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ABSTRACT Brain extraction is an essential pre-processing step for neuroimaging analysis. It is difficult to
achieve high-precision extraction from low-quality brain MRI images with artifacts and gray inconsistencies
which often result in irregular hole regions in the extracted brain tissues. In addition, the U-Net based
brain extraction method trends to output over-smoothed brain boundary. To remove those irregular holes
in the extracted mask, we proposed a new U-Net based model for brain extraction named O-Net. O-Net
replaces the skip-connection path in the U-Net with dual shortcut paths including an attention module of
an O-shaped network, which uses deep semantic information to highlight the target area while retaining
more image details. O-Net effectively reduces the impact of intensity differences caused by artifacts or gray
inconsistencies in the brainMRI images on the extraction results. Tomore accurately identify brain boundary,
we designed a new GAN based brain extraction method, which used above O-Net as the segmentation
network. The discrimination network of the proposedGANmodel adopts the residual structure to enhance the
nonlinear expression ability of the network to balance the adversarial training of the two networks. To speed
up the convergence of the proposed model, a segmentation loss was added to the adversarial loss to supervise
the feature learning of the segmentation network. This method was compared with other popular brain
extraction methods on two public datasets (IBSR18 and LPBA40). The mean Dice similarity coefficients
obtained by the proposed method were 97.26% and 98.29% on IBSR18 and LPBA40 respectively. In the
comparative experiment, the results of the proposed method are the best on the two public datasets.
Experimental results show that the proposed model can stably output high-precision brain tissue extraction
images and the influence of artifacts and gray inconsistencies is small.

INDEX TERMS Brain extraction, artifacts, gray inconsistencies, dual shortcut paths, O-Net.

I. INTRODUCTION
With the wide application of magnetic resonance imag-
ing (MRI) equipment in clinical medicine, neuroimaging
analysis becomesmore andmore popular in the fields of brain
disease diagnosis and brain function analysis. Brain extrac-
tion is an important pre-processing step inmost neuroimaging
analysis, having a crucial impact on subsequent research such
as registration of brain MRI, measurement of brain volume,
and brain tissue classification. Therefore, an accurate and
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stable brain extraction method is needed in neuroimaging
analysis.

Manual extraction method has the highest accuracy, but it
consumes a lot of time and energy. Although the accuracy
of automatic method is lower than the manual method, it is
more efficient. The automatic extraction method is affected
by many factors, which is still a challenging field. First,
brain MRI images usually show low contrast, low resolution,
and uneven gray distribution due to the diversity of devices
and imaging protocols. Furthermore, brain structure is com-
plex, so it is difficult to determine the boundary between
brain tissue regions and non-brain tissue regions. Second,
artifacts caused by the patient’s unconscious movement and
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equipment debugging are manifested as distorted, over-
lapped, lost, and blurred in brain MRI images. These artifacts
may prevent the model from extracting the correct target
features, leading to serious deviations in the results. Last,
the intensity difference between individuals makes it diffi-
cult for one method to constantly output good results for
different brain scans. Pathological changes in brainmay cause
morphological changes, which will increase the difficulty of
accurately extraction.With the in-depth study of brain extrac-
tion algorithms, the problems of low resolution, low contrast
and uneven gray level of image have been well solved. How-
ever, these models still can’t solve the artifact problem well,
and their adaptive performance is still a problem that needs
to be further studied.

Since the development of the brain extraction research,
a lot of automatic methods have been proposed. These
methods can be divided into the classic-based [1]–[7],
the atlas-based [8], [9], and the learning-based [10]–[20].
Some classic automatic methods are yet widely used because
of their advantages in high calculation speed and batch pro-
cessing of data. Smith [1] proposed BET which pushes the
grid points to the brain boundary by a set of local adaptive
forces. BET has stable performance and can handle some
complex areas in brain MRI image well such as eyeballs.
Therefore, many researchers have proposed improved brain
extraction methods based on BET [2]–[4]. However, these
classical methods are highly dependent on parameter setting,
and their extraction accuracy is not enough to meet clinical
requirements. Compared with the classical method, the atlas-
based brain extraction method has a good performance in
terms of accuracy and stability, yet this kind of method
involves registration technology. If there is a large error in
the registration, the subsequent operation will be affected.
ROBEX proposed by Iglesias et al. [8] is known for stability.
However, if its registration step fails, the extraction work
can’t continue. Moreover, the performance of the atlas-based
method is also restricted by the slow registration speed.

