
Received July 27, 2021, accepted September 8, 2021, date of publication September 16, 2021,
date of current version September 28, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3113328

Software Engineering in Small Software
Companies: Consolidating and Integrating
Empirical Literature Into a Process
Tool Adoption Framework
MICHEAL TUAPE 1, (Member, IEEE), VICTORIA T. HASHEELA-MUFETI 2, ANNA KAYANDA3,
JARI PORRAS 1, (Member, IEEE), AND JUSSI KASURINEN 1
1Department of Software Engineering, Lappeenranta-Lahti University of Technology, 53850 Lappeenranta, Finland
2Department of Computing, Mathematical and Statistical Sciences, University of Namibia, Windhoek 10005, Namibia
3Information Systems Department, College of Business Education, Dar es Salaam 0255, Tanzania

Corresponding author: Micheal Tuape (micheal.tuape@lut.fi)

ABSTRACT Small software companies face numerous challenges of complexity, unstructured software
development processes and scarce resources. This notwithstanding, the companies have dominated the
software market by 80 percent. The practice and products of these companies are still persistently marred
by quality issues arising from the processes, with evidence indicating that process tools do not fit the unique
contexts in which they operate. Significant strides have been made to transform software development
practice; however, the challenges are still apparent. Hence the need to establish how knowledge areas
are applied in process practice, understand the context of software development and its implication in
practice, how process tools are utilised in practice and evaluate the quality of research in software literature.
The researchers undertook a systematic mapping study to determine the state of practice in the empirical
literature on software engineering of SSCs by examining and classifying 1096 publications. Other than the
finding that research quality was low and affecting generalisation and transferability, the results also revealed
exciting findings, which we finally consolidated and integrated to develop two contributions (i) a software
development process adoption theoretical framework that provides essential insights into understanding
software development and (ii) a 3-point guideline for research quality. By solving the adoption of process
tools in software development, this paper presents one of the most significant contributions to transforming
practice in software development and research in small software companies.

INDEX TERMS Small software companies, software development practice, software process tools system-
atic mapping studies.

I. INTRODUCTION
Software has become entrenched in human life that society is
increasingly dependent on software-intensive systems. Soft-
ware facilitates a plethora of human activities such as business
processes, governance,medicine, security, entertainment, and
social interaction. Recent development in technology and
growth in the software industry has been championed by
Small Software Companies (SSCs), making up over 90% of
the companies in the software industry [1]. Although software

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina .

is a crucial driver to today’s global economy [2] and SSCs
contribute significantly to this, these companies’ failure rate
and inferior quality products are a point of concern [3].

The SSCs are business entities involved in producing
software products, typically employing less than 50 employ-
ees, and their aim is to create one or a few software prod-
ucts for their customers [4]. In other definitions, the annual
turnover is taken as an aspect to consider in defining SSCs.
However, the threshold differs depending on economies.
Owing to small sizes and character of SSCs, these companies
are flexible in their operations, which is to a certain extent
an advantage for them. This definition also fits very small

130366 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-8569-7542
https://orcid.org/0000-0002-6512-4712
https://orcid.org/0000-0003-3669-8503
https://orcid.org/0000-0001-9454-8664
https://orcid.org/0000-0002-3685-3879


M. Tuape et al.: Software Engineering in SSCs: Consolidating and Integrating Empirical Literature

entities (VSE), though with fewer employees and start-ups
at the initial stage of formation as part of the SSC. The
European Union defines a small company as an enterprise
employing less than 50 persons with a 10 million Euro annual
turnover [5], [6]. In this study, we define SSCs as enterprises
with less than 50 employees that build software products,
including building and maintaining software solutions, web
applications, corporate systems, and business intelligence
tools. We, therefore, consider the three contexts to delimit
SSCs from the context that does not fit our definition for this
study.

In the past decade, research on software development by
SSCs seems to have gained traction. Despite this attention,
the studies do not sufficiently cover software engineering
processes and practices, as Paternoster et al. [7] elaborates.
To overcome the challenges of software production by SSCs,
researchers developed several process tools like frameworks
and standards [8]–[10] to improve software development pro-
cesses. However, the SSCs find adopting these frameworks
rather difficult, as cited by Alexanda et al. [11]. This has
not solved the problem because the frameworks are used
minimally. Researchers suggest that only about 7% of SSCs
in practice have adopted software process improvement (SPI)
standards and models [12]. Additionally, software develop-
ment practice in SSCs faces a myriad of challenges [13], [14]
to the extent that about 50–60 percent of software projects
either partially or totally fail. However, other studies report a
higher failure rate; for example, in 2018, the project failure
rate was reported at 70 percent [15]. According to the project
management statistics [16], the proportion of challenged
projects has increased to 43 percent resulting from a change
in the organisation’s priorities, inaccurate requirements gath-
ering, change in project objectives, and inadequate vision or
goal. Other authors [3], [15], [17], [15] list scope creep as one
of the most prevalent factors responsible for project failure.

The challenges have not stopped the SSCs from
considerable progress by significantly dominating the highly
competitive market, although sustaining this business envi-
ronment with a good customer relationship is complex [18].
The companies have adapted to the rapid development of
cheaper software products [19] to meet the market’s volatile
demand, which has affected the quality of the products.

Notably, SSCs play an essential role in the global econ-
omy [20] because of their ability to capture the markets that
larger companies are incapable of reaching or could have
rejected [4]. However, it is paramount that efficient software
development processes [4] are used for the SSCs to attain a
competitive advantage.

The success of software development in SSCs is dependent
on the complexity of the system built, business risk, and the
number of people involved in building the system in question,
as cited by Wasserman [21]. The SSCs develop products
under challenging environments of time pressure and lim-
ited resources while constantly searching for sustainable and
scalable business models [22]–[24]. The size and flexibility
may be an advantage to accommodate constant changes,

and perhaps this explains the increased preference for agile
methodologies, which are perceived as the most viable
approach for SSCs. The SSCs are conveniently attracted to
agile methods to benefit from shorter development schedules
and greater delivery flexibility [18], [25], [26].

There is evidence of growth in the significance and number
of SSCs. Recent statistics indicate that the percentage of
people directly employed by small companies has risen to
over 85 percent [5], of which software companies take up
a considerable majority [27]. Notably, whereas evidence in
literature presents SSCs as most prone to difficulty while
producing software, the rapid growth of SSCs is accompanied
by stiff competition that breeds good industry practice, which
must be harnessed and tapped with an aim to improve the
general software development practices.

It remains unclear why SSCs are tangled in this dilemma,
even though software engineering has several knowledge
areas listed in the software body of knowledge intentioned to
guide processes and practice. Additionally, researchers have
tried to develop tools such as frameworks and standards to
support the processes of software practice evidenced in [28]–
[32]. However, this attention seems not to have delivered the
much-needed transformation in software processes for better
software products as the SSCs require sometimes leading to
frustration.

Imagine the frustration of applying software process tools
in vain because of the complexity due to the operational
context of an organisation. It becomes unfortunate because
one must abandon the process tool, yet delivery pressure and
time constraints are at the project doorsteps. This leads to
the unestablished process that has been existent in software
practice, especially for small companies that continuously
try, in vain, to find a fitting process tools, as alluded to
by [22], [33].

This has led to the development of several tools to stream-
line processes suggested by different researchers, for exam-
ple, [18], [34], [35] for requirements and for [36], [37] project
management. Solutions for process adoption are fragmented
in the different empirical literature on software processes and
hence the need to consolidate and integrate the fragmented
findings for comprehensive theory development in software
processes adoption for SSCs.

Theories are known to be important for theorising synthe-
sising, preserving and communicating empirical knowledge.
Notably, that the software industry lacks theories about soft-
ware artifacts [38], and research is predominately prescriptive
and method-focused [39]. This has led to the production of
thousands of software development process tools like meth-
ods and models that remain unutilised.

