one low correlation coefficient. We assume the
high correlation coefficient corresponds to the correlation of
the original component to the stream isolating that compo-
nent, and the low correlation coefficient corresponds to the

FIGURE 4. Two-dimensional correlations at each SNR level. Gray bars
indicate max correlation of known foreground component to model
outputs. Black bars indicate max correlation of known background
component to model outputs. Error bars indicate the standard error of the
correlation values.

correlation of the original component to the stream isolating
the other component of the auditory scene. In scenes com-
prised of two auditory events over a background, the ideal
output is a high correlation coefficient and two lower cor-
relation coefficients. Based on this reasoning, we chose the
maximum value among the two or three correlations with an
original scene component as the metric on which to evaluate
segregation performance for each original component in each
scene.

III. RESULTS
Fig. 3 shows an example of a scene made of a mixture
of a piano and a noisy bus ride as a background; here the
SNR between the piano and bus ride background was set to
0 dB. The top separated component appears to correspond to
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FIGURE 5. Separation of a complex auditory scene containing a saxophone (top - original components) and a piano (middle - original
components), separated by 60◦ azimuthally with no temporal overlap, from a noisy bus background (bottom - original components;
SNR = 0 dB).

the piano component, and the bottom separated component
appears to correspond largely to the background component.
When comparing the separated piano stream to the original
component it is clear that a substantial portion of information
is lost during separation from the mixture; however, enough
information is present in the reconstruction to recognize
the corresponding original component. Similarly, the recon-
structed background component contains less information
than the original background component (i.e., the lack of
most high frequency energy from the original background
component), and also includes some formants of the piano
component. However, much of the lower frequency energy
remains intact, making the separated component recognizable
as corresponding to the background.

Fig. 4 summarizes the results of the 2-dimensional cor-
relation analysis. Correlation coefficients were computed
between each original component, whose identities are
known, and both of the output separated components, whose
identities are unknown. We assumed that for a given original
component, the higher of the two correlations withmodel out-
puts corresponded to the closest ‘‘match’’ of the segregated
component with its original spectrotemporal representation.
Therefore, this correlation coefficient was taken as the metric
on which to assess how effectively the model segregated
that original component from the mixture. Fig. 4 displays
a summary of the maximum correlation coefficients to the
original foreground (auditory event) and background compo-
nents across all SNRs evaluated. At the lowest SNR, the cor-
relation coefficients of the background separated component

is highest (r ≥ 0.7) while the foreground component is
lowest (r ≥ 0.3). At the highest SNR, the correlations
coefficients of the foreground separated component is highest
(r ≥ 0.7) while it is lowest for the background (r ≥ 0.45).
At a SNR of 6 dB, the correlation coefficients are nearly
equivalent (r ≥ 0.6).
Fig. 5 shows an example of a scene made of a mixture

of a saxophone followed by a piano (separated by 60^o in
azimuth), with a noisy bus ride as a background. In this
example, the SNR between each event (i.e., piano and sax-
ophone) and the background was 0 dB. The top separated
component appears to correspond to the saxophone compo-
nent and the middle separated component appears to corre-
spond to the piano component. In the saxophone and piano
components, much of the high frequency information is lost
upon reconstruction, however enough information is retained
in this reconstruction to recognize the original identity of
the separated components. The bottom separated component
appears to largely correspond to the background component.
Whereas this component shows a retention of information
across much of the frequency spectrum, there is also the
inclusion of elements originally belonging to the saxophone
and piano streams. An example of separating a saxophone
and a piano, separated by 60◦ azimuthally with no temporal
overlap, from a noisy background (SNR = 0 dB) is shown
in Fig. 5.

To quantify the model’s ability to segregate, we again com-
puted correlation coefficients between each original compo-
nent, whose identities are known, and the output separated
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FIGURE 6. 2-dimensional correlations at each SNR level of scenes
composed of two temporally distinct components and a background
component. Light and dark gray bars indicate max correlation of known
foreground components to model outputs. Black bars indicate max
correlation of known background component to model outputs. Error
bars indicate the standard error of the correlation values.

component, whose identities are unknown. Fig. 6 displays a
summary of the maximum correlation coefficients to the fore-
grounds (auditory events) and background across all SNRs
evaluated. At the lowest SNR, the correlation coefficients of
the background separated component is highest (r ≥ 0.65)
while the foreground component is lowest (0.19 − 0.28).
At the highest SNR, the correlations coefficients of the fore-
ground separated component is highest r ≥ 0.68) while it
is lowest for the background r ≥ 0.1). At an SNR of 3dB,
the correlation coefficients are nearly equivalent (r ≥ 0.55).