Learning-based methods can be divided into machine
learning-based and deep learning-based according to the way
of feature extraction. Many machine learning algorithms
have been applied to brain extraction task, such as hidden
Markov algorithm [10], [11], meta-algorithm [12], K-mean
[13], and Bayesian [14]. However, all most features need
to be determined by experts, and then manually coded in
machine learning-based methods. As the database is con-
sciously collected and established by people, deep learning
based on a large amount of data can be studied deeply
and used widely. Deep learning tries to learn feature from
the data itself. Among them, the convolutional neural net-
work (CNN) extracts the shallow and deep semantic infor-
mation of the image by establishing multiple hidden layers.
The CNN-based method has low sensitivity to low contrast,
low resolution and uneven gray-scale of brain MRI image.
Kleesiek et al. [15] firstly used an end-to-end extraction
method based on 3D convolutional network for skull strip-
ping. As the most widely used model in medical image

segmentation, U-Net proposed by Ronneberger et al. [16] is
the basic network ofmany brain extractionmodels. For exam-
ple, Salehi et al. [17] proposed Auto Context U-Net, which
added a local predictive brain mask to U-Net to obtain higher-
precision results than Kleesiek et al. [15]. Hwang et al. [18]
extended U-Net from 2D pixels to 3D voxels to make full
use ofmore spatial information for skull separation. However,
U-Net can’t handle data with large different in the data sets.
The predicted brain mask obtained by U-Net on a data set
with severe artifacts or different intensity will have large-
scale irregular missing region. Most of brain extraction meth-
ods based on U-Net are very likely to have the same problems
as mentioned above.

Generative adversarial networks (GAN) are well known
for the powerful data fitting capabilities and the adversarial
training way that are different from others network. In the
field of image segmentation, researchers make use of adver-
sarial training to promote the segmentation network to bet-
ter learn the mapping between samples, thereby improving
the accuracy of segmentation. The model combing GAN
and CNN has been widely used in the field of medical
images segmentation [19]–[21]. Chen et al. [19] combined
dense expansion network and GAN to realize neuron cells.
Moeskops et al. [20] used the same idea as Chen to achieve
brain tissue segmentation. Thirumagal and Saruladha [21]
combined ResNet [22] and GAN to construct FCSE-GAN
for accurate segmentation of brain tumor regions. At present,
there are few researches on the whole brain segmentation
based on combined network.

Based on the above observation and analysis, this paper
proposes a new brain extraction model WGAN + O-Net,
where WGAN (Wasserstein GAN) [23] performs adversar-
ial training stably to improve the accuracy of our proposed
segmentation network O-Net. O-Net introduces attention
modules into U-Net to form a new shortcut to connect the
corresponding feature mapping on encoding and decoding
path. This structure can not only preserve the more detailed
feature of the image, but also highlight the target area of each
channel by using the deep semantic information. O-Net can
effectively reduce the influence of intensity difference caused
by artifacts or gray inconsistencies in the extraction results.
At the same time, in WGAN, the residual structure is used
in the discriminator to enhance the nonlinear performance of
the network and balance the adversarial training of the two
networks.

In the remainder of this paper, we first review the related
work of the proposed brain extraction method, then give
a detailed description of the proposed method, and finally
verify the performance of the model through experiments on
healthy brain MRI and pathological brain MRI.

II. RELATED WORK
A. ATTENTION MECHANISM
The attention mechanism in deep learning is similar to selec-
tive visual attention mechanism of human beings. Its essence
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is to locate interest information and suppress useless informa-
tion. The results are usually displayed in the form of probabil-
ity graphs or probability feature vectors. The attention model
can be divided into three categories according to the prin-
ciple: spatial attention model, channel attention model, and
spatial channel mixed attention model. The spatial attention
model includes AG by Oktay et al. [24], STN proposed by
DeepMind [25], and the SAM proposed by Zhu et al. [26].
The channel attention model includes the SENet proposed
by Hu et al. [27], and Wang et al. [28] improved ECANet
based on SENet. The attention modules of hybrid spatial and
channel are CBAM proposed by Woo et al. [29] and SANet
by Zhang and Yang [30].

The advantage of these attention models is that they can
be easily added to the CNN network model without causing
large-scale changes to the model structure. For example,
the Attention U-Net proposed by Oktay et al. [24] directly
adds attention gate (AG) between the skip-connections of
U-Net to supervise the previous-level feature map with the
next-level feature map. AG belongs to the spatial attention
model, the importance of features at different spatial positions
can be controlled in U-Net model training. This allows AG to
suppress the characteristic response of irrelevant regions.

B. WGAN-DIV
The emergence of GAN has opened up the research ideas
of unsupervised learning on complex distributions, but
its training has the problem of model collapse. To solve
this problem, many improved GANs have been proposed.
Wasserstein distance [23] was proposed for the difficulty
of GAN network training. The training of WGAN is easier
than the original GAN, and eliminates mode collapse to a
certain extent. However, WGAN introduces the Lipschitz (L)
constraint.

