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ABSTRACT We present a simple and general theory of compressive sensing (CS) that relies on elements
of the sensing matrix rather than on the number of measurements. We prove the exact recovery using a
dual certificate by showing that the sensing matrix satisfies an incoherence property and isotropy property
if the sparsity level is kept lower than the reciprocal of the largest element of a matrix created from the
sensing matrix. Unlike the CS literature, this unconventional approach does not require a linear relationship
between the sparsity and the number of measurements and at the same time, can easily be evaluated. This
adaptability captures anisotropic measurements appropriately as with anisotropic measurements, adding
moremeasurements does not really imply that a signal with more nonzero elements will be recovered exactly.
As an illustration, we demonstrate the theory’s ability to accurately handle the anisotropic (Green’s function-
based sensingmatrix) measurements and also its similarity to the existing CS literature for isotropic (Fourier)
measurements. Further, we show the usefulness of the theory in comparing different sensing matrices and in
generating dielectric images. The dielectric images are perfectly recovered even when there is only a single
transmitter.

INDEX TERMS Compressed sensing, electromagnetic propagation, inverse problems, inverse scattering,
sparse recovery.

I. INTRODUCTION
Many problems in science and engineering require solving
an inverse problem, where parameters of interest, x, are
estimated from a set of linear measurements, y. The set of
measurements is not always orthogonal and sometimes the set
is small. As such, the problem is ill-posed but if the desired
parameters are known to be sparse (nonzero at only a few
locations), it is possible to recover the parameters exactly
through CS framework [1], [2], where x is estimated by
solving the following `1 minimization problem:

min ‖x‖1, s.t ‖Ax− y‖22. (1)

To have exact recovery, the sensing matrix,A has to satisfy
conditions derived broadly under the CS framework [1]–[12].
One of the most popular conditions in the CS framework is
restricted isometry property(RIP) [2], which is satisfied with
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the Restricted Isometry Constant δs if

(1− δs)‖x‖22 ≤ ‖Ax‖
2
2 ≤ (1+ δs)‖x‖22 (2)

holds for all x with sparsity less than or equal to s. Proving
RIP for a given matrix A is NP-hard [13]. However, the RIP
has been satisfied for a variety of matrices, whereA is created
by randomly sampling i.i.d. entries from symmetric Bernoulli
distribution [11], frequencies from Fourier Transform [1],
i.i.d entries from a Gaussian distribution with zero mean [14],
and from an orthogonal matrix [15]. For these matrices, it has
been shown that if the number of measurements, m is about
the order of O(s log n), where n is the number of unknowns,
the RIP holds. It is believed that the same order also requires
to satisfy the RIP for a general matrix A. Another popular
condition is null space property (NSP), which is satisfied with
a constant αk < 1

2 if

‖vk‖1 ≤ αk ‖v‖1, (3)
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where v is in the null space of A (Av = 0) and vk denotes
the k largest absolute values of v. NSP depends only on
the kernel of A, provides sufficient and necessary conditions
for sparse recovery, whereas RIP is only sufficient. Again,
it is NP-hard to compute αk [13]; therefore several relaxation
approaches have been used to estimate bounds on αk . For
Gaussian distribution, the number of measurements is about
the order of O(s log n) [16].

To address the difficulty in verifying the RIP and extend
the use of CS theory in noisy scenarios and for compressible
signals, Candes et al. in [17] have developed a probabilistic
approach. The approach relies on the sensing matrix con-
fining local isotropy and incoherence (µ) properties that are
shown to be valid for orthogonal matrices. This approach is
extended to anisotropic measurements in [18] (anisotropic
measurements are defined asA�ᵀA� 6= I ) with an additional
condition that A�ᵀA� is invertible, where A� is a superset
of measurements from which m measurements are chosen in
A. In both formulations, m is about the order of O(µ s log n)
(For anisotropic case,O contains constant proportional to the
conditional number of A�ᵀA�). Another notable work on
anisotropic measurements is carried out within the original
RIP framework in [19], where the authors show m is at the
same order O as others except it has an additional log3 term.

Electromagnetic imaging systems are used in biomedical
and subsurface sensing/imaging [20]–[22], where usually
Poisson equation or inhomogeneous Helmholtz equation is
solved using Green’s function. These systems do not possess
a system matrix that has been evaluated for satisfying CS
theory. In addition, the system has anisotropic measurements,
and many times, the number of measurements is constrained
by practical limitations such as accessibility, available tech-
nology, and cost. Under this scenario, evaluating if CS the-
ory holds or not for a given system can not be examined
by existing CS literature because either the conditions are
NP-hard to evaluate or the conditions can only be applied
when m is pretty big (≈ 18000 in [18]), or more importantly
the number of measurements, m, can not remain proportional
to the sparsity, i.e.O(s). The rationale for the last point is that
each additional anisotropic measurement may not provide
the same level of information as the previous measurement.
Therefore, the rate of required additional measurements can
not remain linear with an increasing number of nonzeros in x.
In an extreme case, adding new measurements may not bring
new information. For example, in electromagnetic imaging,
electromagnetic fields scattered by scatterers in the far field
region can be reconstructed accurately at a fixed radial dis-
tance using only a small set of samples/measurements [23].
Any additional measurement won’t provide new information
about the scatterers. Therefore, a higher number of measure-
ments cannot provide an exact recovery with a higher number
of nonzeros in x.