The purpose of this study was to review software devel-
opment literature specific to SSCs and published in the
last 30 years to consolidate and integrate the findings frag-
mented from the empirical literature on software processes.
To do this, we conducted a systematic mapping study to
identify the software engineering gaps in research in rela-
tion to SSCs to improve software practice in SSCs and

VOLUME 9, 2021 130367



M. Tuape et al.: Software Engineering in SSCs: Consolidating and Integrating Empirical Literature

propose a theoretical framework with the consolidated find-
ings. We therefore investigated:

i Which knowledge areas have been used in practice of
SSCs as reported in literature?

ii What terminologies are used to refer to the companies
in the selected articles?

iii What software development frameworks/standards
were used by the companies are reported in literature?

The rest of the paper proceeds as follows: Section 2 presents
the related work; Section 3 is a description of the method-
ology used in this SMS, section 4 presents the results from
the mapping study, followed by a discussion of the research
questions presented in section 5 and lastly the conclusions of
the study in section 6.

II. RELATED WORK
Although not explicitly studying SSCs, different researchers
have expressed concern over the gaps in the literature on
software development practice. For example, the different
researchers in [2], [7], [40] explored the gaps in the litera-
ture using SMS to look at software engineering in start-ups,
while others have explored gaps in software engineering in
SSCs through Systematic Literature Reviews [1], [4] Study-
ing these gaps helps researchers appreciate how research has
transformed software engineering practices and is helpful to
map existing studies.

Paternoster et al. [7] conducted a SMS to develop a clas-
sification schema, in which they ranked the selected pri-
mary studies according to their rigor and relevance; they also
analysed and reported software development work practices
in start-ups. This study aimed at structuring and analysing
the literature on software development in software start-ups.
They also determined the potential for technology transfer
and identified software development work practices reported
by practitioners. The researchers considered 43 primary stud-
ies to synthesise the available evidence on software devel-
opment in start-ups. Their work found 16 studies entirely
dedicated to software development in start-ups, of which nine
studies exhibited high scientific rigor and relevance.

In a similar study by Berg et al. [2] in which 74 primary
papers from 1994 to 2017, were assessed and compared
to findings from previous mapping studies, a classifica-
tion schema was developed, and the primary studies ranked
according to their rigor. Their work discovered that most
research is conducted within the SWEBOK knowledge areas
of software engineering process, management, construction,
design, and requirements, with evidence of a shift of focus
towards process and management areas. The researchers
noted that the primary papers published between 2013 and
2017 were of higher rigor, when compared to those published
between 1994 and 2013. In addition, there was evidence
of inconsistency in the characterisation of software start-up
companies and recommended an alternative classification for
use in future start-up research.

In another study, Klotins et al. [40] conducted a SMS
on software engineering start-ups where they paid specific

attention to identifying knowledge areas covered by soft-
ware start-up literature of the 14 selected primary studies
from 1994 to 2014. Their findings from the 11 knowledge
areas covered reveal that inadequate research in the software
development practice of SSCs is a contributing factor to
the high failure rates. The same authors also highlight the
challenges of software development in start-ups and add that
the failure to engineer quality software products and inade-
quacies in applied engineering practices is not fully explored
and yet this is another significant contributing factor for the
high failure rates.

In addition, other literature studies have been conducted
on SSCs [1], [4]; although these studies were not SMSs, the
researchers showed software practice in SSCs, and in both
cases, the studies pay attention to the challenges affecting the
development practice. Tuape and Ayalew [1] 2019 conducted
an SLR on SSCs from 1988 to 2018; this study reported
the factors affecting software development in SSCs. Whereas
they found that limited studies had been conducted on SSCs
specifically, the authors report factors affecting software
development processes. These factors include organisational,
business, governance, human and technical factors, which
converge with the SLR of Tripathi et al. [4]. Tripathi et al.
in 2016, conducted a study in which they selected 41 pri-
mary studies from papers published between 2004 and 2014.
Other than the challenges like process adoption, limited doc-
umentation, limited technical knowledge and capacity, gaps
in communication, limited understanding, and commitment
to quality, which seem to have a point of similarity with
most empirical literature, this study also reported six process
areas covered in the literature, which translates into eight
knowledge areas.

All the studies significantly highlight the challenges in
attaining quality software products by the SSCs. Interestingly,
no significant attention is given to addressing the context
of software development in attaining quality products and
improving the process. However, adaptability of the process
tools such as methods, standards and models is highlighted
as a major challenge in transforming software development
especially for SSCs.

III. METHODOLOGY
A systematic mapping study is a secondary study method that
builds a classification scheme and structure in the research
field of interest. This method was initially used in medicine;
however, researchers have adopted SMS in software engi-
neering in the recent past. According to Petersen et al. [41],
software engineering researchers started adopting SMS when
Bailey et al. [42] first reported a review of 138 papers in their
study of evidence related to object-oriented design.

In this paper, we conducted the SMS following the guide-
lines of Petersen et al. [41]. Significant to this guide is
the use of a study protocol that ensures that personal bias
is eliminated. In dealing with human bias or what is also
referred to as subjective vagueness, some authors critic the
use of statistical techniques, arguing that statistics present

130368 VOLUME 9, 2021



M. Tuape et al.: Software Engineering in SSCs: Consolidating and Integrating Empirical Literature

a limitation in dealing with the subjective vagueness and
human biases, alternatively suggesting fuzzy mathemat-
ics as a remedy to such uncertainties in comparison to
statistics [43].

While the processes can create room for subjectivity, cau-
tion was accordingly taken through strict adherence to the
study protocol and applied qualitative methods as a supple-
mentary approach. Additionally, the data collected in this
study are not subjective data and cannot therefore have any
form of subjective vagueness as similarly observed in other
mapping studies [2], [7], [40] that have used statistical meta-
analysis.

The use of fuzzy mathematics in [44] and [45] is observed
as a measure to mitigate subjectiveness and personal bias
where the data collected are subjective, although the latter is
a systematic literature review that also used the Kitchenham
guidelines [46] in which the use of statistical meta-analysis is
advised.

We selected 77 primary articles published in 4 databases
over 30 years from 1990 to 2021. The steps undertaken in this
study are illustrated in Figure 1 and explained in the different
subsections; subsection A covers the SMS planning, the study
design is covered in subsection B, the search extraction is
discussed in subsection C and subsection D discusses the
process of reporting the SMS.

A. PLANNING
During the planning phase, the researchers defined the need
for the study; established a research protocol to ensure that the
research questions are developed as planned, the planning of
a search strategy for the study, and the methods to extract data
and report the results were drawn.

1) PROTOCOL DEVELOPMENT
The systematic mapping study protocol is a step-by-step
guide for conducting the study that describes the rationale
and planned strategy. The protocol was prepared before the
review started to guide the study, methods, and steps used
in the study. The protocol was also necessary to reduce
the possibility of any bias from the researchers. In this
study, a protocol was developed, the senior researchers
reviewed and approved it before the commencement of the
study.

2) RESEARCH QUESTION (SCOPE)
These questions help develop a scope for the study; research
questions are the core of the systematic mapping study; the
questions streamline the study’s overall purpose. In addition,
it helps focus the study, determining the method and strat-
egy to use while guiding all inquiry, analysis, and reporting
stages.