To satisfy the L-constraint, many methods have been pro-
posed. The original solution given by Zhang and Yang [30]
is weight clipping. Gulrajani et al. [31] proposed gradient
penalty to discriminator. Miyato et al. [32] proposed spec-
trum normalization. However, these methods have a problem:
restrict discriminator to a small cluster of functions. In this
case, WGAN-DIV proposed byWu et al. [33] proved that the
optimization objective of the discriminator in WGAN-GP is
not always divergence, and proposed a theoretically complete
wasserstein divergence. Wasserstein divergence can satisfy
the L-constraint while retaining the excellent properties of
wasserstein distance for stable training. The definition of
wasserstein divergence is as follows:

Wk,p(Pr ,Pq) = max
D∈C1

Ex∼Pr [D(x)]− Ex∼Pf [D(x)]

−kEx∼PRandon [||∇xD(x)||
P)] (1)

where C1 represents the first-order continuous function; r
represents the true distribution, and q represents the com-
posite distribution. WGAN-div has very low requirements
for Prandom distribution, and the effects of various sampling
methods are similar. After a series of experiments, the author

found that the effect is best when K= 2 and P= 6. Based on
the above analysis, we choose the Wasserstein divergence in
WGAN-DIV as the loss function of our generative adversarial
network.

III. METHOD
The general architecture of the WGAN+O-Net model we
proposed is illustrated in Figure 1. The network can be
divided into two parts: segmentation network and discrimina-
tion network. We introduce the above two networks in turn,
and then introduce the adversarial training of the network.

A. SEGMENTATION NETWORK
In the proposed brain extraction model, the purpose of the
segmentation network is to output a predictive brain mask
that can replace manual labels to deceive the discrimination
network. The encoding-decoding architecture of U-Net with
skip connection can integrates features of different scales and
has few of parameters, so it is very suitable for the datamining
with simpler semantics and relatively fixed structure such
as medical images. Based on U-Net, we proposed O-Net to
improve brain extraction results of brain MRI with serious
artifacts or inconsistent gray-scale distribution.
In the proposed network, the encoder has 8 convolutional

components, each of which includes a convolution layer with
kernel size of 4 × 4 and a stride of 2 + BN layer +
Leaky Relu activation function layer + a convolution layer
with kernel size of 3 × 3 and a stride of 1 + BN layer
+ Leaky Relu activation function layer. The max-pooling
layer is replaced by a convolution layer with a stride of
2 to achieve down-sampling in the entire coding path. The
initial number of feature channels is 64, and then increases
exponentially until it reaches 512. Obviously, the proposed
network is deeper than the baseline U-Net. The deepened
network can provide a wider range of receptive fields and
more feature maps of different scales. However, as deep-
ening the network more spatial feature information is lost
with the down-sampling. Therefore, we add an attention path
between the encoder and the decoder based on the original
skip connection to locate the target region features of different
scale feature maps. Furthermore, two parallel skip connection
paths can retainmore detailed features in deepmodel training.
As shown in Figure 1, the skip connection path and the
attention path come to form a closed path which looks like
a letter ‘O’. Therefore, we named it O-Net.
The key components of the attention path are the attention

module which is marked with a capital letter A in the middle
of the red-filled circle in the Figure 1. Each attention module
has two inputs (x and g). x is fed by the shallow feature map
from the encoding path. g is fed by the feature map after
transposed convolution of the output of the previous level
in the decoding path. The output of the attention module is
labeled x’. x and x’ are concatenated and then undergoes
a convolution with the kernel size of 3 × 3. The output of
the convolution become the input g of the next attention
module. The detailed internal structure of attention module

136764 VOLUME 9, 2021



S. Jiang et al.: Brain Extraction From Brain MRI Images Based on Wasserstein GAN and O-Net

FIGURE 1. Schematic diagram of the proposed networks: ‘A’ in the generator represents the attention module, and the detailed structure is shown
in Figure 2(a). The discriminator is composed of a superposition of residual blocks, and the detailed structure is shown in Figure 2(b).