To address the challenges described above, we propose a
fundamentally different approach to establish the conditions
for the exact recovery, which can efficiently incorporate the
nonlinear relationship between sparsity and the number of

measurements as well as can be applicable even when m is
small. We establish a relationship between elements of the
sensing matrix and sparsity level and prove that x can be
recovered exactly given that its sparsity and dual variable are
bounded from below. In other words, the theory can provide
a lower estimate of maximum sparsity that can be recovered.
The main advantage of our element-based approach over
other CS theories is that it can represent anisotropy accurately
and applies to any sensing matrix.

In this paper, we present the sensing matrix’s elements-
based sparse recovery theory and demonstrate the theory’s
usage for anisotropic measurements. This paper is orga-
nized as follows: in Section II, background and related work
are summarized. In Section III, element based CS is intro-
duced and corresponding theorems are proved. In Section IV,
the theory is evaluated for isotropic and anisotropic mea-
surements. In Section V, the numerical results are presented
for anisotropic measurements. In Section VI, applications in
the electromagnetic imaging regime are presented. Finally,
we summarize the paper and discuss future work in
Section VII.

A. NOTATION
We use the following notations throughout the paper. x is a
column vector with n elements. xK denotes a part of x con-
taining entries indexed by K , where a subset K ⊂ {1, . . . , n}.
Similarly, for an m × n matrix A, AK denotes an m × |K |
submatrix with column indices are in K .A{i} is the ith column
of A. ‖A‖2 is the `2 norm of A. ‖A‖1 is the `1 norm of A,
which is defined as the maximum absolute column sum of A.
‖A‖∞ is the `∞ norm ofA, which is defined as the maximum
absolute row sum ofA. K c denotes the complement of the set
K . sgn(α) is the sign of α for α 6= 0 and zero otherwise. For
a vector, sgn(x) is an element based operation. Aᵀ denote the
transpose of A if A is real and complex conjugate transpose
if A is complex.

II. BACKGROUND AND RELATED WORK
We are interested in estimating x that has at most s nonzero (s-
sparse) elements, for a given measurement vector y of length
m (m < n), where x and y are related by a linear operator
A. Assuming that the rank of A is m, we investigate the
conditions under which the following minimization problem,

min ‖x‖1, s.t Ax = y, (4)

can provide the exact recovery of x.
We use relaxed isometry and incoherence properties of

A and dual certificate approach to derive the conditions.
The relaxed isometry property requires isometry property
(AᵀA = I ) holds only locally - only for the columns of A,
where x is nonzero. Let K be the set of locations of nonzero
within x, the relaxed isometry property is defined as

‖AK
ᵀAK − I‖2 ≤ δ, (5)

where I is the identity matrix and δ is a constant. The inco-
herence property ensures that any column of A in K c should
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not be well approximated by any column of A in K , which
requires

maxi∈K c‖AK
ᵀA{i}‖2 ≤ 1 (6)

holds. In the dual certificate approach, the dual problem of
the given primal problem (for example (4)) is formulated and
a dual feasible point (dual variable) is found under certain
conditions to certify that the primal variable, x, is optimal.
In other words, if dual certificate - the dual variable that
certifies optimality of x exists, the recovery of x is exact.
In [17], the authors use relaxed isometry and incoherence

properties to establish exact recovery even for nearly sparse
signal in a probabilistic way using dual certificate. To get
exact recovery with probability at least 1 − e−w, for any
scalar w ≥ 1, δ in (5) should be less than 1/2 for noiseless
measurements and less than 1/4 for noisy measurements; a
dual variable v ∈ Rn should satisfy

‖vK − sgn(xK)‖2 ≤
1
4

and ‖vKc‖∞ ≤
1
4
; (7)

andm should be greater thanCµs log n, whereC is a constant
and µ is incoherence parameter (maxi∈1,..,n |A

ᵀ
{i}A{i}|

2
≤ µ).

The authors proved this using theMatrix Bernstein andVector
Bernstein inequalities in the golfing scheme.

For anisotropic measurements, [18] extends the results
of [17] by using the same constraints with an additional
assumption that the distribution has to be complete in the
sense that A�ᵀA� is invertible. Under these conditions,
the authors generalize the theoretical applicability of sparse
recovery to any invertible linear system. For successful recov-
ery the required number of measurements should be greater
than 18044 κs µs log n, where κs is the s−sparse condition
number [18] of A�ᵀA�.

