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ABSTRACT Today’s mechanical tools for bone cutting (osteotomy) lead to mechanical trauma that prolong
the healing process. Medical device manufacturers continuously strive to improve their tools to minimize
such trauma. One example of such a new tool and procedure is minimally invasive surgery with laser as
the cutting element. This setup allows for tissue ablation using laser light instead of mechanical tools, which
reduces the post-surgery healing time. During surgery, a reliable feedback system is crucial to avoid collateral
damage to the surrounding tissues. Therefore, we propose a tissue classification method that analyzes the
acoustic waves produced during laser ablation and show its applicability in an ex-vivo experiment. The
ablation process with a microsecond pulsed Erbium-doped Yttrium Aluminium Garnet (Er: YAG) laser pro-
duces acoustic waves that we captured with an air-coupled transducer. Consequently, we used these captured
waves to classify five porcine tissue types: hard bone, soft bone, muscle, fat, and skin tissue. For automated
tissue classification of the measured acoustic waves, we propose three Neural Network (NN) approaches:
A Fully-connected Neural Network (FcNN), a one-dimensional Convolutional Neural Network (CNN), and
a Recurrent Neural Network (RNN). The time- and the frequency-dependent parts of the measured waves’
pressure variation were used as separate inputs to train and validate the designed NNss. In a final step, we used
Grad-CAM to find the frequencies’ activation map and conclude that the low frequencies are the most
important ones for this classification task. In our experiments, we achieved an accuracy of 100 % for the five
tissue types for all the proposed NNs. We tested the different classifiers for their robustness and concluded

that using frequency-dependent data together with a FCNN is the most robust approach.

INDEX TERMS Acoustic feedback, laser ablation, tissue classification, neural network.

I. INTRODUCTION

Minimally invasive procedures demonstrate a significant step
towards accelerated recovery after surgery [1], [2]: replac-
ing the mechanical tools from open osteotomies with laser-
based ablation [3] shows a further reduction in recovery
time [4], [5]. Mechanical tools — which are still the standard
in conventional osteotomy — induce thermal and mechanical
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trauma due to mechanical friction. Replacing mechanical
tools with lasers can reduce this trauma [3], [6], [7].

While exposing the tissue to a microsecond pulsed Er:YAG
laser, the water in the tissue is heated until it vaporizes.
This process takes place within microseconds and builds up
pressure that is released in a series of micro-explosions. The
explosions ablate a small portion of the tissue [8] and thus
produce an acoustic wave [9]. A transducer can then measure
the resulting pressure variation. Carbonization causes ther-
mal damage and reduces the cutting efficiency. Therefore,
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the ablated tissue needs to be constantly re-hydrated and
cooled down [3], [6], [7], [10]-[12].

The goal of the recently founded project MIRACLE! is
to improve laser osteotomy, by integrating the advantages
of robot-assisted laser surgery into an endoscope [13]-[15].
This way, the surgeon may perform laser-based osteotomy
by inserting an endoscope into the body through a small
incision or a natural orifice. Information on the endoscope’s
surroundings, e.g., the type of the ablated tissue, can help
the surgeon to avoid cutting the wrong tissue. Multiple
approaches have been considered to discern porcine tis-
sue types as feedback for tissue ablation with laser, e.g.,
using Optical Spectroscopy [16]-[18] or Optical Coherence
Tomography (OCT) [19], [20]. The authors of [21] proposed
that optoacoustic imaging can be used for differentiating
different types of hard dental tissue. The authors of [22], [23]
have investigated optical and acoustic signals during Er: YAG
laser osteotomy. They have proposed a heuristic that decides
when the laser needs to be switched off to prevent damaging
nerves. In contrast, our goal is to only use the acoustic signal
for tissue classification to prevent the laser from continuing
the cut when detecting tissue that should not be damaged.
Similar approaches have been proposed in [11], [24], [25].
A different approach [26], [27] used acoustic waves in a
2D simulation to infer the acoustic density within a region
of interest. This information subsequently can be used to
classify the underlying tissue.