This study was driven by the goal to understand how
software engineering in SSCs is supported. To pursue
this goal, we sought answers to the following research
questions:

a: RQ1: HOW HAS SOFTWARE PRACTICE IN SMALL
SOFTWARE COMPANIES UTILISED THE SOFTWARE
ENGINEERING KNOWLEDGE AREAS IN THE ISO/IEC TR
19759: 2015?
Knowledge areas are a vital realm of knowledge with which
all software engineers should be acquainted. This research
question focuses on evaluating the extent to which the SSCS
utilise software engineering knowledge areas in practice. This
will help establish which knowledge areas have been used
most in software development by the SSCs and highlight
those that have not been used in practice. For example,
Berg et al. also used knowledge areas [2] that systemised
and prioritised software engineering processes, resulting in
successful software execution.

b: RQ2: WHAT TERMINOLOGIES ARE USED TO REFER TO
THE COMPANIES THAT HAVE BEEN STUDIED IN THE
LITERATURE?
This question focuses on the terminologies used in literature
to refer to SSCs, premising on the lack of a proper classifica-
tion taxonomy for SSCs, leading to the researcher’s usage of
different terminologies inconsistently to refer to the software
companies. Current literature refers to these companies in
some cases as software start-ups and in other cases as small
andmedium enterprises. Paternoster et al. [7] also cite similar
situations regarding many unclear classifications of small
companies.

c: RQ3: WHICH SOFTWARE DEVELOPMENT
FRAMEWORKS/STANDARDS DO THE COMPANIES USE?
This question draws the attention of the researchers to inves-
tigate the software frameworks are reported as used by SSCs
in literature. Frameworks/standards are used to improve the
efficiency of processes used in creating and maintaining
software; Therefore, they are expected to be helpful during
software development. However, the literature indicates that
SSCs have failed to adopt frameworks, hence compromising
the ability to improve developer productivity, quality, reliabil-
ity, and robustness of software products. Understanding the
most used frameworks will enable further investigation into
the insufficiency of the frameworks.

B. STUDY DESIGN
1) SEARCH STRATEGY
Initial pilot searches were conducted to choose suitable key-
words for the construction of the search string. This process
was used to determine a sound approach in selecting the
primary studies from the databases giving optimal results and
enabling the choice of the four databases used in the study.

2) KEYWORDS
Identifying keywords is important in developing a schema
to guide selecting relevant papers for review. The keywords
used to generate the search string guaranteed that the relevant

VOLUME 9, 2021 130369



M. Tuape et al.: Software Engineering in SSCs: Consolidating and Integrating Empirical Literature

TABLE 1. Search string used in the study.

Listing 1. Search string used in the study.

papers are considered in the study. The trial searches were
conducted to identify the keywords most used in studies on
software engineering in SSCs, VSE, SMEs, and software
start-ups. The keywords of the articles were identified and
validated with the knowledge areas in the software body of
knowledge presented in Table 1.

3) DEVELOPING THE SEARCH STRING
From SWEBOK ISO/IEC TR 1975:2015, we adopt the criti-
cal knowledge areas in software engineering to use as syn-
onyms for software engineering. Twelve knowledge areas
identified from the keywords were selected as most prevalent
in the literature. These include software requirements, soft-
ware design, software construction, software maintenance,
software testing, software configuration management, soft-
ware management, software process, software models and
methods, and software quality. This is seen in similar SMSs in
software engineering by other researchers Klotins et al. [40].
These formed the first part of the search string, the terminol-
ogy software was then coined with the Boolean ‘‘AND’’ to
the terminology identified from the keywords to synonymise
engineering, and we used the Boolean OR as presented in
Listing 1.

The first part of the search string connected to the second
part of the string with the Boolean AND while the terms
‘‘small software companies’’ was synonymised with software
start-up, SMEs, and VSEs all connected with the Boolean OR
most used by researchers to refer to the same thing. Although
not precisely researching SSCs but a segment of it, other
researchers, Klotins et al. [40], use VSEs as synonyms of
software start-ups.

C. SEARCH EXECUTION
Databases were selected following the guidance of
Petersen et al. [41], based on the ability of the database to
handle complex search queries and the history of usage

FIGURE 1. Steps of the study selection process.

TABLE 2. Inclusion and exclusion criteria.

by researchers in software engineering related systematic
mapping studies. Typical examples where these databases
are used are Paternoster et al. [7], Neto et al. [47], and
Gupta et al. [48], who have used all the four applied in
this study, among others, and Berg et al. [2], use 2 of the
databases.

1) STUDY SELECTION
The primary articles to consider for this study were selected
through 6 stages illustrated in Figure 1. First, the search string
returned 16536 hits; a filter for the year, language, relevance
and if the study was a primary study returned 1096; filter for
duplicate studies returned 841 non-duplicates based on the
criteria in Table 2; after reading the titles, 407 articles were
returned; a read of the abstract 112 articles were selected
presented in Table 3. The selected 112 articles were then
subjected to the quality evaluation process in Table 4.

2) DATA EXTRACTION
a: GENERAL DATA
For the general data, we collected details of the authors, the
papers, the title of the article, year of publication, name of
database and abstract of the study.

130370 VOLUME 9, 2021



M. Tuape et al.: Software Engineering in SSCs: Consolidating and Integrating Empirical Literature

TABLE 3. Stages of screening of the selected primary studies.

b: SPECIFIC DATA
Specific data collected included knowledge areas used in
the software development process described in the empirical
literature, the research contribution described in the studies,
category of the research described in the empirical litera-
ture, terminologies used to describe the software company in
industry as reported in research, and software development
frameworks used by the SSCs as reported in research.

c: MEANS OF DATA EXTRACTION
Data extraction was done with the aid of basic tools like
google forms for collecting the data and eventually extracted
in an excel sheet. The excel sheet supports the process using
color coding tools for the initial exclusion based on the exclu-
sion criteria.

3) QUALITY ASSESSMENT
a: RIGOR AND RELEVANCE
The selection of the primary studies was based on the eval-
uation for scientific rigor and industrial relevance, consistent
with the proposal of Ivarsson andGorschek [49]. The selected
articles were arrived at through the quality evaluation cri-
teria assessing for rigor and relevance using a rubric scale
shown in Table 4. In this criterion, the 112 candidate papers
screened using abstracts were subjected to an evaluation that
realised 77 primary papers. This meant that the selected study
must impact the industry; it was incumbent upon the authors
of the paper in question to provide tangible evidence of the
advantages of using the ideas of the research done. Ivars-
son and Gorschek propose a systematic and validity model
in which they guide the evaluation of software engineering
papers for rigor and scientific relevance. This model provides
for rules and a mechanism of applying metrics for measuring
rigor and relevance; the model also splits the two components
of rigor and relevance into different features and measures
how they are reflected in the studies. Table 4 (a) and (b)
describe the features and metrics for evaluating rigor and
relevance adopted from the Ivarsson model.

Rigor is the precision, exactness of the study’s research
method, and how the study is presented. It influences the
way practitioners perceived the results of the study and help
to determine relevance. On the other hand, relevance is the
realism of the environment in which the research is conducted
and how the study is responsive to challenges in software
engineering.

TABLE 4. A rubric scale is applied for the evaluation of rigor and
relevance.

This quality criterion for rigor and relevance, applied
through this process, was undertaken by three researchers
using the metric and criterion in Table 4 (a) and (b) for
rigor and relevance. Each component had to fulfil at least
one mandatory feature attracting the respective scores and an
extra score for the other features.

VOLUME 9, 2021 130371



M. Tuape et al.: Software Engineering in SSCs: Consolidating and Integrating Empirical Literature

TABLE 5. Research contribution with its description as adopted from
Shaw [50] and research classification schema as proposed by
Wieringa et al. [51].

D. REPORTING OF THE SYSTEMATIC MAPPING STUDY
1) DATA RETRIEVAL AND CLASSIFICATION
We tabulated the results from the study in terms of knowledge
areas, the context of the companies (what terminology was
used to refer to the company) and software development
frameworks identified by the empirical literature. We also
used classification facets of the research contribution pro-
posed by Shaw [50] and research classification schema
defined by Wieringa et al. [51] shown in Table 5. as useful
in determining the quality of the selected articles.

2) ANALYSIS
The data is tabulated showing the primary studies spread
over the years of publication. To answer research question 1,

we categorised the selected primary studies on SSCs using
the knowledge area of the ISO/IEC TR 1957:2015. We also
mapped the research contribution over the years of study.
In RQ. 2, we categorised the terminologies used to describe
the software companies reported in the primary study. Finally,
to answer RQ. 3, we categorised and mapped the software
development frameworks/standards utilised by the software
companies cited in the empirical literature.