III. ELEMENT BASED COMPRESSIVE SENSING
Element based CS is a generalized CS theory that can be
used for isotropic as well as for anisotropic measurements.
The theory has two main theorems: (1) exact recovery - the
solution to the optimization problem (4) equals the unknown
vector x, and (2) under what conditions, the exact recovery is
possible? We use dual certificate approach to show the exact
recovery and then formulate conditions using ‖A‖∞ and
‖A‖1 norms to show the existence of dual certificate. Since
these norms operate at an individual element of the matrix,
different than most commonly used ‖A‖2 norm, we term our
approach as Element based CS.

For the following theorems, we assume that (AK
ᵀAK)−1

exists and A is normalized. The normalization can be per-
formed different ways: (1) most used approach in CS litera-
ture - divide each row by

√
m, (2) set ‖AK

ᵀAK‖2 close to c,
(3) check a range of values for normalization and pick the one
that maximize a certain property of A.
Theorem 1 (Exact Recovery): Let’s assume that ‖c I −

AK
ᵀAK‖2 ≤ δ, where 0 ≤ δ < c

c+1 , c > 1 and
maxi∈K c‖AK

ᵀA{i}‖2 ≤ 1. Suppose there exists v in the row

space of A obeying vK = c sgn(xK) and ‖vKc‖∞ < 1, then x
is the unique `1 minimizer to (4).
This theorem states that x can be recovered exactly, if dual
certificate v satisfies certain conditions and AK holds cer-
tain norm constraints. The proof of the theorem is given in
Appendix A.

Next, we will prove that such dual certificate exists.
To prove this, we use element entries of a matrix. Let B :=
c I−AᵀA and |Bpq| ≤ ζ, 1 ≤ p, q ≤ n, where ζ is defined as
a value that is higher than or equal to all elements of thematrix
B. In other words, the elements of B are bounded above by ζ .
The normalization step on A ensures that ζ ≤ 1.
Theorem 2 (Existence of a Dual Certificate): If s ≤ δ

ζ
then the constraints on A in Theorem 1 hold and a vector v
with the properties required for Theorem 1 exists.

The proof of the theorem is detailed in Appendix B.
Comparing these conditions to the conditions of the CS,

the following key differences are observed.

1) Element based CS conditions can be used to evaluate
any systemmatrix, whereas except for [18], none of the
other CS theories can be used to evaluate an anisotropic
measurements system because either it is NP-hard or
the assumptions do not hold.

2) We do not establish a direct relation between m and s
because it can change depending on the type of themea-
surements. This varying relationship can be captured
by ζ . We will discuss it in the next section. For the CS
theory, it is always kept linear even for the anisotropic
measurements such as in [18].

3) Our approach is deterministic in the sense that it works
for all sparse vectors, whereas this is not the case
for [17] and [18].

4) Evaluating the conditions for Element based CS on any
system matrix require (a) construct the system matrix,
(b) choose a value for c, (c) select value of δ between
0 and c

c+1 , (d) normalize A, and finally (e) calculate
ζ and then s. This is different than using conventional
CS formulation: m = O(s log n), where s is estimated
usingm and n even though for many systems the multi-
plication factor in O notation is unknown or is too big.

It should be clear that (1) we have not optimized the
constraints in the theory tomake them optimal, i.e, the bounds
on conditions are not tight, and (2) the conditions do not give
universal results in the sense that they are applicable only to
the given set of measurements or the given sensing matrix but
not to all possible choices of the sensing matrix for the given
measurement system. For example, if the conditions hold for
a given set of Fourier measurements, the exact recovery is
guaranteed for a system matrix that uses measurements only
at those frequencies, not for arbitrarily selected frequency
measurements.

A. SELECTING VALUE FOR CONSTANTS
The value for the constants, δ and c are selected such that all
conditions in Theorems are satisfied. Since s = δ

ζ
, setting the
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FIGURE 1. Isotropic measurements: effect of a number of measurements
(m) on ζ (inversely proportional to sparsity) for a fixed number of
unknowns (n).

higher value of δ gives larger recoverable sparsity. However,
δ cannot be higher than c

c+1 . So, we can set δ slightly smaller
than the upper bound, such as 0.999( c

c+1 ).
Constant c appears in the definition of B. Larger c can

increase ζ value through higher value in either off-diagonal
elements of B or diagonal elements of B depending on the
normalization step used for A. Therefore, c cannot be set
very high and can be set between 1 and 1.5. The optimal c
value that can provide maximum recoverable sparsity can be
obtained by brute-force search within this range.

IV. ANALYSIS OF CANONICAL CASES
The conditions presented in Theorem 2 do not have direct
relation between the number of measurements, m, and the
number of unknowns, n, rather it has ζ that is derived fromA.
To evaluate the effectiveness of ζ in capturing the changes in
measurements, we will discuss both types of measurements
setup in canonical cases: A. isotropic measurements and B.
anisotropic measurements.