For this research, we used supervised deep learning to
train NN that can infer the tissue from the acoustic waves.
In a simplified ex-vivo experiment, we prepared specimen
from porcine tissues such that each tissue type can be ablated
without the interference of others.

Neural Networks [28] found their way into numerous
related applications, e.g., medical image classification prob-
lems [29]-[31] or speech and signal processing [32]-[35].
Similarly, we used NNs to classify different porcine-tissue
types. In our case, we used the pressure variation emitted
during the ablation to feed our classifying NNs. We either
used the time-dependent pressure variation or its Fourier-
transform, but we used the same network architecture in both
cases. We compared an FcNN of three fully-connected (FC)
layers, a one-dimensional CNN with one convolutional layer
followed by three FC layers, and a bidirectional RNN fol-
lowed by three FC layers. To further analyze the frequency
domain, we applied Grad-CAM to find activation maps.
Grad-CAM [36] can be used to compute the activation maps
that highlight the essential part of the data for a specific
classification task. Therefore, we applied Grad-CAM to our
proposed CNN with frequency-dependent data and found the
frequency domain’s corresponding activation map.

The proposed new approach showed superior results when
compared to the original method [25] on the same data.

IMIRACLE (Minimally Invasive Robot-Assisted Computer-guided
LaserosteotomE), 01.08.2020, https://dbe.unibas.ch/en/research/flagship-
project-miracle
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FIGURE 1. Setup contained an Er:YAG laser with a wavelength of 2940 nm,
where the pulses had a repetition rate of 2 Hz and the energy per pulse
was 940 mJ. The tissue was placed at the laser’s focal point, at a distance
of 30 mm from the lens. The acoustic wave created during the ablation
was measured by a transducer at a distance of 5cm, with an angle of 45°.
We used the measured signal as the input of our NNs to classify different
types of tissues.

Furthermore, we performed a robustness analysis of the
different NNs, compared the performance on time- and
frequency-dependent data, and finally discussed our results.

Il. MATERIAL

In this section, we describe the setup and the data acquisition
of our experiments performed in [25], to which we also refer
for more details.

A. SETUP

Figure 1 visualizes the setup used in this research. We used an
Er:YAG laser (Syneron Candela, litetouch LI-FGO001A) with
a wavelength of 2940 nm that produces 400 us pulses with an
energy of 940 mJ. A CaF, mirror was placed at a small angle
in front of the laser’s head, such that it splits the laser light into
two parts: 96% transmitted and 4% reflected. The reflected
light is captured by a fast PbSe photodiode (PbSe Fixed Gain
Detector, PDA20H, 1500 — 4800 nm), used as a triggering
signal. This triggering signal activates the measurement of
the acoustic signal received by the transducer. The custom-
made air-coupled piezoelectric transducer’ with a diameter
of 15 mm, a frequency range of 0.1 MHz — 0.8 MHz, and the
resonance frequency at 0.4 MHz captured the acoustic waves
produced during ablation and records it in a 0.82ms time
window. The experiment was performed in wet conditions,
using a distilled water spray with a flow rate of 0.1 mls™!,
which reduces carbonization during ablation. This transducer
was placed at a distance of 5cm at an angle of 45° to the
specimen. The transducer converted the measured pressure
variation into a digital signal with a sampling rate of 10 MHz.
The measured data was then used as input to our proposed
tissue classifier.

B. DATA

The data was obtained from ablating fresh specimens,
namely, hard bone (compact bone fragment), soft bone (spon-
gious bone), muscle, fat, and skin tissue, with a size of
10 x 50 x 5mm?>. All the tissues were rinsed in distilled
water before the experiment was performed. The tissues were
dissected from five porcine proximal and distal femurs, which
were bought on different days. The laser then ablated the

2provided by Tomas E. Gomez Alvarez-Arenas in the ITEFI-Instituto de
Tecnologias Fisicas y de la Information, CSIC, Madrid, Spain.
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FIGURE 2. Normalized mean value of all the acoustic wave f. The 0.1 ms
region of interest (ROI) is marked red.