is shown in Figure 2(a). First, the two inputs (x and g) are
pixel-wise superimposed to control the importance between
the feature information of the same position in x through
the high-level semantic information in g. Then, the irrelevant
features in the feature map are suppressed by a convolution
layer with kernel size of 3× 3 + BN layer + Relu activation
function layer. The value of the obtained attention matrix
is normalized to between 0∼1 by a convolution layer with

a kernel of 3× 3 + BN layer + Sigmoid activation function
layer. Finally, the obtained attention coefficient matrix of
each channel is multiplied by the corresponding channel of
x to output a new feature map x’. The attention module uses
deeper semantic information to guide the feature map of the
current layer to adjust feature weights. Therefore, the size of
the coding path down-sampling to the feature map is set to
1× 1 to assist the model to obtain a wider receptive field.
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The attention module proposed in this paper draws on
the idea of attention gate (AG) in attention U-Net, but it is
different from AG in internal structure and attention matrix.
In the module for suppressing useless feature and normal-
ization, we use a convolutional layer with a kernel size of
3×3 to obtain more features to distinguish it from the feature
information provided by another skip-connection path and
provide more feature for the decoding path. At the same time,
this operation also extends the receptive field of the attention
module to a deeper level so that it is not limited to the features
of the previous layer and the current layer. The number of
characteristic channels of AG changes as follows: C (input)
→ C / 2 (after the first convolution)→ 1 (after the second
convolution). The number of channels of the proposed atten-
tion model changes as follows: C (input)→ C / 2 (after the
first convolution) → C (after the second convolution). The
scale of the attention coefficient matrix obtained by AG is
H×W × 1, whichmeans that the feature map of each channel
of x employs the same attention matrix to adjust the weight
space information. Although the attention matrix output by
the AG integrates the information of all channels, using the
same attention for all channels will lead to deviations in the
range of the prominent target area. The attention coefficient
matrix scale obtained by the proposed attention model is
H × W × C , which means that the feature map on each
channel has its own corresponding attention matrix. Adjust
the proportion of features according to different semantic
information represented on different channels. This targeted
adjustment helpful to better understand the feature distribu-
tion of the image.

FIGURE 2. Details of the proposed network architecture: (a) Attention
module, where g is the target feature map, x is the source feature map
(b) residual block, where xl represents the input of each residual layer.

The purpose of the decoder is to restore the low-resolution
feature map with high-level semantic information to the
same resolution as the input image. The network structure is

symmetrical, so the decoder needs to be up-sampled 8 times.
After the two input feature maps of the decoder are concate-
nated by channel, they are sent to a convolution with kernel
size of 3 × 3 + BN layer + Leaky Relu activation function
layer for dimension reduction and feature fusion. The output
is used as the input of the next attention module after trans-
posed convolution. The dual-skip path facilitates propagation
and update of gradients and provides more detailed feature
information. Therefore, the proposed decoding architecture
makes the edge of the output prediction mask more fine. The
proposedO-Net has a featuremapwith a larger receptive field
to deal with artifacts, which are usually different in images
and do not exist only in a certain region of the image. At the
same time, the attention module in the model obtains image
context information to increase the weight of brain tissue
regions. The purpose of the final model is to weakening the
influence of artifacts.

FIGURE 3. Overlay of the prediction mask and the original image for each
improvement stage of the model. The brain MRI image is from IBSR18,
which has artifacts. In the figure, the yellow arrows point to the defects
of the prediction mask, and the white arrows indicate that the prediction
masks of these parts have been greatly improved compared with the
models of other stages.

To show how O-Net can improves brain extraction,
we show the outputs of a typical image in three process-
ing ways in Figure 3. They all used the WGAN-DIV, but
with different generative networks. The WGAN+U-Net,
WGAN+Attention U-Net, and WGAN+O-Net used the
U-Net, the Attention U-Net, and the O-Net as the generative
network respectively. In Figure 3(b), affected by the arti-
facts in the image, a lot of brain tissues are missed in the
middle of the extraction results obtained by WGAN+U-Net.
By adding the attention module into the U-Net, the large-
scale missed areas in Figure 3(b) are recovered in Figure 3(c),
but the accuracy has not been significantly improved.
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By providing more detailed information for the up-sampling
of the network, our proposed O-Net not only avoided holing
in the prediction mask but also significantly improved the
accuracy.

B. DISCRIMINATION NETWORK
The discrimination network learns the difference between
the ground truth and the output of the segmentation network
to effectively punish the segmentation network. It provides
a learning signal for the segmentation network so that the
segmentation network can output the predictive brain mask
closest to the ground truth. Therefore, the stronger the dis-
criminating ability of the discrimination network is, the better
the segmentation network is. We deepened the depth of the
discrimination network as well as the segmentation network
to enhance the discrimination ability and balance the adver-
sarial training of the two networks. The modified convolution
residual blocks (ResNet v2 [34], being qualified to build
more deeper network) were used to form the layers in the
discrimination network in Figure 1. The internal structure of
the modified res-block is shown in Figure 2(b). The residual
block consists of two convolutional paths including multiple
Leaky Relu, convolutional layer with kernel size of 3 × 3 and
2 × 2 max-pooling convolutional components. The output of
the left path including two 3× 3 convolutional layers have the
same receptive field as the output of one 5 × 5 convolutional
layer, but having fewer parameters. The outputs of the two
convolutional paths are added, thus the residual block can
provide multiple receptive fields. Instead of using the BN
layer in the discriminator, we removed the last activation layer
in the discriminator to ensure that the model can be trained
stably.