A. ISOTROPIC MEASUREMENTS
The isotropic measurements are carried out synthetically in
the Discrete Fourier Transform (DFT) domain to assess the
relationship of ζ to the number of measurements m and the
number of unknowns n. The DFT matrix is normalized by
dividing each row by

√
m. For the relationship between ζ

and m, we randomly select frequency components (measure-
ments), keep n constant (n = 512), vary the number of
measurements (m) from 30 to 512, and calculate ζ for each
m. We repeat the same experiment 50 times. The resultant
average value of ζ is plotted against m/n as shown in Fig. 1.
As can be seen, the value of ζ monotonically decreases as m
increases. This behavior is inline with the literature on CS
because ζ is inversely proposal to the sparsity, and in the
literature, sparsity increaseswith increasingm. Also, note that
form = n, ζ goes to 0, which indicates that the exact recovery
of the largest sparse object (s = n) is guaranteed.

For the relation between ζ and the number of unknowns,
we set m as a fraction of the number of unknowns and vary
the number of unknowns from 256 to 2048. For each value of
n, sparsity is calculated using Eq. (24) and the formula used
in CS (m/ log (n)) for m = 0.2n and m = 0.4n. Sparsity,
normalized by its maximum value is plotted in Fig. 2. As can

FIGURE 2. Comparative analysis for isotropic measurements: for two set
of measurements- 0.2 n and 0.4 n, normalized sparsity (s) is evaluated
against number of unknowns for Element based CS (ECS) and CS
literature (CS).

FIGURE 3. Isotropic measurements: ζ for randomly sampled
measurements and uniformly sampled measurements across a set of
measurements. The number of measurements are normalized to the
number of unknowns.

be seen, Element based CS has a monotonically increasing
relation between sparsity and the number of unknowns, sim-
ilar to the CS literature. It is also interesting to note that for
the Element based CS, even though s is estimated from two
different DFT matrices for two different value m, the rate of
the change in sparsity remains the same, comparably to the
behavior of CS.

Next, we evaluate the effect of random measurements,
the fundamental component of the CS theory, on ζ . We com-
pare randomly selected measurements to the uniformly sam-
pled measurements. The estimated value of ζ for each value
of m is shown in Fig. 3. For all values of m, ζ remains
higher for uniformly sampled measurements than for ran-
domly selected measurements. These higher values of ζ s
indicate that the uniform sampling performs worst than ran-
domly sampling for the DFT matrix. This observation is in
harmony with preference of random measurements in the CS
theory.

B. ANISOTROPIC MEASUREMENTS
For anisotropic measurements, a two-dimensional electro-
magnetic imaging problem is considered, where a single
transmitting antenna is used to excite a region of interest and
multiple receiving antenna are used to collect the reflected
and scattered waves. This imaging problem has an interesting
fact that only a handful number of measurements are needed
to capture the scattered waves at an arbitrary but fixed radial
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distance [23]. We investigate below whether ζ can capture
this bandlimited nature or not.

The electric field Es(r) radiated by the current source J (r′)
lying in region of interest, D, at a position r′ can be written
through Green’s function G(r, r′) integral formula as

Es(r) = k2b

∫
D
G(r, r′)J (r′) dr ′, r ∈ S, r′ ∈ D, (8)

where kb is the background wavenumber, r is the position of
a receiver, and S is the region outside ofD. In a discrete form,
b = cGz, where b contains m measurements, an element of
G,G(r, r′) = H (2)

0 (kb|r− r′|), z contains n discretized points
of D, and c is constant. H (2)

0 is the 0th order Hankel function
of the second kind. Clearly,G does not comprise of isotropic
measurements.

FIGURE 4. Anisotropic measurements: effect of a number of
measurements (m) on ζ for three different size of region of interest (n).
(compare it to the results for isotropic measurements in (Fig. 1).

Let’s consider a typical imaging setup and evaluate the
value of ζ in the same manner as we did for the isotropic
measurements. For the relation between ζ andm, we vary the
number of measurements from 5 to 60, which are sampled
uniformly at a 3λ radial distance and evaluate ζ for the square
region, D, having width - 2λ, 3λ , and 4λ, where λ is the
wavelength in the background medium. G is normalized by
√
m. The results are reported in Fig. 4 in terms of ζ as a

function of m for three different width of D. It shows that
ζ decreases until a certain number of measurements and then
it becomes constant; i.e. additional measurements do not pro-
vide new information. This ζ response is totally different than
the ζ response for the isotropic measurements but perfectly
in line with the existing theory on the bandlimited nature of
scattered fields.
ζ ’s constant response for higher value of m is not specific

to these examples. In fact, it can also be derived analytically
as follows.