tissue samples with the following setup: Of each tissue type,
10 specimens were probed, where each specimen was ablated
10 times, producing a vertical hole with respect to the bone
surface. The individual holes were spaced at least 4 mm apart
from each other. Each of those laser ablations consisted of
180 laser pulses with a repetition rate of 2 Hz. Consequently,
1800 measurements of ablation-induced pressure variations
were made for each specimen, giving a total of 18 000 mea-
surements per tissue type. The examination of five different
tissue types results in an overall of 90000 measurements.
The data acquisition window for each acoustic wave was
0.82ms. Taking the normalized mean value of all acoustic
waves, we conclude that the primary information of the wave
was in a 0.1 ms time window, as is visualized in Figure 2.
In the proposed approach, we used that time window of size
0.1 ms; and with a frame rate of 10 MHz each acoustic wave
was therefore represented as a 1000 x 1 -dimensional array.

lll. METHODS

Our goal is to interpret the acoustic waves produced during
ablation to classify the ablated tissue, with an end-to-end
neural network approach. We use three network designs in
both the time and the frequency domain, namely an FcNN,
a CNN, and an RNN. The FcNN (top of Figure 3) consists of
two hidden FC layers with 1000 neurons each. Each hidden
layer is followed by a ReLU activation function. The neurons
on the final FC layer correspond to the number of different
tissues for the classification task, i.e. five. The layers of the
CNN (middle part of Figure 3), consist of one convolutional
layer and three FC layers. The convolutional layer has 6
output channels, followed by a ReLU activation function
and a subsequent Maxpool layer with a kernel size of 2.
The following FC layer maps the output to one channel of
size 1000. Again, ReLU serves as an activation function.
The RNN (bottom of Figure 3), consists of a bidirectional
RNN layer, where the number of features in the hidden
state corresponds to the input size with the Tanh activation
function. Again, it is followed by three FC layers, where
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FIGURE 3. Top: Visualization of the FCNN. We have two hidden 1000-way
FC layers, each followed by a RelLU activation function. The final FC layer
has 5 neurons, which coincides with the 5 types of tissue in the
classification problem. Center: Visualization of the CNN. The input is the
measured pressure variation in the time domain or the frequency
domain. First, a convolutional layer is applied, followed by a ReLU
activation function and a subsequent Maxpool layer. The CNN's kernel
size with the time-dependent data is N; = 200, and the kernel size of the
frequency-dependent data is set to Ny = 2. The convolutions are followed
by two 1000-way FC layers with ReLU activation functions. Since we
classify 5 types of tissue, the final FC layer has an output dimension of 5.
By applying Grad-CAM to the CNN’s convolutional layer with the
frequency-dependent data, we obtain the activation map in the frequency
domain, which provides an evaluation of the influence of each frequency
for classification. Bottom: Visualization of the RNN. The first hidden layer
is a bidirectional RNN layer, where the number of features in the hidden
state corresponds to the input size with the activation function Tanh. It is
followed by two hidden 1000-way FC layers with ReLU activation
function. Again, the final FC layer has the output dimension of 5.

the two hidden FC layers have 1000 neurons each and are
followed by a ReLU activation function. The final layer has
5 neurons, corresponding to the number of different tissues in
the classification task. We choose Adam [37] as an optimizer
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for the training phase with a learning rate of 10~ and a batch
size of 16 in combination with the Cross-Entropy loss.

We divided the data set into three disjoint subsets: 20 %
(2 specimens of each tissue type) were used for training,
20% (2 specimens of each tissue type) for validation, and
the remaining 60 % (6 specimens of each tissue type) as test
data. After each training epoch, i.e., an iteration of all training
data used to train the network, the algorithm’s performance
was estimated on the validation data. To detect overfitting
and ensure our network’s robustness, we exclusively used
previously unseen data for testing, i.e., measurements from
a given specimen were only used in one subset. To evaluate
the robustness and variability of our approach, we conducted
five-fold cross-validation. To this end, we split the data into
five disjoint subsets, e.g. A, B, C, D, £, where each subset
contains 2 specimens of each tissue type. The first network
used subset A for training, B for validation, and CUD U &
for testing. Note that with this construction, the training,
validation, and test data sets were all disjoint. The second
network used subset B for training, C for validation, and
DU E U A for testing. This continues in a rotating fashion
until the fifth network used £ for training, A for validation,
and B U C U D for testing.