IV. DISCUSSION
Most non-hearing impaired listeners are able to solve the
cocktail party problem with little conscious effort. Yet, com-
putational solutions to this problem have historically failed to
match this ability. Our computational model attempts to fill
the gap between human ability and computational recreation
by creating a multidimensional space, composed of features
noted to be critical for segregation in psychoacoustic liter-
ature [3], [10], [13], [16], and identifying clusters within
this multidimensional space via Gaussian mixture modeling
to extract auditory objects. Our model performs optimally
(approximately 0.75 correlation between components and
model outputs) at high signal-to-noise ratios but drops below
0.5 at SNRs higher than those seen in human trials [2].

Our evaluation of model performance was based on
the correlation between the spectrotemporal representations,
or cochleagrams, of the original components of an auditory
scene and the segregated outputs of the model. As expected,
lower signal-to-noise ratios resulted in lower correlation of
the foreground, and higher correlation of the background.
Interestingly, the correlation coefficients between −9 and
−3 dB SNR for the background separation appears to have
encountered a limit (r ≥ 0.7). A similar pattern was seen
in the segregation of three-component scenes (Fig. 6). This
limit is likely the result of the use of ideal binary masks
to reconstruct original components of the scene; the use
of binary masks results in blank spaces in at least one of

the reconstructed streams anywhere there was spectrotem-
poral overlap between components. The more overlap seen
in an auditory scene is directly related to the number of
blank spaces present in the reconstructions; an effect seen as
which SNR level produces equivalent correlation coefficients
between background and foreground components (6 dB in
two component scenes, 3 dB in three component scenes). The
correlation limit and coefficient equivalencemetrics highlight
limitations in the model’s reconstruction methods. Future
work should explore methods of signal reconstruction that
can account for, and possibly fill in, these blank spaces.

The strength of our model is that it achieves auditory
signal segregation in complex scenes without the need for
prior training. Human listeners are similarly capable of signal
segregation without prior knowledge of objects in the scene,
however, they often use expectations to improve this abil-
ity. For example, when conversing with a friend in a noisy
restaurant, we likely use the known location and/or pitch of
the friend’s voice to help segregate and select it from among
other auditory objects in the scene; this is often referred to
as top-down attention. Though our model does not currently
account for this aspect of human listening, such attentional
mechanisms are essential to perception. Therefore, future
implementations of this model should include components
that mimic top-down attention. Additionally, our localiza-
tion method is limited in that is only capable of segregat-
ing perceptual objects that are in the fore of the perceiver’s
‘‘head.’’ Differentiating forward-behind for auditory signals
would likely some head related transfer function (HRTF).
Future works applying this methodology to specific physical
setups should seek to incorporate some HRTF that enables to
the system to expand its localization capabilities to include
forward and behind locations. The framework presented here
can be easily adapted to take in known object features to
inform cluster formation and selection within the multidi-
mensional space. This could remove the requirement for users
to manually input the number of clusters to extract from the
feature space; instead this parameter could always be set to
2 clusters: one for the intended focus of attention and one for
everything else (i.e., the background). Furthermore, such an
attentional framework could be extended to include auditory
object classification such that feature expectations would be
naturally associated with the to-be-attended object.

Though successful in unsupervised scene segregation, our
model is computationally intensive and currently incapable
of working in real time. Improvement of the computational
efficiency of our model requires that various trade-offs be
made between segregation effectiveness and computational
efficiency. For instance, the number of channels used in the
gammatone filterbank decomposition at the beginning of the
feature analysis stage has a major effect on the computation
time needed to run the model (e.g., including fewer channels
leads to lower computation times) and final signal segregation
(more channels lead to higher quality segregation). Future
work should be performed to optimize this trade-off between
segregation accuracy and computational efficiency.
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V. CONCLUSION
Our model shows that unsupervised cluster analysis applied
to psychoacoustic-inspired auditory features is capable of
separating auditory streams within an auditory scene. Using
unsupervised cluster analysis in this way is akin to mim-
icking the automatic responses of the auditory pathway in
the brain. However, it is incomplete to say that auditory
stream segregation is a fully automatic reaction independent
of a priori knowledge and training adaptations. Top-down
attention, goal setting, and/or intentions are clear factors in
how humans successfully solve the ‘cocktail party problem.’
Therefore, we conclude that our current model is primarily a
model of the automatic auditory stream segregation abilities
of the human auditory pathway in the brain, and can serve as a
basis for future models that incorporate higher level cognitive
processes.
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