An element of F := 1
mG

ᵀG, Fpq is expressed as

Fpq =
1
m
G{p}ᵀG{q}

=
1
m

m∑
l=1

H (2)
0 (kb|rl − r′p|)

ᵀ
H (2)
0 (kb|rl − r′q|). (9)

Applying the far-field approximation [24], we get

Fpq ≈
2

πkbm

m∑
l=1

1
rl
exp

[
jkb
(
r ′q cos

(
θlq
)
− r ′p cos

(
θlp
))]

,

(10)

where r{.} is the magnitude of the quantity and θ{.} is the
angle between measurement point rl and a point in D. Using
the Bessel function property [25] and with some arithmetic,
we get,

Fpq ≈
2

πkbm

∞∑
s=−∞

∞∑
t=−∞

m∑
l=1

jsJs(kbr ′q)(−1)
t jtJt (kbr ′p)

×
1
rl
exp [j(sθlq − tθlp)]. (11)

Scattered fields on a constant radius, rl = a, can be opti-
mally sampled using uniform sampling scheme [26]. Using
uniform sampling for measurements, each angle can be cal-
culated as θlp =

2πml
m − θp, ml ∈ {0, 1, ..,m}, assuming the

center of the region of interest is the reference point (origin
of the coordinate system). Incorporating these, we get

Fpq ≈
2

πkbma

∞∑
s=−∞

∞∑
t=−∞

m∑
l=1

jsJs(kbr ′q)(−1)
t jtJt (kbr ′p)

× exp
[
j
(
2πml
m

(s− t)+ (tθp − sθq)
)]
. (12)

Using delta function formula, we get

Fpq ≈
2

πkba

∞∑
s=−∞

∞∑
t=−∞

jsJs(kbr ′q)(−1)
t jtJt (kbr ′p)

× exp
[
j(tθp − sθq)

] ∞∑
v=−∞

δ[s− t + vm]]. (13)

It can be further simplified as

Fpq ≈
2

πkba

∞∑
v,t=−∞

Jt−vm(kbr ′q)Jt (kbr
′
p)e

jφ,

where φ = (tθp − (t − vm)θq − πvm/2). (14)

Using J−n(x) = (−1)nJn(x), we get

Fpq ≈
2

πkba

∞∑
v,t=0

[
Jt−vm(kbr ′q) (e

jφ
+ e−jφ (−1)vm)

+ Jt+vm(kbr ′q) (e
jφ1 + e−jφ1 (−1)vm)

]
Jt (kbr ′p), (15)

where φ1 = (tθp − (t + vm)θq + πvm/2).
Now setting

ζ = max
1≤p, q≤n

|I − Fpq|, (16)

where I = 1 if p = q, else I = 0, we get the equation, which
shows that ζ is the sum of the order of the Bessel functions.
Bessel function has a property that Jn(x) ≈ 0 if |n| >
2dxe [27]. Applying this condition on the order of three
Bessel functions, we get Fpq 6≈ 0, only if

0 ≤ t < 2 dkbr ′me &
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FIGURE 5. A normalization step: evaluating recoverable sparsity s for a
range of values and picking one value as the normalization value that
gives highest recoverable sparsity.

−t
m
≤ v <

2 dkbr ′me − t
m

or

t − 2 dkbr ′me
m

< v ≤
t
m
, (17)

where r ′m is the maximum magnitude of r ′
{.}. As m increases,

t−2 dkbr ′me
m and 2 dkbr ′me−t

m become smaller and range of values
that v can take decreases. After m > 2 dkbr ′me, only possible
value that v can have is 0. Plugging this value of v gives

ζ = max
1≤p, q≤n

∣∣I − 8
πkba

2 dkbr ′me∑
t=0

Jt (kbr ′q)Jt (kbr
′
p)e

jt(θp−θq)
∣∣,
(18)

which shows that ζ is independent of m and the location of
receivers for all m > 2 dkbr ′me. Fig. 4 highlights the same
point - the flatness of the curve happens at m ≈ 2 d2

√
2π b e,

where b is the half-width of the square region. In other
words, any additional measurement above this m does not
provide additional information. It can be reconstructed from
the existed measurements. It is interesting to note that the
condition on m obtained here matches with the value in [23],
while also providing a link betweenmeasurements and recov-
ery - a sparse object that can be recovered exactly.

V. NUMERICAL RESULTS
In the previous section, we showed that the element based CS
theory captures additions of new measurements correctly for
both isotropic and anisotropic measurements. In this section,
we will evaluate the applicability of the Element based CS
conditions in performing sparse recovery.

We consider a typical imaging setup, where receiving
antennas are located on the circumference of a circular
domain of 4λ diameter and the investigation domain is within
a square of 2λ length with pixel size λ

4 . We normalize G by
the value that gives the minimum ζ value, i.e. the maximum
sparsity that can be recovered. Fig. 5 shows an example for
m = 2 d2

√
2π e = 18 that 0.656 can be used as the normal-

ization value as this value provides the maximum sparsity,
1.47, that can be recovered. Since this is a small size problem,
we have numerically validated that when s < 1.47, conditions
on A as well as v hold.