Qualitative and quantitative methods of analysis were
applied to the data and presented using graphs, charts, and
matrix bubble charts to illustrate our findings, which ulti-
mately consolidated and integrated the fragmented findings
from the empirical literature on software processes.

IV. RESULTS
This section presents the results of the general findings,
answering the research questions according to the study’s
overall objective. The results are presented in 3 subsections:
Subsection A presents the general finding of the SMS;
Subsection B presents the utilised knowledge areas by the
companies cited with their respective research contribution
and categories aspects, the terminologies used to refer to the
companies and the companies utilisation of software devel-
opment process frameworks/standards. Finally, sub-section C
presents the evaluation of rigor and relevance.

A. GENERAL DATA
Figure 2 shows the number of studies published on practices
of small companies in the period 1990-2021; of the 77 studies
selected, 76 are concentrated in the last 20 years as the
first ten years presents with only 1 study. The last 5 years
between 2016 and 2021 present with over 60 percent of all
the studies. The years 2016 and 2017 are the years with the
highest frequencies, while no studies are presented for the
years 1990-1994, 1996-1999 and 2013.

Research contribution aspects described in Table 5(a)
presents the value research adds to the software engineer-
ing practice. This contribution has an order of importance
and is classified as a weak and strong contribution. The
weak contribution includes advice implication, guidelines,
tools, and lessons learnt, while vital contributions are frame-
work, theory, and models. Figure 3 shows the frequency
distribution of the 77 primary articles selected to the seven
research contribution aspects. For example, lesson learnt (32),
frameworks/standards (13) and models (10) presenting 42,
17 and 12 percent, respectively. The other four research con-
tribution aspects: guidelines, advice implications, tools, and
theories share the remaining 29 percent with 4, 5, 6 and 7,
respectively.

Table 5(b) presents the research category, distinguishing
between the different types of studies. This is an abstrac-
tion from the exact research methodology as adopted from
the work of Wieringa et al. [51]. The research categories
identified in the selected articles are presented in Figure 4
with the following frequency distribution; validation (11),

130372 VOLUME 9, 2021



M. Tuape et al.: Software Engineering in SSCs: Consolidating and Integrating Empirical Literature

FIGURE 2. Publication frequency, 1990-2021.

FIGURE 3. Frequency distribution of research contribution.

solution proposal (21), philosophical papers (12), personal
experience (7), opinion papers (5) and evaluation (21).

Figure 5 presents the frequency distribution of the research
methods identified in the primary studies selected for
this SMS. The results show case studies (22), descrip-
tive studies (21), surveys (17), grounded theory (7),
experiments (3), and exploratory studies (2). The rest
included conceptual analysis, design science, ethnography,
observations, means-end analysis, andmappingmethod, each
with one publication.

B. KNOWLEDGE AREA, CHARACTERISTICS, AND
FRAMEWORK
The specific points of interest to this study, namely
knowledge area, the context of the companies and the

FIGURE 4. Frequency distribution of research category.

FIGURE 5. Study methodology frequency.

framework/standards are presented in Table 6 (a), (b), (c).
In addition, each of the areas studied to answer the research
questions is presented with the respective category, the fre-
quency, and the article’s references that cover the specific
facet under a point of interest.

Figure 6 (a), (b) and (c) further presents the above data as
bar charts to aid visualisation. The charts illustrate the years
with the respective articles and the facets covered with per-
centages of the studies in the specific facet in that particular
year.

The general landscape of results from the selected studies
over the years from which the articles were published is
presented in Figure 6 with the knowledge area, terminologies
used to refer to the software companies, and the utilised
framework/standards denoted as 6 (a), (b) and (c) respec-
tively. An overall increase in research is evidently observed
after 2010, and most of the research activity in all the
aspects presented as getting visible in empirical literature

VOLUME 9, 2021 130373



M. Tuape et al.: Software Engineering in SSCs: Consolidating and Integrating Empirical Literature

TABLE 6. Studies covering respective Knowledge areas, classification and
frameworks used. (n=77).

significantly after 2016. Other than process frameworks,
which were evenly distributed in the first 10 years, the other
areas of interest had mostly two facets dominate the first

10 years. The knowledge areas and the use of different termi-
nologies are random because of increase in research, while
the process frameworks are first seen as random and later
tended to be dominated by the ISO/ IEC 29110 after its
introduction in 2010.

1) KNOWLEDGE AREA
A close look at the knowledge areas of software engineering
used by the companies as reported in the selected articles
indicates that general software development and project man-
agement are most prominent in the knowledge area frequency
distribution, as presented in Figure 7.

The data detail specifically indicates the most covered
knowledge area of software engineering by the articles
selected in the study. Figure. 7, illustrates 3 most dominant
knowledge areas presenting up to 46 studies identified on
the knowledge areas of software development design and
construction (33), project management (16), and quality (7).
The remaining 31 studies covered the knowledge areas
of process (5), models and methods (5), maintenance (4),
testing (3), requirements (3) and management (1) with the
respective number of studies. Although the knowledge areas
that ultimately are observed at a point in time are presented
decimally in the empirical literature, the initial 10 years show
that these knowledge areas are not reflected in the empirical
studies around this time. Figure 6(a) shows the studies in
the years between 2016 and 2021 present interest in the
knowledge area of quality, requirements, models and meth-
ods, andmaintenance. Although the numbers areminimal, the
growing interest of researchers is important for the industry
and for the transformation of software development practice
in SSCs.

2) TERMINOLOGIES USED TO REFER TO THE SOFTWARE
COMPANIES
The terminologies used to refer to the companies covered
in this systematic mapping study is illustrated in Figure 8.
The majority 27 studies presented the companies as VSEs;
the remaining 50 studies are fairly distributed with almost
equal numbers amongst the 3 other terminologies referring
to small companies, namely, start-ups (17), SSCs (17) and
SMEs (16). The two other terminologies, SME and the SSCs
are reflected in the selected studies although the first 20 years
portray minimal research. However, the overall outlook of the
terminologies used to refer to the companies as covered in the
selected years is presented in Figure 6(b), in which VSE and
start-up depicted a significant increase from the year 2010.

3) FRAMEWORKS/STANDARDS
The frequency of publication in relation to frame-
works/standards covered in the systematic mapping study
presents; 36 articles identified as not mentioning any process
frameworks/standards used in the SSCs studied. The remain-
ing 41 articles used frameworks/standards with ISO/IEC
29110 being dominant, indicating 25 studies reporting ref-
erence to this framework/standard in software practice.

130374 VOLUME 9, 2021



M. Tuape et al.: Software Engineering in SSCs: Consolidating and Integrating Empirical Literature

FIGURE 6. (a)The key knowledge areas covered in the primary studies, (b) names used to refer to the companies and
(c) frameworks/standards used by the companies reported in the studies over the years.

VOLUME 9, 2021 130375



M. Tuape et al.: Software Engineering in SSCs: Consolidating and Integrating Empirical Literature

FIGURE 7. Knowledge area frequency.

FIGURE 8. The frequency of the terminologies used in referring to small
software companies in the systematic mapping study (n = 77).

The CMMI followed, indicating 8 articles reporting its
usage in SSCs; the remaining 3 frameworks/standards were
recognised as cited in 7 articles with ISO/IEC 15504(3), with
ISO/IEC 12207(3), and with ISO 9000 being documented
in 1 article as presented in Figure 9.

C. RIGOR AND RELEVANCE
Table 7. presents the evaluation scores of the rigor and rele-
vance of the selected studies after the application of the rubric
scale evaluation criteria in Table 3 (a) and 3 (b). The scores
attained from the 4 features of rigor generate totals 1.5, 2, 2.5,
and 3 with frequencies 3, 54, 5, and 15, respectively.

In the case of relevance, total scores of 2, 3, and 4 with
frequencies of 14, 49 and 15 accordingly.