We note that we used only 20% of the data for training, i.e.
two specimens of each tissue type. The maximum accuracy
of the network is achieved with little data in all folds of the
cross-validation experiment. Using more training data does
not improve the performance with respect to the accuracy.

A. TIME-DEPENDENT DATA

In the left column of Figure 4, we visualize the pressure
variation of exemplary measurements. As demonstrated in
this figure, the absolute values between the different tissues
may vary drastically. Therefore, we apply a Hamming win-
dow [38] and normalize the resulting data (dividing it by the
maximum of the absolute value). Hence, the normalized pres-
sure variation (see Figure 4, middle column) varies between
—1 and 1. The resulting size of the array of the preprocessed
measurements remains at 1000 x 1. For the CNN with time-
dependent data, we choose a convolutional layer (bottom
part of Figure 3) with a kernel size of Ny = 200 and a
padding size of 0. This reduces the trainable parameters at the
transition from the convolutional layer to the FC layer from
6-500 - 1000 to 6 - 400 - 1000. The number of parameters of
the NN are 2 007 005 for the FcNN, 3408211 for the CNN,
and 7011 005 for the RNN.

B. FREQUENCY-DEPENDENT DATA

To transform the time-dependent data into the frequency
domain, we perform the following steps: First, we apply a
Hamming window to reduce the leakage in the Fast Fourier
Transformation (FFT) [38]. Then, we normalize the resulting
data so that the magnitudes vary between —1 and 1 (middle
column of Figure 4) and apply the FFT to the normalized
data. The experiments conducted in [25] were measured with
an air-coupled piezoelectric transducer, which was limited
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to the frequency between 0.1 MHz and 0.8 MHz. Therefore,
we only use the spectrum’s magnitudes of this given range
as the input of the NNs (right column of Figure 4). In a final
step, we scale the resulting pressure variation of the frequency
domain with a factor « = 6, such that the maximum magni-
tudes of the input data were close to 1. The advantage of using
a constant «, instead of normalizing the pressure variation,
is to enable the comparison of the activation maps of the dif-
ferent frequency subsets (top left of Figure 6). The frequency-
dependent data has a much smaller input array of the size of
70 x 1 in comparison to the size of the time-dependent data
of 1000 x 1. Therefore, we choose a smaller kernel size of
Ny = 2 for the convolutional layer of the CNN. The number
of parameters of the NN is 1 077 005 for the FcNN, 1211 023
for the CNN, and 1 166 885 for the RNN.

C. GRAD-CAM

Selvaraju et al. [36] have introduced a gradient-based
localization, called Grad-CAM. They proposed that the con-
volutional layers’ gradients highlight the parts needed for
classification; we refer to it as the activation map. Since Grad-
CAM requires a convolutional layer, we can only apply it to
the proposed CNN but not to the FcNN and the RNN. Apply-
ing Grad-CAM to the frequency-dependent data enables
us to highlight the essential frequencies of our classifier.
In particular, the higher the activation of a frequency, the more
important this frequency is for the network’s classification
task. We apply Grad-CAM to the convolutional layer of the
trained CNN with the frequency-dependent data, as depicted
at the bottom of Figure 3.

To compute the activation map, Grad-CAM needs to com-
pute the gradient of the convolution layer. To this end,
we compute the CNN with a given measurement. Then we
apply back-propagation to find the gradients. Since our con-
volution layer has 6 output channels, our gradient has 6 chan-
nels as well. First, we apply the ReLU activation function
to highlight the gradient’s positive impact, and then took the
gradients’ sum. Finally, we compute the mean value over all
training data and all cross-validations to find the most impor-
tant frequencies for all the tissues. Because of the dimension
reduction after the first layer, we interpolate the resulting
vector to the same length as the initial frequency. Ultimately,
we normalize the vector by its maximum value.

D. ROBUSTNESS
We analyzed the robustness of the NNs by augmenting the
data at test time and measuring the resulting accuracy.