Next, we perform sparse recovery for z that can have
sparsity between s = 1 and s = 6. At each spar-
sity value, 50 samples of z are created. Out of 50 sam-
ples, across all sparsity value, 15 samples have fixed but

arbitrary contrast value and nonzero positions, 10 samples
have fixed but arbitrary only contrast value, and 15 samples
have only fixed positions. The remaining 10 samples have
random positions and random contrast values. The num-
ber of measurements used in this numerical experiments is
8, 10, 12, 15, 20, and 40. For these measurements, the con-
ditions in theorems are validated and using the above normal-
ization step, corresponding maximum value for the sparsity
is 1.1, 1.1, 1.13, 1.46, 1.47, and 1.47. The sparse recovery
is obtained using SPGL software [28], which uses Spectral
Projected Gradient algorithm and is applicable for a complex
valued problem. The results are evaluated using the weighted
absolute percentage error (WAPE) metric, where WAPE is
defined as the sum of absolute differences divided by the

sum of actual values (WAPE =
∑i=n

i=0 |xi−x̂i|
/

∑i=n
i=0 |xi|). If the

WAPE value is less than 10−3, we consider it as a successful
recovery. For each sparsity value, the recovery rate for differ-
ent values of m is shown in Fig. 6.

FIGURE 6. Sparse recovery for 50 samples at each sparsity value for
different number of measurements. Recovery rate 100% shows that all
50 samples are successfully recovered.

As can be seen, the recovery rate is 100% for all sparsity
values lower than estimated maximum sparsity value for a
given m and it decreases as s increases. For s = 6, the recov-
ery rate is 0% for all measurements. The recovery rates
increases asm increases from 8 to 20. Above 20, the recovery
rate remains identical, as we expect for all m > 18 for this
setup.

VI. APPLICATIONS
In this section, we present applications of the Element based
CS to Electromagnetic imaging. Specifically, we discuss
comparing different sensingmatrices and retrieving dielectric
images from electromagnetic imaging.

A. COMPARING SENSING MATRICES
Let’s assume we have multiple choices for a sensing matrix
and we are interested in resolving which sensing matrix can
provide accurate sparse signal recoverywith the same number
of measurements. This scenario can occur when there is
flexibility in placing measurement recorders or when more
than one type of sensing matrices are available. For flexibility
in recorders’ placement, we can optimize the location of
recorders such that ζ is minimum. This problem is typically
known as maximizing the sensing capacity and it is out of
the scope for this paper. Instead, we focus on two types of
the sensing matrix: (1) matrix defined by Green’s function
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FIGURE 7. Comparing sensing matrices: sparse recovery for 50 samples at
each sparsity value for two sensing matrices. In legend, BA stands for the
sensing matrix defined by the Born approximation of (8) with two
transmitters; and Green Fun stands for the Green function based sensing
matrix.

integral formula (8) and (2) Born approximation of (8) [29].
In Born approximation, the total field is approximated by the
incident field. The total field becomes a part of the integral
because the current source is expressed as the product of
complex permittivity and the total field.

For the simulation setup, we use the same setup that we
used in the previous section (m = 18) and the system is
configured for two different sensingmatrices - (1) the Green’s
function, and (2) the Born approximation with two transmit-
ters. Both systems are evaluated for s = 1 and s = 6 for
50 samples having random contrast values and locations at
each sparsity level. For both types of measurements, we use
same c and δ, which gives ζ = 0.34 for Green’s function
based system and 0.27 for Born approximation based system.
Based on the ζ value, we expect that the sensing matrix
based on Born approximation will have a better recovery
rate. Fig. 7 shows the recovery rate for both sensing matrices
across six sparsity level. As can be seen, the recovery rate
remains 100% for all sparsity level for Born approximation
based system, while Green’s function based recovery rate
drops significantly and reduces to 12% for s = 6. It can be
inferred from this simulation study that ζ value can be used
to do comparative analysis between two systems and lower ζ
value indicates better recovery rate.

B. GENERATING DIELECTRIC IMAGES
Generating dielectric images accurately from scattered elec-
tric fields has applications in through-the-wall imaging [30]
or medical therapy/monitoring [31], [32]. This problem is
addressed many times in literature and also when the images
are sparse. For sparse imaging, the problem is formulated
in various forms and a large set of solvers with different
characteristics are used to improve recovery. Details can
be in found in review articles written by Oliveri et al. [33]
and Massa et al. [34]. In this section, we present an efficient
process to generate sparse dielectric images. This process is
particularly valuable, when there are practical only a limited
number of sources are practically feasible, and fast detection
or identification is one of the requirements.

We propose to use a two steps process to generate dielectric
images. In the first step, we estimate current sources from the
scattered electric fields similarly to our method described in

FIGURE 8. (a) true dielectric 2 points object; (b) reconstructed object,
where reconstruction and measurement grids are at the same resolution
(λ/5); (c) reconstructed object, where reconstruction and measurement
grids are at the different resolution (λ/5 vs λ/10). Colorbar shows relative
permittivity.

FIGURE 9. (a) true dielectric box object; (b) reconstructed object, where
reconstruction and measurement grids are at the same resolution (λ/5);
(c) reconstructed object, where reconstruction and measurement grids
are at the different resolution (λ/5 vs λ/10). Colorbar shows relative
permittivity.