An evaluation of rigor and relevance of the selected pri-
mary articles is illustrated using the bubble plots. To evaluate
rigor, wemap the scores of the rigor evaluation to the research
contribution and research category in Figures 10 and 11,

FIGURE 9. Frameworks/standards frequency.

TABLE 7. Evaluation scores for rigor and relevance.

respectively. Then to evaluate relevance mapping scores of
relevance evaluation to research contribution and research
category is presented in Figures 12 and 13.

The results indicate that most papers are lessons learnt
which are considered to have low rigor. This is consistent with
the findings of other researchers like Klotins et al. [40], who
reveal that most of the papers have high relevance, although
the same authors also evaluate rigor of their studies and find
more of experience reports that are also considered to have
low rigor.

V. ANALYSIS AND DISCUSSION
In this section, we synthesise the extracted data to consoli-
date and integrate the fragmented findings from the empir-
ical literature on software processes, looking specifically at
the knowledge areas covered in practice as reported in the
research, the terms used to refer to the software compa-
nies, and the frameworks/standards used while developing
software in the companies covered in the selected studies.
We alsomapped each of the facets to the research contribution
methods of study and research category. The analysis and

130376 VOLUME 9, 2021



M. Tuape et al.: Software Engineering in SSCs: Consolidating and Integrating Empirical Literature

FIGURE 10. Systematic mapping of rigor on research contribution.

FIGURE 11. Systematic mapping of rigor on research category.

discussion covered in this section lead to appreciating the
gaps and quality in research in the context of SSCs.

Generally, we visualise the findings from empirical liter-
ature of three decades in observations of each decade sepa-
rately. The first ten, second ten and the rest of the ten years
in which we observe 1, 19 and 79 percent of the studies
respectively, with the last 5 years presenting with 62 percent.
This is evidence that the years 2016 to 2021 had an increase
in several studies compared to the prior 25 years. The years
between 2016 and 2021 have presented with the highest

FIGURE 12. Systematic mapping of relevance on research contribution.

FIGURE 13. Systematic mapping of relevance on research category.

percentages equally sharing 24 percent of the studies dur-
ing the time. This is perhaps because new conferences on
start-ups had been initiated. However, the trend is noticed
from 2012 with the standardisation of the ISO/IEC 29110 for
VSEs.

The analysis and discussion of this outcome answer the
first, second, third research questions, the process tools
adoption theoretical framework, discussion and analysis of
rigor and relevance of the selected primary papers in the
subsections A, B, C, D, E, respectively. Then subsection F
presents the 3-point guideline for rigor and quality research,

VOLUME 9, 2021 130377



M. Tuape et al.: Software Engineering in SSCs: Consolidating and Integrating Empirical Literature

and subsection G discusses how the study mitigated the
threats to validity.

A. HOW HAS SOFTWARE PRACTICE IN SMALL SOFTWARE
COMPANIES UTILISED THE SOFTWARE ENGINEERING
KNOWLEDGE AREAS IN THE ISO/IEC TR 19759: 2015?
To answer this research question, we analysed and discussed
the trend, examined how the knowledge areas have been
translated to process tools to take care of the processes cov-
ered in the research. The articles considered in this study
covered 9 knowledge areas for the 30 years; the first 20 years
period of 1990 to 2011 are dominated by only two knowl-
edge areas of software development and project management.
However, in this same period, a few cases of three knowl-
edge areas were observed in the literature in the last two
years between 2009 and 2011. This indicates that researchers
started paying attention to other knowledge areas in practice,
specifically processes, quality, and methods and models.

In the subsequent ten years between 2012 and 2021, soft-
ware development and project management are dominant,
although a considerable rise in the other knowledge areas,
including requirements engineering, software maintenance,
software testing among software quality, processes, and mod-
els and methods.

Literature on software engineering practice in SSCs,
[2], [40] suggest 9 and 11 knowledge areas, respectively, thus
presenting a close similarity to the 9 knowledge areas identi-
fied by this study. Although both studies are not precisely on
SSCs but rather a variant of it, we notice that development
design, construction, and project management cover up to
64 percent of the articles in this study, with the former having
33 percent overall. This implies that the two areas have had
the most research attention and would ordinarily mean the
said areas have more attention in practice. However, it is
imperative to note that the increase influences this results in
several studies on the VSE because of mainly introducing the
framework and standard ISO/IEC 29110, which covers these
areas.

This development is an indication that this framework
has made the VSE domain clear, organised, and simpler to
understand. This was followed by an influx of research that
also organised practice in the areas covered by the frame-
work/standard. This is evidenced in literature with success
factors with the VSE [69], [99], [114], [124] in which soft-
ware development has become successful for general soft-
ware and game development in different places, including
Canada, Peru, Mexico and Finland.

Although the dominance of software development and
project management as knowledge areas most covered in
literature is very important for software development effi-
ciency in SSCs, it is also significant that equal attention is
given to the other knowledge areas, including requirements
engineering, software testing, and software maintenance.

The trend of increased study in the other knowledge area,
although observed to a minimal extent, probably explains the
recent improvement noted in software development practice

in SSCs. This same view is held in a number of recent
studies [1], [4], [125]. In addition to this, many researchers
also highlight the significance and call for increased attention
on the other knowledge areas like requirements engineering,
software quality, software testing, and software mainte-
nance [126], [127]. Putting this together means the knowl-
edge areas that seem prominent in empirical literature are
effectively covered with subsequent process tools in practice,
more so, evidence shows that the same process areas have
sufficient attention in the literature and are better practised.

The entanglement of the SSCs in dilemmas of continued
high failure and persistent production of inferior products gets
significant explanations at this point. Similarly, the knowl-
edge area like requirements engineering, software testing and
maintenance are predicate to the process tools to utilise in
the software development process. Unfortunately, they are not
utilised and this will affect the basic understanding of apply-
ing them, knowing the challenges, what should be improved
and hence the development of tools to support the processes.
This, therefore, calls for efforts to factor investigating these
knowledge areas deliberately and the practice in the corre-
sponding practice to generate useful insights after all litera-
ture reveals that processes like requirements [18], [35], [128]
and software testing [120], [129] are responsible for lots of
challenges of software development process in practice of
the SSCs. It would still be interesting to know if perhaps the
practitioner’s skill set is responsible for this maybe because
of choice the practitioners tend to skew their skills and prac-
tice to other areas other than requirements, software testing
and maintenance. This brings out interesting questions: for
example, caring to know howmuch of requirements or testing
in practice is enough because it seems like requirements are
about the client being satisfied and the tests are about the
errors not being found. Interestingly, ignorance of either a
function by the client or limited test cases by both may affect
requirements and testing.

B. HOW ARE COMPANIES REFERRED TO IN LITERATURE?
The main objective of this research question was to identify
the terminologies used to refer to the companies in articles
considered by this study. The identified terminologies used
while referring to the companies included start-ups, SSCs,
VSEs, and SMEs.

The smaller companies are known to have more challenges
in producing quality software products due to inadequacies
in the engineering practices [1], [8], [74], [76]. The sizes of
these companies come with other inherent challenges affect-
ing software development from the influencing factors like
organization, business environment, governance, and techni-
cal factors [12], [32]. This, therefore, leads to the need in
understanding context and its effect on the influencing fac-
tors. There seems to be an indication that researchers have not
paid significant attention to size and context while developing
tools and methods for software development [98]. This is evi-
denced by a lack of proper classification of small companies
seen through author’s usage of terminologies leading to con-

130378 VOLUME 9, 2021



M. Tuape et al.: Software Engineering in SSCs: Consolidating and Integrating Empirical Literature

textual challenges in research and practice. The studymapped
the usage of these terminologies in the empirical literature.
The absence of a proper classification taxonomy has created
an inconsistent usage of these terminologies while referring
to the companies in the category of small companies. For
example, the definition of software start-ups seems to overlap
the description of VSEs and in some cases, the definition
of SMEs [5] also seems to overlap the two. Similarly, some
researchers also highlight the mix-up that would arise from
using these terminologies [67]. Software engineering is a
people-centred and intensive knowledge process with a spe-
cificmethodology that requires processmaturity [130], [131],
least of which success may be challenging to attain.