First, we assume that the angle between the microphone
and the tissue is fixed. Therefore, varying distances lead to a
shiftin the time frame. We augment such shifts by transposing
the measured acoustic wave window between —10 to 10
frames for the time-dependent data and —150 to 150 for
the frequency-dependent data. Assuming that the speed of
sound is 343 m s~ ! and the measured frame rate was 10 MHz,
shifts of 10 and 150 frames correspond to transitions between
the microphone and the specimen of approximately 0.03 cm
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FIGURE 4. Five exemplary measurements and their preprocessed
versions as inputs for the NNs. Left column: Measured pressure variation
(P. var.), with a time window of 0.1 ms. Middle column: First Hamming
window and then normalization are applied to the inputs of the NNs with
time-dependent data. Bottom column: Absolute value of the FFT of the
Hamming-normalized pressure variation (input for the NNs with
frequency-dependent data).

and 0.5 cm, respectively. We note that a much smaller time
window for the time-dependent NNs is required as they prove
to be less robust than the frequency-dependent NNs — see
Section IV.

Second, changing the distance of the microphone to the
ablation point, in theory, will change the magnitude of the
measured pressure variation. Since within our method we
normalize with respect to the absolute maximum value of
the measured pressure variation, a linear scaling will have no
effect. Therefore, we apply the nonlinear scaling:

p*=p-(1+ B exp(—Ip), ey

where p is the measured pressure variation, § a value between
—1 and 1, and p* the augmented pressure variation.
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FIGURE 5. Augmented shift of the distance between the microphones
and the tissue of approximately +0.5cm on an exemplary acoustic signal.
Top to bottom: example of a shift of +150 frames and nonlinear pressure
variance amplification using the equation 1 with g = +1. Bottom:
combination of the frameshift and the amplification.

An exemplary visualization of the time shift, the nonlinear
magnitude variation, and a possible shift of £0.5cm are
visualized in Figure 5.

We compare the robustness score of the different networks
by evaluating the network on a subset of the test data and
compare the networks’ mean accuracy resulting from the
various time shifts and 8.

IV. RESULTS

We implemented the networks in Python (3.6.9) using
PyTorch (1.5.1) [39] and trained them until they reached
an accuracy of 100% on the validation data, meaning,
all validation samples were assigned to the correct tissue
class. In addition, we applied five-fold cross-validation,
where we permuted the training, validation, and test data
as described in the previous section. In our cross-validation
experiments, the NNs with the time-dependent data had to
be trained between 14 and 42 epochs, and the NNs with the
frequency-dependent data between 22 and 98 epochs. In a
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FIGURE 6. Top to bottom: An exemplary ablation signal of a hard bone
sample with six subsets of frequency ranges. Left: Exemplary data used
as input for training the CNN with frequency-dependent data. Right:
Frequency filtered (inverse FFT) pressure variation (P. var.) used as input
of the CNN with time-dependent data.

final step, we used the previously unseen 54 000 measure-
ments (60 %, 6 specimens for each tissue type) to test our
network. This allowed assessment of the robustness and the
generalization capabilities of the network on unseen data. For
both the time- and the frequency-dependent data, we achieved
a classification accuracy of 100 % on the test data.

We compare our results to those from [25], which are
based on the same data and which proposes three methods:
a Quadratic-SVM, Gaussian-SVM, and a shallow artificial
neural network (ANN) with one single hidden layer consist-
ing of 10 neurons. For all those methods, first, a principal
component analysis (PCA) was applied to the Fourier spec-
trum and subsequently, the scores of the first three principal
components were used for further processing. The ANN
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the mean values over all cross-validation networks. It suggests that the
low frequencies were the most important ones for our classification task.

approach performed best, and therefore we limit our analysis
to the comparison between the ANN and our networks.

Similar to [25], we divided the frequency range
into five different subranges: 0.1MHz — 0.8 MHz,
0.115MHz - 0.27MHz, 0.1MHz - 0.37MHz,
0.27 MHz — 0.53 MHz, and 0.53 MHz — 0.8 MHz. Reducing
the frequency range, also reduces the length of the input
array. Therefore, we interpolated the input arrays such that
they matched the input sizes of the NNs with the frequency-
dependent data (70 x 1), compare the left column of Figure 6.
For the time-dependent data, we applied the inverse FFT to
the normalized pressure variation as a frequency filter, solely
using the given subranges, as is visualized on the right side
of Figure 6.