C. ADVERSARIAL TRAINING
The generative adversarial network is trained alternatively
to minimize the objective function. Adversarial training
is implemented iteratively by two iterative steps. First,
the adversarial model is trained in order to improve the
model’s ability to discern the authenticity. The loss of dis-
criminator is defined as:

LD = argmax
D∈C1

Ex∼Pr [D(x)]− EG(z)∼Pg [D(G(z))]

−kEx̂∼Px̂ [(||∇xD(x̂)||
p)] (2)

where C1 refers to the first-order continuous function family,
x̂ is the sampling point on the line between the real distribu-
tion Pr and the generator distribution Pg, ∇ is the gradient
operation in connection with the discriminator.

The generator of the model is trained in the second step.
In order to speed up the convergence of the model and bet-
ter cooperate with the segmentation network, we added the
segmentation loss function Ls to generator’s loss function.

LG = argmin
G

EG(z)∼pg [D(G(Z ))]+ LS (3)

LS =
N∑
n=1

lmce(G(z), x)) (4)

where lmce is class cross-entropy and x is the true dis-
tribution data. Cost minimization on 10 epochs was per-
formed using ADAM optimizer with an initial learning
rate of 0.0001 on both the segmentation network and the
discrimination network. All model performance evaluation
experiments were done on workstations with Nvidia eforce
GTX1080Ti.

IV. EXPERIMENTS
A. DATASETS
We evaluated and verified the performance of proposed
model on three brain MRI image data sets, two of which are
public and the other is private.

IBSR18: come from the International Brain Tissue Seg-
mentation Image Library, dedicated to the study of brain
extraction algorithms. The 18T1 scans of IBSR18 come from
healthy human with a resolution of 0.94 × 1.5 × 0.94mm.
The 2D image size in three directions of this dataset (cross
section, coronal plane and sagittal plane) are 256 × 128,
256 × 256 and 128 × 256, and the corresponding numbers
are 4068, 2304, and 4068. Overall quality Poor, with severe
artifacts.

LPBA40: come from the LONI website of the Univer-
sity of Southern California Los Angeles. The 40T1 scans
of LPBA40 come from healthy humans with a resolution of
0.86 × 1.5 × 0.86mm. The 2D image size in three direc-
tions of this dataset (cross section, coronal plane and sagittal
plane) are 256 × 124, 256 × 256 and 124 × 256, and the
corresponding numbers are10240, 4952 and 10240. Overall
quality is clearer and better.

The brain MRI image is a small sample data set, so the
different division of the data would greatly affect the effect
of the model. To reflect the true level of the model as much
as possible, we used the K-fold cross-validation method for
sampling, in which LPBA40 was 10-fold cross-validation
(training: test= 9:1) and IBSR18 was 9-fold cross-validation
(training: test = 8:1).
Dataset with lesions: come from the hospital, which is

a set of MRI images with meningiomas, cerebral ischemic
stroke, and pituitary tumor. There are 30T1 scans sets, and
each type of lesion contains 10T1 scans sets. Each scan set
contains only 15 slices. The image dimensions of these slices
are 256 × 256. The labels corresponding to the data set
were marked by the researchers under the guidance in this
paper. In order to avoid uncertainty, they were only used
for cross-dataset experiments to test the adaptability of the
model.

B. EVALUATION METRICS
To quantitatively evaluate the extraction methods, three eval-
uation indexes Dice, sensitivity, and specificity, were cal-
culated Dice coefficient was used to measure the similarity
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between prediction mask and ground truth:

Dice =
2TP

2TP+ FP+ FN
(5)

where TP is true positive, FP is false positive, and FN is false
negative. TP is the total number of pixels correctly classified
as brain tissue in the prediction label. FP is the total number
of pixels incorrectly classified as brain tissue in the prediction
label. FN is the total number of pixels incorrectly classified
as non-brain tissue.

Sensitivity represents the ability of brain extraction meth-
ods to correctly recognize brain tissue:

sensitivity =
TP

TP+ FN
(6)

Specificity represents the ability of brain extraction meth-
ods to correctly recognize non-brain tissues.

specificity =
TN

TN + FP
(7)

The value of Dice coefficient, sensitivity, and specificity
range from 0 to 1. The larger the values of these three eval-
uation coefficients are, the more accurate the brain tissue
extraction results are.