The usage of the terminology in this study is fairly dis-
tributed to all the four terms commonly used to refer to
the software companies. Although the VSEs are dominant
with about 35 percent it is probably influenced by the
ISO/IEC 29110 standard for VSEs introduced during the
period of interest for this study. It is also clearly noticed
that the term start-up is quite common, perhaps due to the
increased attention on technology innovation that has seen the
unprecedented promotion of start-ups in most economies as
a source of employment creation owing to the flexibility they
present [19]. This took the research community’s attention
with an introduction of a conference track dedicated to soft-
ware start-ups, although unfortunately, the term has been used
arbitrarily, that some companies are referred to as start-ups,
yet they may not necessarily be start-ups. Starting a software
company may not require much capital, which has attracted
many entrepreneurs to venture into such setups. This is evi-
denced by the fact that most start-up owners are or employ
less experienced people in software development. The start-
ups, VSEs and SMEs, are ordinarily expected to present in
different contexts, meaning the processes and methods of
software development that apply to one may not apply. For
example, using a general term such as SME creates unclear
boundaries between small and medium companies. This also
means that if a method is developed for SMEs, it could be
applied to both small and medium companies, yet it cannot
be the case in most cases. Overall, the arbitral usage of these
terminologies may cause the arbitral application of process
tools frameworks methods in software development, yet they
may not apply in context. This, therefore, would require a
proper classification taxonomy for small companies since the
category of small companies involves the VSE, start-ups and
those that remain unnamed.

C. WHAT IS THE PRACTICE OF UTILISATION OF
SOFTWARE DEVELOPMENT FRAMEWORKS IN SMALL
SOFTWARE COMPANIES?
Most of the studies do not cite utilisation of soft-
ware development frameworks/standards in the companies
researched, although 7 frameworks are cited in the pri-
mary studies, representing less than 50 percent. This perhaps
confirms the inability of the smaller companies to adopt
the existing frameworks, as cited by Alexandre et al.

[11] and Anacleto et al. [12]. This finding means that more
than 50 percent of the studies are not connected to any spe-
cific framework or standard. The ISO/IEC 29110 is very
prominent as a framework for VSEs, and the other 6 are
decimally covered in the primary studies, as illustrated in
Figure 9.

The prominence of ISO/IEC 29110 seems to closely relate
to this study’s findings that the two knowledge areas of soft-
ware development and project management are specifically
tagged to this framework. This perhaps explains the finding
that is followed by numerous studies in software engineer-
ing and project management areas. The other contexts, that
do not fall under the realm of VSEs and are also small
companies and may not necessarily be medium or larger
software companies, remain unattended to as far as tools and
frameworks are concerned. The effective utilisation of tools,
methods, processes, and frameworks for small companies is
largely dependent on the understanding the context in which
the companies operate because context differs; therefore, the
tools, methods, processes, and frameworks will differ. This
now gives a proper explanation on why SSCs continue to reg-
ister failure and produce low-quality products. Additionally,
although the minimal usage of frameworks and standards like
CMMI is thought to be primarily because of affordability to
small enterprises [110], an argument also fronted by Singh
and Gill [105], the issues seem not to be just about costs, but
rather on the difficulty to fit the tools with the context of the
companies. However, an opportunity of exploring the compo-
nents that can be useful in improving quality still exists just
like it is seen for standards like ISO IEC 15288 that defines
the software lifecycle [132], whose models are adopted in
ISO IEC 12207 to guide development and maintenance [37].
For small enterprises to improve on quality within the current
environment, the challenges associated to software develop-
ment practice in SSCs that are unique to them must be given
special attention. Laporte and O’Connor [133], stress the fact
that all organisations cannot be similar, further cautioning that
if the developers of the software process models do not take
into account the different operational contexts, the influence
of SPI may be far from being achieved and it therefore
remains theoretical than practical.

Understanding the company’s context to propose appropri-
ate tools and frameworks is, significant in improving soft-
ware development practice by SSCs. Clarke et al. [134],
reinforces this recommendation, adding that variation in soft-
ware development contexts needs to be considered. Addi-
tionally, an adoption framework supported by a classification
taxonomy for SSCs will organise and highlight the need
for attention in the categories, which currently lack specific
frameworks and tools to support software practices in SSCs.

D. THEORETICAL FRAMEWORK
1) OVERVIEW OF THEORETICAL FRAMEWORK
The study consolidates and integrates the fragmented find-
ings from the empirical literature on software processes and
highlights key points related to the utilization of software

VOLUME 9, 2021 130379



M. Tuape et al.: Software Engineering in SSCs: Consolidating and Integrating Empirical Literature

processes tools in SSCs and the ability to attain quality
products in the context in which software is developed. The
highlights include: (i) insufficient use of the knowledge areas
in software practice by SSCs - this means the processes
of software development to ensure effective production of
software are not being used; (ii) the ill-defined context within
which SSCs operate, with an implication on the process
tools – SSCs are expected to use common tools, breeding a
complexity; and (iii) evidence of minimal usage of process
tools which raises new concern on how quality software can
be produced in an environment where the process tools are
not usable.

2) CONCEPTS OF THE FRAMEWORK
In pursuance of the issues raised from the empirical litera-
ture, it is necessary for process theory to transform software
engineering body of knowledge especially paying attention
to SSCs. Additionally, research in software engineering has
been predominately prescriptive and method-focused [39],
producing thousands of software development methods that
remain underutilized. In order to solve the challenges with
software practice, practitioners and researchers should con-
tribute to the body of knowledge [135], given that SSCs
dominate the industry and are responsible for over 80% of
software produced in the market.

Software engineering literature highlights the difficulty
in adopting the process tools [11], [38], yet poor quality
software and high project failure continue to raise concern.
Whereas companies need the process tools to streamline the
development processes, the available process tools are mini-
mally utilized. Consequently, this paper proposes a software
process tools adaptability framework to explain how process
tools for software development are not utilisable by the SSCs.

This theoretical framework is based on a theory that posits
that:

Software process tools can only be useful to small software
companies if the context in which these companies operates

is considered.

This has two implications: first, it implies that for the exist-
ing process tools to be usable by the SSCs, an adaptability
mechanismmust be put in place to streamline the process tool
with the context of the company, which requires an in-depth
understanding of the characteristics of the companies and
a classification taxonomy. Secondly, the new process tools
under construction must take care of the operational context
of the SSCs, paying keen attention to the fact that the SSCs
differ in character. This implies that an assessment for the
character to ensure adaptability must be considered.

Through the study the researchers extracted four concepts
to build the proposed process tools adoption framework. The
concepts are adoption mechanism, process tools, influencing
factors and software quality.

Table 8 shows the concepts, their respective descriptions,
and the references of literature. The theoretical framework is
developed from the concepts of development process tools,

TABLE 8. Concepts for the software process tools adoption framework.

influencing factors and quality of software as constructs gen-
erated from the findings of the study. From the literature,
we also identify assumptions used in software development
practice in SSCs:

� Process tools influence the production of quality soft-
ware and this means that the process tools have a rela-
tionship to the production of quality software.

� The influencing factors of software development
(organization factors, the business environment, the
governance factors, and the technical factors) within an
organization are mediators to the relationship between
the process tools and the production of quality software.

However, the process tools have a weak relationship to the
production of quality software, and the weakness is explained
by the inability of the SSCs to adopt the process tools hence
failure to produce quality products. The weak relationship
between the process tools and the production of quality
software products during the development process is high-
lighted as the gap in research and practice, as evidenced
by the continued poor quality of software products [46],
[98], [76], [23]. The researchers propose the adoption mecha-
nism to strengthen the relationship between the development
process tools and quality software products. The role of the
adoption mechanism is to ensure that the process tools are
adaptable to the contexts of the companies for the relationship
to be useful. This relationship needs to be mitigated with
constructs that are moderators in the relationship.