Also, when training only subranges of frequencies, all
the resulting NN still achieved an accuracy of 100% on
the validation and test data, as it is presented in Table 1.
In Table 2, we compare our results to ANN, where the
best score was achieved with the frequency subrange of
0.115MHz — 0.27 MHz with 90.88 %. The bandwidth of
0.1 MHz—0.8 MHz and the subrange of 0.1 MHz—0.37 MHz
was not tested by the authors of [25]. We note that they used a
time window of 0.82 ms, while we solely used a time window
of 0.1 ms. This reduces the dimension of our input for the
NNE.

In a final step, we compared the execution time of our
NNs to the shallow ANN presented in [25]. The minimal
execution time of the ANN approach they have reported to be
11.2 ms. Executed on a system with an Intel(R) Xeon(R) CPU
E5-2680 v4 @ 2.40 GHz and 94 GB 2400 MHz DDR4 mem-
ory, our approach had an execution time between 0.8 ms —
1.2 ms, which was approximately ten times faster than the
execution time of the shallow ANN (see Table 3).

A. GRAD-CAM

We applied Grad-CAM to the CNN, which was trained on
the frequency domain. This revealed the activation map, visu-
alized in Figure 7. The activation map shows that the lower
frequencies are more important to the classification process
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TABLE 1. Comparison of the five different frequency ranges and the
number of epochs needed to reach an accuracy of 100 % on the validation
data. In all cases, the networks reach perfect accuracy on the test data.
The minimum and the maximum number of epochs needed are shown.
The top table represents the results of the FCNN, the center represents
the results of the CNN, and the bottom table represents the results of the
RNN.

Fully connected Neural Network (FCNN)

Freq. H Time-dependent data Freq.-dependent data

[MHz] 7 of epochs ‘ accuracy 7 of epochs ‘ accuracy
0.1 —0.80 14 — 25 100 % 28 — 29 100 %
0.115 —0.27 16 — 25 100 % 68 — 73 100 %
0.10 — 0.37 18 — 24 100 % 52 — 54 100 %
0.27 — 0.53 15—-19 100 % 48 — 50 100 %
0.53 — 0.80 14 —16 100 % 56 — 59 100 %

Convolutional Neural Network (CNN)
Freq. ‘ ‘ Time-dependent data Freq.-dependent data

[MHz] # of epochs ‘ accuracy # of epochs ‘ accuracy
0.1 —0.80 24 — 29 100 % 35— 37 100 %
0.115 — 0.27 23 — 37 100 % 94 — 98 100 %
0.10 — 0.37 26 — 35 100 % 62 — 64 100 %
0.27 — 0.53 35 — 46 100 % 42 — 46 100 %
0.53 — 0.80 28 — 40 100 % 70 —-179 100 %

Recurrent Neural Network (RNN)

Freq. Time-dependent data Freq.-dependent data

[MHz] H # of epochs | accuracy H # of epochs | accuracy
0.1 —10.80 27— 39 100 % 22 — 27 100 %
0.115 — 0.27 24 — 35 100 % 36 — 47 100 %
0.10 — 0.37 24 — 36 100 % 29 — 35 100 %
0.27 — 0.53 26 — 40 100 % 30 — 31 100 %
0.53 —0.80 25 — 42 100 % 37 —40 100 %

TABLE 2. Comparison our results from our NNs to the shallow ANN
of [25] in different subranges.

[MHz] FcNN / CNN /RNN ANN
‘ ‘ Freq. Time ‘ ‘ Freq.
0.1-0.8 100 % 100 %
0.115-0.27 100 % 100 % 90. 88%
0.10-0.37 100 % 100 %
0.25-0.53 100 % 100 % 85. 38%
0.53-0.80 100 % 100 % 78.85%

TABLE 3. Comparison of the different execution times of our NNs and the
ANN of [25]. The execution times of the FCNNs and CNNs (time- and
freuency-dependent input) were calculated as the mean execution times
of the forward passes of all the NNs associated to the different
subranges. For the ANN, solely the frequency range of 0.115 — 0.27 MHz
was measured.