C. RESULTS
We evaluated the performance of the proposed mod-
els (WGAN+O-Net) through several comparative experi-
ments with some popular brain extraction algorithms and
similar model. The brain extraction methods involved in
the comparative experiment include the baseline model
(U-Net [16]), the deep learning-based method specially pro-
posed for the brain extraction (Kleesiek et al. [15], Auto
Context U-Net [17]), and three non-deep learning methods
(HFEM-E [35], BET [2], and ROBEX [8]). Similar mod-
els include WGAN+Attention U-Net, WGAN+U-Net, and
Pix2pix+U-Net. The evaluation results of each method on
IBSR18 and LPBA40 are listed in Table 1 respectively.

Compared with other algorithms specifically proposed for
brain extraction tasks, WGAN+O-Net obtained the highest
Dice score in the two public datasets. On IBSR18, the Dice
score of WGAN+O-Net is significantly improved compared
with other methods (U-Net: 2.4%, Auto Context U-Net:
4.57%, Kleesiek: 0.94%, HFEM-E: 1.76%, BET: 4.91%, and
ROBEX: 5.58%). On LPBA40, the difference between the
scores of WGAN+O-Net and all other methods is more than
0.5% (U-Net: 0.61%; Auto Context U-Net: 0.56%; Kleesiek:
1.33%; BET: 4.77%; and ROBEX: 1.73%). We obtained the
p-value after paired T-test to show the statistical difference
between the proposed method and other methods in three
evaluation indexes. On the two public datasets, all p-values

TABLE 1. The mean and standard deviation of the three evaluations of the two public datasets (LPBA40 and IBSR18) with different brain extraction
methods. Figures 4 and 6 are supplementary figures of table 1.
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FIGURE 4. The overlays of two typical MRI scans from LPBA40 and IBSR18 and their corresponding prediction masks produced by various brain extraction
methods Blue pixels represent the segmentation results of the corresponding brain extraction methods. Green pixels indicate the false negatives and red
pixels indicate the false positives. Regions that are difficult to segment are intercepted and zoomed with rectangles. WGAN+O-Net produces more
accurate brain segmentation compared with other brain extraction methods.

in Dice that can be calculated are lower than 0.01, which
shows that WGAN+O-Net has a very significant difference
in accuracy with other comparison methods. In terms of
sensitivity, ROBEX performed best on IBSR18, followed by
BET; our method performed best on LPBA40, followed by
BET. In terms of specificity, Kleesiek performed best on
IBSR18, followed by U-Net; our method performed best on
LPBA40, followed by U-Net. Overall, WGAN+O-Net has
the best sensitivity and specificity on LPBA40, but it does
not perform well on IBSR18. However, both our method
and the second-ranked method have p-values greater than
0.05 on IBSR18, which indicates that there is no significant
difference between them.

Compared with similar models, WGAN+O-Net still
obtains the highest value of Dice on the two datasets on Dice.
WGAN+O-Net is at least 1.26% higher than the second high-
est WGAN+U-Net on IBSR18, and at least 0.5% higher than
the second highest Pix2pix+U-Net on LPBA40. Observing
the values in Table 1 shows that all methods perform better

TABLE 2. The mean value of the evaluation results of different algorithms
on across-dataset experiment.

on LPBA40 than on IBSR18. The image quality affects the
extraction methods resulting in unstable output. Compared
with other methods, our method has better stability on the
two data sets.

Figure 5 shows the box plots of the evaluation values of
different brain extraction methods in the comparative exper-
iment of the two public datasets. The purpose of the box
plots is to intuitively reflect the performance of different
algorithms on brain extraction tasks. Since the evaluation
values of Kleesiek and HFEM-E are directly quoted from
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FIGURE 5. Box plots based on evaluation data obtained by different algorithms on three datasets.

the papers, box plots of these two brain extraction methods
is not added in Figure 5. In the box plots of WGAN+O-Net
on all datasets, every square box maintains a high level; the
distribution of normal values is concentrated; most square
boxes are symmetrical and have very few outliers. The boxes
in the plots of U-Net are also relatively concentrated. Expect
for sensitivity, there are few outliers, but their values are
not high. For LPBA40, Auto context U-Net has a discrete
numerical distribution compared to the other two deep learn-
ing models. On the IBSR18, the number of digits in the
box plot of each indicator is not as good as that of BET.
On LPBA40 and IBSR18, the box plots clearly show that
the traditional brain extraction methods (BET and ROBEX)
has many abnormal values, heavy tails, and a large devia-
tions from the median. This indicates that their extraction
results are usually not as good as those based on deep
learning.