130380 VOLUME 9, 2021



M. Tuape et al.: Software Engineering in SSCs: Consolidating and Integrating Empirical Literature

The theoretical framework explains the difficulty to attain
quality products by SSCs, although software process tools
seem important and are known or expected to be useful in
transforming the processes and practices. The framework also
predicts the likely increase in utility of process tools when
an adoption mechanism has been applied making the process
tool adoptable to the SSCs based on a classification taxonomy
derived through the characteristics.

Process tools like methods, frameworks and standards are
designed to support the different activities presumed to be
vital in delivering quality software, the challenge, however is
that the different context in which these companies operate
make the practicality difficult in applying the tool to the
extent that most companies end up not using the tools at all.
This theoretical framework also leads to the predictability
of adoptable software process tools, while developing the
tools, effective consideration of the specific context of the
companies to utilise them should be considered. This can be
achieved using a classification taxonomy from which proper
categorisation of the SSCs is done and the utilisation of the
process tools is tailored based on the classification. This theo-
retical framework also becomes an eye-opener to researchers
who will develop other tools specifically challenging the
researchers to consider adaptability challenges arising from
the difference in context in which companies operate and
the varied characteristics of the companies which should be
put into account. This theoretical framework is crucial to
preserve and interconnect empirical knowledge and protect
the software processes against fragmented empiricism and
overemphasis on prescriptive knowledge that builds many
tools.

Therefore, the researchers posit that for software compa-
nies to produce quality software while using process tools,
the company’s limitations, and strengths regarding the influ-
encing factors in affecting the quality of software products
under development should be considered. Secondly, software
companies are not the same in character and the effectiveness
of the tools used in the processes are dependent on how they
fit into the context of the company’s operations.

The relationships between the constructs and the assump-
tions are evaluated for weaknesses and it is from this that the
gaps in literature are identified to form the constructs that
need to be added to fill up the gap in theory.

The software process tool adoption framework is important
in explaining the relationship between software process tools
and software product quality. It also explains the inability of
the SSCs to utilise the software process tools. This means that
constructors of process tools will use the proposed framework
to consider adaptability and operational context of the com-
panies to build utilisable tools. The framework also creates
an opportunity to predict the extent of quality attainable
by a process tool built to specific context. The framework
has an impact on practice by simplifying adaptability of the
software process tools that has not been easy to use by the
SSCs. Nonetheless, this benefit is attainable after factoring
adoptability in the process tools either while developing the

FIGURE 14. Process tools adoption framework.

process tool or subjecting the existing process tool through
an adaptability mechanism as suggested by the framework.

This framework was constructed to integrate the frag-
mented findings of the empirical literature of software prac-
tice in SSCs although our findings show that lots of other
knowledge areas are not sufficiently covered, presenting a
possibility of bias. Other researchers share similar sentiments
suggesting that academic literature has a bias towards for-
mal methodologies [135]. This aspect was considered and
mitigated, although the researchers recommend increasing
empirical studies on knowledge areas to create a significant
impact on improving software development process practice
in SSCs.

Knowledge areas like requirements, software quality, soft-
ware testing and software maintenance need to be factored
in research to positively influence developing software prod-
ucts in SSCs an implication shared by other researchers
in [4], [40]. This will also streamline successful and sustain-
able development practices, especially for the SSCs that are
pivoting to medium and larger companies.

3) OTHER THEORIES
In comparison to other process theories, this theory provides
predictive and prescriptive support for software engineering
and also guides the choice of tools during software develop-
ment getting away from the trial and error approach in SSCs
only to be frustrated by failure to adopt to the tool because of
contextual complexity [38].

Other researchers have proposed other theories; the
Sensemaking–Coevolution–Implementation Theory [135]
and the Function Behavior-Structure Framework [39], both
adopted as software process theories. The former explains
how cohesive software development teams in organizations
create complex software systems. This theory is useful
as a process theory; however, it falls short of taking into
consideration the adaptation of the tools used in software
practice. Similarly, the latter fronts a traditional view of the
process of software development. This theory assumes that
during problem framing, the artifact’s structure is driven
by its requirements, which are driven by goals, and that

VOLUME 9, 2021 130381



M. Tuape et al.: Software Engineering in SSCs: Consolidating and Integrating Empirical Literature

TABLE 9. Conceptual evaluation of the software process tools
adaptability framework.

the designers primarily evaluate their designs by predicting
behaviour from design models. This theory also does not look
at the context of the software company and the adaptability
of process tools to create quality software.

E. RIGOR AND RELEVANCE
1) EVALUATION OF THE THEORETICAL FRAMEWORK
The assessment of methods and quality of research is vital
to this study in demonstrating the extent of rigor and rel-
evance of the selected articles in this study. Although the
high relevance observed demonstrates how much evidence
produced in the study has been adduced to working with
the software companies themselves, this demonstrates how
the study can influence the industry practice. On the other
hand, rigor is reported as inadequate, and this is an area
that requires substantial attention. This is similar to the find-
ings of similar mapping studies of Klotins et al. [40] and
Paternoster et al. [7]. This means that the description of con-
text and study design in most of the studies has remained
a challenge and, therefore a threat to generalizability and
knowledge transfer.

Although the studies are conducted in real industry set-
tings, this breeds a sense of realism and therefore making the
study outcome transferable, it simply means that most of
the studies included in the SMS are relevant. Unfortunately,
the extent of rigor is what remained wanting. This, however,
poses a threat to transferability, particularly in terms of con-
text, study design, assessment of threats to validity of specific
studies, and the extent to which these aspects of rigor are
addressed in the selected studies expected. This is consistent
with other findings from other studies [40] and [7].

We therefore present a set of guidelines to ensure that
researchers have a reference point to guide their work to
quality.

F. 3-POINT GUIDELINES FOR RIGOR AND QUALITY
RESEARCH
As a remedy to the challenges unveiled, we develop a 3-point
guideline as a recommendation to ensure that the research is
both of quality and of high rigor, so that it is generalisable and
easily transferable to industry. The guidelines cover aspects
of methodology, the results, and the conclusion.

1) THE GUIDELINE ON METHODOLOGY
The study method and its processes should be described
to detail the work’s repeatability. The detailed description
should also enable confirmability [141], A well-defined con-
text and design of the study is very significant in supporting
and promotion of research relevant to industry. It creates an
avenue for applying the success reports of technologies and
methods recorded in research in real-life industry software
projects as highlighted by Ivarsson and Gorschek [49].

2) THE GUIDELINE ON PRESENTATION OF RESULTS
Results should be presented in a natural form while ensuring
honesty and transparency [142]. It is important to avoid heavy
undertones that are unnecessary Authors are encouraged to
use robust descriptive language to provide sufficient contex-
tual information that enables the reader to determine credi-
bility, transferability, dependability and confirmability [143].
Communication to the reader should be clear and that the
results must be based or reflect the information gathered
from the participants. Efforts should be put in place to
ensure that the results are not biased interpretations of the
researcher [144]. Additionally, the geographical location of
the study, characteristics of participants that have taken part in
the study, and the specific time of data collection and analysis
should be thoroughly described for the readers to appreciate
the context of the study [145].

3) THE GUIDELINE ON THE CONCLUSION
The conclusion of the study should be arrived at based on
the results and must enhance the study’s contribution [146].
This should be reflected in the discussion and the paper’s
conclusion while answering questions like so what? Why do
the results matter? What next? This needs to pay significant
attention to both the conceptual and practical perspectives
of the study. An avaricious narrative should be used while
explaining results to enhance understanding of the research
questions while relating the findings to each other [147].

The 3-point guideline set out statements on processes of
writing the methodology, reporting the results, and writing
the conclusions in a manuscript intentioned to determine a
course of action while conducting research software engi-
neering research. This guideline aims to streamline processes
of writing to ensure quality of research.