FcNN CNN RNN ANN
Freq. ‘ Time | Freq. | Time | Freq. ‘ Time || Freq
08 [ 08 | 10 | L1 | 10 | 12 || 112

than the high frequencies. This supports the results found
n [25], where they achieved the highest accuracy within
a low-frequency subrange of 0.115 — 0.27 MHz, using a
shallow neural network classifier.

Another indication that the activation map highlights
the important frequencies is presented in the first epochs
in Figure 8: during the first few epochs, the accuracy of the
low-frequency subrange of 0.115—0.27 MHz exceeded those
of the subranges 0.27 — 0.53 MHz and 0.53 — 0.8 MHz. But,
the networks need a longer training time for final conver-
gence. A reason for this can be the poor choice of the learning
rate.

VOLUME 9, 2021

Error: Fully connected Neural Network (FCNN)

100

90 90
80 S

70 //—/‘/

©
3

~
3

=—0.100-0.80 Mhz
—0.115-0.27 Mhz
0.100-0.37 Mhz

=—0.100-0.80 Mhz

=—0.115-0.27 Mhz,

0.100-0.37 Mhz

0.270-0.53 Mhz 0.270-0.53 Mhz

40 —0.530-0.80 Mhz —0.530-0.80 Mhz,

10 20 30 40 50 60 70 5 10 15 20 25
number of epoch number of epoch

Error: Convolutional Neural Network (CNN)
0.270-0.53 Mhz

X —0.530-0.80 Mhz, 50

20 40 60 80 5 10 15 20 25 30 35 40
number of epoch number of epoch

Error: Recurrent Neural Network (RNN)

100
90
80
r_/-/ —0.100-0.80 Mh7]

40

accuracy [%]
accuracy [%]
2

I
3

90

80

=—0.100-0.80 Mhz 70 =—=0.100-0.80 Mhz
=0.115-0.27 Mhz

0.100-0.37 Mhz

accuracy [%]
~
S
accuracy [%]

60

©
S

o
3

<
3

—0.100-0.80 Mhz
=—0.115-0.27 Mhz
0.100-0.37 Mhz
0.270-0.53 Mhz
—0.530-0.80 Mhz

20 30 40 5 10 15 20 25 30 35 40
number of epoch number of epoch

accuracy [%]
=
3
@
3

accuracy [%]

u
=)

IS
S

FIGURE 8. Accuracy of the network applied to the validation data of the

five different frequency subranges, represented by the mean values over
all cross-validation networks. Top: FcNN, center: CNN, bottom: RNN. Left:
Error of the NNs with frequency-dependent data. Right: Error of the NNs

with time-dependent data.

B. ROBUSTNESS

We tested the robustness of the frequency and the
time-dependent NNs on 5% of the test data (2700 mea-
surements). To this end, we performed a grid search over
B, as described in Equation 1, and the time frameshift.
In Figure 9, we visualize for all networks and frequency
ranges the accuracy for each grid point.

We see that the time-dependent networks were much more
sensitive with respect to the time frameshift. Therefore,
we chose, for the frequency-dependent networks, a time shift
between +150 and for the time-dependent networks a time
shift between 10. In addition, the frequency-dependent net-
works are slightly more sensitive to the choice of 8, in com-
parison to the time-dependent networks. For all the networks,
we chose § in the range of +1. Figure 9 clearly visualizes
that the frequency-dependent networks are more robust than
the time-dependent networks.