Section IV-B and Section V. In the second step, the dielectric
values, x, are estimated from the current sources, z, using the
following equation:

xi =
ziE

ᵀ
i

‖Ei‖2
, ∀i ∈ {1, .., n}, (19)

where Ei is the electric field inside the domain. It is calculated
using the following discretized version of the electric field
volume integral equation [29]:

Ei = Ein,i +
n∑
j=1

Cij Gij zj, ∀i ∈ {1, .., n}, (20)

where Ein,i is the incident electric field, Ei xi = zi, and
Cij is a constant estimated similarly to [35]. Since zi is
already estimated, (20) does not require any matrix inversion
and (19) requires only the element wise operation (Hadamard
product). Thus, this step is computationally very efficient.
In addition, getting dielectric values do not require an iterative
approach such as Born Iterative Method [36] or an approxi-
mation such as Born approximation, rather they are estimated
directly without any approximation.

To test the method, we place a single source
(frequency = 20 MHz) and 30 receiving antennas uniformly
distributed on the circumference of a circular domain of
radius 2.5λ and the investigation domain is within a square
of 3λ length. The background medium is considered to be
air. Two objects that are electrically larger than required by
Born approximation ( [29] ) are considered here - the 2 points
object and the box object (see Fig. 8(a) and Fig. 9(a)). These
objects are reconstructed at λ/5 spatial resolution, while
‘‘measured’’ scattered field is estimated at both λ/5 and λ/10.
Corresponding reconstructed images are shown in Fig. 8 and
Fig. 9. As can be seen, objects reconstructed in two different
scenarios are visually very similar to the true object. When
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FIGURE 10. Reconstructed the 2 points object at different SNRs.
(a) 10 dB; (b) 20 dB; (c) 30 dB. Colorbar shows relative permittivity.

FIGURE 11. Reconstructed the box object at different SNRs. (a) 10 dB;
(b) 20 dB; (c) 30 dB. Colorbar shows relative permittivity.

FIGURE 12. Noise analysis of two different objects reconstructed at the
different resolution λ/5 than measurement grid resolution λ/10.

‘inverse crime’ (reconstruction and measurement grids are
the same) is committed, the reconstruction results are perfect.
Quantitatively, for the 2 points WAPE is 0.25×10−7%when
the grids are the same and 0.61%when they are different.
For the box object, WAPE is 0.49 × 10−7% when the grids
are the same and 0.88% when they are different.
We have shown that sparse recovery with a single transmit-

ter is possible theoretically and numerically. Our results do
not contradict with the well-accepted point that the multiple
solutions exist for (8) as the point is pertinent to any number
of nonzeros in z (see [37], [38]), whereas we assume to have
limited number of nonzeros in z. We actually show exact
recovery for the subset of z is feasible, which was never
investigated separately and as a part of the full set of z,
the subset was thought to have multiple solutions or did not
have the appropriate physical solution [39].

Next, we evaluate the sparse recovery under measurement
noise, where we add random Gaussian noise to the measure-
ments. We perform a sequence of simulations by varying
SNR from 5 dB to 50 dB for both type of objects mentioned
above. All parameters are kept the same and the objects are
reconstructed at λ/5 resolution, whereas measurements are
simulated at λ/10 resolution. The recovered objects at 10 dB,
20 dB, and 30 dB SNRs are shown in Fig. 10 and Fig. 11 for
the 2 points object and the box object, respectively. WAPEs

for all SNRs are shown in Fig. 12 for both type of objects.
As can be seen, WAPE remains < 5% for SNR > 20%.

VII. CONCLUSION
We presented Element based CS theory that can be applicable
to any sensing matrix. We showed that the sparse recovery
would be exact, if:

1) (AK
ᵀAK)−1 exists, and

2) s ≤ δ
ζ
.

We evaluated this theory on two types of measurements.
(1) Fourier measurements as isotropic measurements and (2)
anisotropic measurements using Green’s function.

For Fourier measurements, the Element based CS theory
showed similar dependencies of sparsity on the number of
unknowns and the number of measurements as they have in
the published literature of CS. For measurements involving
Green’s function, the Element based CS theory showed the
nonlinear relationship between sparsity and number of mea-
surements and also an upper bound on the usable number
of measurements, whereas according to the CS literature,
the relationship is linear or it cannot be evaluated. The upper
bound on the usable number of measurements exists in the
electromagnetic imaging domain but here, we were able to
incorporate it with the recovery problem.

Next, we demonstrated that in addition to providing a
theory for exact recovery, the Element based CS theory had
applications in generating dielectric images and in comparing
different measurement systems. Although the analysis and
results were for Green’s function based formulation, similar
steps can be carried out for any other sensing matrix. For gen-
erating dielectric images, the following aspects were inferred.

1) The recovery process is very simple and does not need
any forward problem’s matrix inversion. Hence, it has
very low computational complexity.