The above analysis of comparative experiments shows the
superiority of our method in accuracy. Next, we verified
the adaptability of the model by cross-dataset experiments.
This experiment used healthy sample scans LPBA40 as the
training set and diseased sample scans as the test set. The
training set and test set with huge differences are selected

in order to explore the adaptability limit of the model as
much as possible. Table 2 shows the evaluation results of
the predicted masks obtained by different methods in the
cross-dataset experiment. Our method achieves the highest
Dice coefficient value, which is at least 3.26% higher than
the best among other methods. At the same time, the highest
sensitivity is obtained, which is at least 3.59% higher than
other methods, while the specificity is lower than the high-
est value of 0.78%. Although Auto Context U-Net method
obtained a specificity value of nearly 1, its sensitivity is too
low, which means that its brain extraction results are too
conservative.

Figure 6 shows the results of experiments across datasets.
There is no prediction mask of ROBEX in the figure 5,
because it failed to register brain MRI images of lesions,
method. The first row in Figure 6 is ground truth (GT).
A round and white area can be clearly observed on the
coronal and sagittal planes of GT. This area is the focal
area of meningioma. which is the main problem of atlas-
based brain extraction The gray scale of this lesion area is
obviously whiter than that of brain tissue, so it is easy to be
recognized by the model as non-brain tissue. It was obvious
that only part of the lesions can be identified by U-Net.
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FIGURE 6. Prediction masks of various brain extraction methods in
dataset with lesions.

TABLE 3. The mean value of the evaluation results of different algorithms
on ablation experiment.

FIGURE 7. The output image of the training process when different
objective functions are applied to our model.

The result of Auto Context U-Net that rely on prior informa-
tion was worse. The extraction results of BET left too many
non-brain tissue parts such as eyeballs. Although the result of
WGAN+O-Net is not as smooth as ground truth, its segmen-
tation accuracy is the highest. It can completely segment the
tumor regionwith the highest failure probability in the sagittal
plane.

TABLE 4. Evaluation results of different network structures on IBSR18.

The high accuracy and adaptability of the model proposed
are proved by the above two experiments. In order to prove
that these superior properties contribute to our improve-
ment of the model, we have done ablation experiments. The
improvements of each module were removed individually
from the model in turn, and then learning process was done
on the same dataset. The mean values of the evaluation
results of different algorithms on ablation experiment are
listed in Table 3. First, the accuracy of the model decreased
to 41.54% after the segmentation loss function (LS ) was
removed. This result from one side indicates that WGAN
+ O-Net has most convergence. Figure 7 is a supplemen-
tary diagram of Table 3, which records the output results
of the segmentation network in the two loss function states
at a certain moment in the training process. In the 2900th
round of training, WGAN+O-Net with LS already outputted
the approximate outline of the predicted brain mask, while
the model without LS only had a grayscale distribution that
was much different from the label. In the 42200th round of
training, the model with LS in the loss function can already
output the prediction mask with edge details, while the model
without LS has obvious adhesion. Therefore, it is verified
that adding the loss of the segmentation network on the
basis of the adversarial loss can greatly improve the con-
vergence speed of the model and reduce the training time.
WGAN+O-Net(D) means to replace the residual block in the
discrimination network with a common convolutional layer.
The model extraction accuracy dropped by 4.03% after the
replacement. WGAN+O-Net(G) with U-Net. The accuracy
of the model decreased by 2.7%, After the replacement.
The above two datasets show that the segmentation network
O-Net and the residual block of the discrimination network
are effective contributions to the model. The results of abla-
tion experiments show that the improvement of each part of
the model has a positive impact on the brain extraction task
and makes an effective contribution to the improvement of
accuracy.

Compared with the basic model U-Net, the new brain
extraction model not only adds a discrimination network,
but also increases the depth of the network. Obviously,
WGAN+O-Net has more parameters than U-Net. Although
the ablation experiments have confirmed that each part of the
improvement has a positive contribution to the improvement
of brain extraction accuracy, it cannot explained whether the
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improvement of accuracy and artifact suppression is due to
the improvement of structure or the increase of parameters.
To further verify the contribution of model structure to brain
extraction research, we evaluated and analyzed the different
depth and structure of the model, and the results are shown
in Table 4.

In the Table 4, Deep U-Net refers to a model that
increases the 4 down-sampling of U-Net to 8 down-sampling.
Deep-U-Net adds more feature maps of different scales
and some parameters compared to U-Net. Theoretically,
Deep-U-Net have better performance. However, Table 4
shows that the Dice coefficient of Deep-U-Net is 91.26%,
which is 3.6% lower than of U-Net. Simply increasing the
convolutional layer did not achieve performance improve-
ment. When both U-Net and Deep-U-Net were combined
with WGAN, the extraction accuracy increased significantly.
Note that the discrimination network and loss function of
WGAN here refer to the improved one. The Dice coefficient
value of WGAN+U-Net is increased by 1.14% compared
with U-Net; the Dice coefficient value of WGAN+Deep-
U-Net is increased by 6.04% compared with Deep-U-Net.
This result reflects that the adversarial training can promote
the target segmentation network to obtain better extraction
accuracy, alleviate the perform of network degradation, and
make the deep network play its due performance.