To compare the different frequency ranges, we computed
the robustness accuracy — the mean value over all combi-
nations of the time frameshift and  — as is summarized
in Table 4. We note that the FcNN and the RNN show simi-
lar results and better robustness on the frequency-dependent
data. The CNN performs better in the robustness test for the
time-dependent data. The highest robustness was achieved
when using the whole frequency range (0.1 —0.8 MHz) of the
transducer with the frequency-dependent networks. In terms
of network architectures, the highest robustness was achieved
by the FcNN with a robustness score of 92.5 %. The RNN
network has a similar robustness score of 91.4 %, followed by
the CNN network with a robustness score of 85.2 %. For the
time-dependent network, all three networks have the highest
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to1.

robustness at the frequency range of 0.115 — 0.27 MHz. All
of them have a similar robustness score, where FCNN has
75.8 %, the CNN has 75.3 %, and the RNN has 75.0 %. In all
types of networks, those trained on the high-frequency range
of 0.53 — 0.8 MHz show the lowest robustness score.
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These observations correspond well with our findings
based on the activity map in Figure 7 where we showed that
the low-frequency range was of high importance for the tissue
classification. Comparing the similar lengths of frequency
ranges 0.1—0.37 MHz, 0.27—0.53 MHz, and 0.53—0.8 MHz,
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TABLE 4. The robustness expressed as the mean value of the
classification accuracy achieved by the NNs with data augmentation at
test time.

[MHz] || 0.1-0.8 | 0.115-0.27 | 0.1-0.37 | 0.25-0.53 | 0.53-0.8

Freq.

FcNN 92.5% 75.4% 84.9% 77.6% 70.1%
CNN 85.2% 73.2% 81.6% 71.2% 62.4%
RNN 91.4% 76.8% 85.0% 76.9% 70.8%
Time

FcNN 41.9% 75.8% 59.2% 46.8% 34.8%
CNN 54.2% 75.3% 73.5% 50.5% 41.9%
RNN 41.3% 75.0% 60.6% 42.2% 33.1%

also shows that the highest robustness score is achieved by the
low-frequency range. In fact, with the time-dependent data,
a shorter frequency range of 0.115 — 0.27 MHz exceeds all
other tested frequency ranges.

V. CONCLUSION

Our NN use the acoustic waves emitted during tissue abla-
tion with a microsecond pulsed Er:YAG laser to classify the
ablated tissue. Even though we used fewer training data com-
pared to [25], we substantially improved the classification
accuracy of the tissues (hard bone, soft bone, muscle, fat,
and skin tissue), again compared to [25], where their machine
learning approached achieved a mean accuracy of under
91 %. Our network managed to classify all tissue types with
a classification accuracy of 100 % for both approaches: the
NNs with time-dependent data, and the NNs with frequency-
dependent data. We believe that the methods of [25] are
limited to a lower accuracy because of hand-drafted features,
i.e., the input data was projected to the scores of the first three
principal components, and therefore, important information
of the acoustic wave was not utilized.

We used an activation map to find the essential frequency
ranges of the acoustic waves and conclude that the low-range
frequencies have the highest impact on our network’s classi-
fication, which coincides with the claim in [25].

Since all of our NNs achieved a classification accuracy
of 100 %, we used a robustness test to further analyze their
performance. The results imply that the frequency-dependent
networks were more robust than the time-dependent net-
works. Although the FcNN and the RNN had similar robust-
ness scores, the most robust network was the FcNN that
used the frequency-dependent data on the whole available
frequency range of 0.1 — 0.8 MHz, unlike the NNs that used
the time-dependent data, where the low-frequency range was
the most robust method. However, the CNN has a higher
robustness score for most time-dependent data in comparison
to the FcNN and the RNN. Although the FcNNs, the CNNGs,
and the RNNs achieve similar results, the FcNNs performed
slightly better. We conclude, that after a certain complexity
of the network, no significant improvements are gained.

With a time window of 0.1 ms the classification approxi-
mately takes 1 ms and, therefore, the method could be used
as a real-time classifier at the current laser repetition rate of
2 Hz. In fact, the real-time classifier could still work, even
when the laser’s repetition rate is increased.
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A. FUTURE WORK

We solely used specimens consisting of one tissue (hard bone,
soft bone, muscle, fat, and skin tissue). This setup, however,
is not feasible during surgery. Therefore, we plan on inves-
tigating the more challenging case where specimens consist
of multiple layers of tissues. We plan to develop a depth
approximation for the Er:YAG laser ablation. This approxi-
mation can provide further crucial information to assist tissue
differentiation during laser ablation.
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