2) It is possible to have the exact recovery for very
sparse objects. The finding rectifies the conventional
understanding of the existence of non-unique solutions
for the single-source setup in the inverse scattering
domain.

3) The finding was numerically validated, which showed
that the dielectric values were recovered perfectly when
’inverse crime’ was committed and had relative low
error under both noisy and noiseless scenarios, when
‘inverse crime’ was avoided.

The future work includes extending the theory when x is
not exactly sparse and the measurement set is noisy. The
other direction that we will further study is how ζ can help
maximizing the sensing capacity, where the sensing matrix is
designed by optimizing sensors’ locations and the system’s
other variables.

APPENDIX A
PROOF OF THEOREM 1
The proof of the theorem is as follows. It is by contradiction
similar to the proof in [17].
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Proof: Let’s assume that x̂ = x + h be the solution
to (4), which states that ‖x̂‖1 ≤ ‖x‖1 and Ah = 0 since both
x and x̂ are feasible.
Now, ‖x̂‖1 can be expanded in the sets K and K c as,

c ‖x̂‖1 = c ‖xK + hK‖1 + c ‖hKc‖1

≥ c ‖xK‖1 + 〈c sgn(xK),hK〉 + c ‖hKc‖1. (21)

Next, |〈c sgn(xK),hK〉| can be bounded above as

|〈c sgn(xK),hK〉| = |〈c sgn(xK)− vK,hK〉 + 〈vK,hK〉|

= |〈c sgn(xK)− vK,hK〉 − 〈vKc ,hKc〉|

= | − 〈vKc ,hKc〉|

≤ ‖vKc‖∞‖hKc‖1 < ‖hKc‖1. (22)

Here we used that vK = c sgn(xK) and v = Aᵀw is a
dual vector. For the dual vector, we get 〈v,h〉 = 〈w,Ah〉 =
0. Thus, 〈vK,hK〉 = 〈v,h〉 − 〈vKc ,hKc〉 = −〈vKc ,hKc〉.
Therefore from (21), we get

c ‖x̂‖1 ≥ c ‖x‖1 + (c− 1)‖hKc‖1. (23)

Since c > 1, the multiplier of hKc is greater than zero. This
implies hKc = 0 given that x̂ is the solution to (4). Also Since
AK

ᵀAK has full rank, (AK
ᵀAK)hK = 0 only if hK = 0. So h

has to be zero, which states x̂ = x and x as the unique `1
minimizer to (4). Thus proves the theorem. �

APPENDIX B
PROOF OF THEOREM 2

Proof: Since |Bpq| < ζ, 1 ≤ p, q ≤ n, we have
‖BK‖∞ < sζ .
If the sparsity in x satisfy

s ≤ δ/ζ, (24)

then ‖c I−AK
ᵀAK‖2 = ‖BK‖2 ≤

√
‖BK‖∞‖BK‖1 ≤ ζ s ≤

δ.
For the second condition on A,

maxi∈K c‖AK
ᵀA{i}‖2 = maxi∈K c

√∑
l∈T

(A{l}ᵀA{i})2

= maxi∈K c

√∑
l∈T

B2li

≤
√
sζ ≤

δ
√
s
≤ 1. (25)

where we used the fact that δ < 1 and s ≥ 1. Also, since A is
normalized, ζ ≤ 1 H⇒

√
sζ ≤

√
δζ ≤ 1.

To get the dual certificate, we chose to define v as

v = cAᵀAK(AK
ᵀAK)−1 sgn(xK). (26)

For the entries of v in the support set K , we get

vK = cAK
ᵀAK(AK

ᵀAK)−1 sgn(xK)

= c sgn(xK), (27)

where we use the definition of right inverse [40]. This proves
condition for vK.

For vKc ,

‖vKc‖∞ = ‖cAKcᵀAK(AK
ᵀAK)−1 sgn(xK)‖∞

≤ ‖cAKcᵀAK(AK
ᵀAK)−1‖∞

≤ c s ζ‖(AK
ᵀAK)−1‖∞. (28)

where we use the defintion of ζ on the last line. Next, since
AK

ᵀAK is nonsingular, using Neumann Series, we get

c(AK
ᵀAK)−1=

∞∑
n=0

1
cn
(c I−AK

ᵀAK)n=
∞∑
n=0

1
cn
BK

n. (29)

From Eq. (28), we get

c s ζ‖(AK
ᵀAK)−1‖∞ = s ζ‖

∞∑
n=0

1
cn
BK

n
‖∞

≤ δ

∞∑
n=0

‖
1
cn
BnK‖∞

≤ δ

(
1+

δ

c
+

(
δ

c

)2

+ · · ·

)

≤ δ

(
1

1− δ
c

)
≤

c δ
c− δ

< 1, (30)

where for the last line of Eq. (30), we use the following
algebra.

δ <
c

c+ 1
=

1
1+ 1/c

∴ 1+
1
c
<

1
δ
H⇒ 1 <

c− δ
c δ

∴
c δ
c− δ

< 1. (31)

�
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