FIGURE 8. Output of WGAN+Deep-U-Net and WGAN+O-Net in the same
slice scan. Regions that are difficult to segment are intercepted and
zoomed.

In fact, WGAN+Deep-U-Net achieves the highest Dice
coefficient value, which is even 0.04% higher than the
proposed WGAN+O-Net model in this experiment. How-
ever, the results of WGAN+Deep-U-Net on samples with
severe artifacts or uneven gray levels show holes, as shown
in Figure 8(a). Figure 8(b) is the extraction result of
WGAN+O-Net on the same brain MRI slice image. The
difference between the WGAN+O-Net model and the
WGAN+Deep-U-Net model is whether the dual shortcut
path with channel corresponding attention module is used.
Although the extraction accuracy of the overall evaluation
is slightly worse than that of WGAN+Deep-U-Net, the pro-
posed WGAN+O-Net can better handle low-quality images
such as artifacts or uneven gray-scale distribution. This
proves that the proposed O-Net can indeed suppress artifacts.

V. DISCUSSION
The performance of these brain extraction methods eval-
uated in this article is different on the two datasets.
ROBEX performed normally on LPBA40without major error

recognition, but it was affected by artifacts and inconsis-
tent gray-scale distribution. Its extraction results retained
large-scale skulls on IBSR18. BET shows strong stability on
the two datasets although the extraction results are not good.
The boundary of the result extracted by BET is too smooth,
and a small part of the brain can easily be misidentified.
The sensitivity and specificity evaluation value of the latest
method HEFM-E rank low among these methods, indicating
that its brain tissue recognition ability and non-brain tissue
recognition ability are not good enough. Compared with tra-
ditional brain extraction methods, CNN-based methods cause
no serious error. U-Net is able to achieve good extraction
results on brain MRI datasets with good image quality, such
as LPBA40, but it can cause unstable results for datasets
with uneven quality such as IBSR18. U-Net largely depends
on image quality. When it processes images with artifacts
or partial gray distributions that are inconsistent with most
other images, the extraction results will show large-scale
irregular missing areas. Like U-Net, the results obtained by
auto context U-Net also depend on the quality of the dataset.
This brain extraction method trends to exclude some brain
tissues (see Figure 5). The reason for this may be that the
presence of artifacts will affect the effect of the automatic
context architecture.

Although based on U-Net, the stability of the proposed
WGAN+O-Net is better than U-Net. WGAN+O-Net can
achieve a further improvement in accuracy on a good-quality
data set (LPBA40), and can also process images with artifacts
or uneven grayscale on a poor-quality dataset IBSR18 (see
Figure 3 and Figure 8). WGAN+O-Net achieved the highest
accuracy on both public datasets, and its results are signifi-
cantly different from other comparison methods. The adapt-
ability ofWGAN+O-Net has also been verified by cross-data
set experiments with very large differences between the train-
ing set (LPBA40) and the test set (brain data set with lesions).
In the test scan images, the lesion may squeeze the brain
tissue and blur the brain boundary, which makes it easy
for the model that has not learned the characteristics of the
lesion area to make wrong judgment. WGAN+O-Net can
locate the brain tissue by increasing the focus of the target
region so as to improve the model’s sensitivity of the model
to foreground pixels, and more scale participation makes
it have a more comprehensive receptive field. At the same
time, the model also has a strong fitting ability to generate
a confrontation network. Therefore, high-precision extrac-
tion (average 95.51%) can still be maintained for experi-
ments with huge differences across datasets. WGAN+O-Net
has a high rate of correct recognition of the lesion area
(see Figure 4).

AlthoughWGAN+O-Net has the above advantages, it also
has some disadvantages. One is that the method cannot yet
achieve cross-modal extraction, that is, the model trained
on the T1 weighted MRI images cannot be applied to the
T2 weighted images. The other is that we only studied on 2D
brain MRI slice images. Thus, the future work will focus on
how to realize brain extraction on multi-modal MRI images
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based on GAN and expand the 2-D based brain extraction
method to 3-D based extraction method.

VI. CONCLUSION
In this study, we presented a new brain extraction model
WGAN+O-Net which has the ability to suppress artifacts
to prevents the large-scale irregular regions in the prediction
of brain mask. In comparison to existing brain extraction
methods, WGAN+O-Net has a more accurate prediction of
brain mask. Moreover, this method can still maintains a good
extraction results on data with large differences.
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