The guideline is important because it has been derived
from evidence in empirical literature that highlights the areas
in research writing which require attention [40], [2], [148];
it takes care of the parts which are most wanting and has

130382 VOLUME 9, 2021



M. Tuape et al.: Software Engineering in SSCs: Consolidating and Integrating Empirical Literature

a significant effect on the quality of research in software
engineering. The guidelines cover only what has been identi-
fied as the areas that remain unclear in software engineering
literature yet are important in reproducibility, generalisability
and transferability.

Akin to this, researchers are advised to make an effort to
collaborate with industry to ensure transfer and widespread
use of research results in industry. This will also ensure that
research results are evidence-based.

G. THREATS TO VALIDITY
While conducting systematic mapping studies, threats to
validity must be considered. The descriptive, theoretical, gen-
eralizability, interpretive and repeatability present different
levels of the threats to validity and mitigation measures have
been put in place as discussed herein.

1) THEORETICAL VALIDITY
This is defined as the ability of a study to report what is
intended for the study. Theoretical bias arises out of the
challenges in the processes of identification and selection
of the primary studies. The search strategy was designed
to be as inclusive as possible in this study, although we
ended up with 77 primary studies, out of 16538 search results
from the 4 databases. However, this seems like a limitation
of the search string because terms like ‘‘software start-up’’
and ‘‘SMEs’’ return mostly irrelevant results. To mitigate
this threat, we had an opportunity to include qualifiers like
‘‘software start-up’’ and ‘‘software SME’’; however, many
papers do not necessarily qualify the start-ups and the SMEs.
To this effect, we enforced the inclusion and exclusion criteria
in Table 2 to ensure that the empirical literature was precisely
what we were looking for and had originated from a software
engineering database.

Before arriving at the selected 77 primary studies, it was
noticeable that using the termSME in the search phrasewould
pose invalidity to the selection, simply because many studies
inconsistently used this term. Specific attention was given to
each of the papers that reported on SME to strictly ensure
that the paper had covered a considerable majority or all
companies we considered small companies, particularly with
50 persons or less. Similarly, for start-ups, there are instances
in literature where companies are classified as start-ups based
on lack of resources and use immature processes, as cautioned
by Paternoster et al. [7].

2) DESCRIPTIVE VALIDITY
The ability of the research study to describe the gathered
information accurately ensures descriptive validity. Clearly
defining and justifying the objectives in the study protocol
paved way for a precise understanding of the data to be
gathered in the study. Data extraction was carefully done
using google forms to accurately record the information that
we used to populate generated schema that led to answering
the research questions. Additionally, experienced reviewers

had to go through and approve the protocol, the final findings,
and the reporting to ensure descriptive validity.

3) GENERALIZABILITY
The result obtained from this systematic mapping study is
generalisable to practitioners and researchers in different
knowledge areas of software engineering for SSCs. This is
because the study ensured the coverage of a broad research
area for a time interval of 30 years, which is long enough to
capture most literature as far as software engineering in SSCs
have been reported.

The researchers also considered the choice of databases
to extract the papers as significant to ensure generalizability.
The researchers chose four(4) databases: ISI web of science,
ACM digital library, IEEEXplore, and Scopus, believed to be
among the most popular to the software engineering audience
as guided by Kitchenham and Chanters [46] and are also
commonly used by other researches in similar systematic
mapping studies in [2], [7], [47], [48]. The coverage of a
broad area in software engineering practice of SSCs over
a significant period and the consideration of the most used
databases makes the result of this study quite generalisable.

4) INTERPRETIVE VALIDITY
The ability of researchers to interpret the gathered data
accurately without using their own perspective is referred
to as interpretive validity. To ensure this, the conclusions
in this research were based on the data we gathered and
the diverse perspectives about the data, resulting in similar
interpretations of the data collected. The joint involvement
of all researchers with expertise in software engineering and
empirical research (especially mapping studies and reviews)
contributed to ensuring interpretive validity.

5) REPEATABILITY
This is the ability of a study to be undertaken by another
researcher to reproduce closely related results. The mapping
procedure is specifically documented and reported systemat-
ically to ensure that the study can be reproduced with similar
results based on studied research papers reported in this
paper. Furthermore, this will ensure that the other researchers
can reproduce this mapping study under similar conditions:
search string, and dates of the study period. However, due to
issues with the abstracts of few studies and ambiguous use of
terms, the repeatability with the same classification may vary
marginally.

VI. CONCLUSION AND FUTURE WORK
A. CONCLUSION
This work is motivated by consolidating and integrating the
fragmented findings in empirical literature of software pro-
cess on SSCs. The paper makes two distinct contributions
in the form of constructs that are induced from the existing
empirical work, the main construct is based on the relation-
ship between the three areas studied in the research questions

VOLUME 9, 2021 130383



M. Tuape et al.: Software Engineering in SSCs: Consolidating and Integrating Empirical Literature

related to software development practice for SSCs, and the
other construct is attributed to the challenges of quality and
rigor of research in software engineering.

Overall, as SSCs undertake ambitious projects of quality
software, practice in the SSCs need to be given the required
attention [1] , [11]. A situation where process tools are avail-
able to have things done and not have the things done right
cannot transform software practice. Calls for the transfor-
mation of software processes have led to a new dilemma
of researchers developing lots of prospective process tools
that are not utilisable by the SSCs [12], [39]. Due to the
complexity that arises out of the efforts to solve the challenges
of lack of utilization of the process tools by the SSCs, we find
the justification of a new theoretical framework highlight-
ing the relationship between the process tools and quality
software products moderated by the adaptation mechanism,
which is very important for utilization of the process tools
especially to enhance practice. For the first time this theory
helps in the explanation for the reasons for SSCs failure to
utilise the numerous process tools which has been a con-
tinued concern both in practice and research as observed
in [1], [11], [12], [98], [149].

The framework is evaluated conceptually against 6 evalua-
tion criteria and compared with two process frameworks; the
sensemaking–coevolution–implementation theory [135] and
the function behavior-structure framework [39]. Although
both are process theories, none tackles the challenges of
adoptability of the process tools. Unlike our novel adoption
theoretical framework, these are more of design process the-
ory and do not look at the entire development process but
rather the design process.

There is a need to explore a mechanism of proper classifi-
cation of the SSCs, especially by undertaking more empirical
studies on the characteristics of the SSCs. This should build
meaningful consensus on the understanding of the different
context of SSCs. Similarly, researchers need to pay attention
to tools like process frameworks, standards, and methods
especially those that tend towards flexibility and are compre-
hensive for the different contexts of SSCs.

Generally, the extent to which research on SSCs is trans-
forming practice is still lacking. However, this transformation
is possible through research, especially when the specific
effort is put on the quality of the research to simplify and
improve the research results’ ability to be generalisable and
transferrable to practitioners in industry.

B. FUTURE WORK
The future work will use the overview attained through this
study to have a detailed review of software practice in SSCs
in a multi-vocal literature review, in which grey literature will
make a meaningful contribution to understanding software
practice and particularly the gap that exists in practice as seen
by industry and academia. This is intentioned to capture grey
literature that is not recorded in academic literature.

We are currently investigating the experiences of soft-
ware practitioners in using the different process tools by

SSCs collaborating with software companies in 6 countries
to appreciate the difference in contexts and the challenges of
adoption of the tools due to context. The results from these
ongoing studies combined with software process adoption
theoretical framework to design and construct classification
taxonomy and an adoption framework that the current process
tools can use to ensure that the tools are used for software
development by the SSCs.

REFERENCES
[1] M. Tuape andY. Ayalew, ‘‘Factors affecting development process in small

software companies,’’ in Proc. IEEE/ACM Symp. Softw. Eng. Afr. (SEiA),
May 2019, pp. 16–23.

[2] V. Berg, J. Birkeland, A. Nguyen-Duc, I. O. Pappas, and L. Jaccheri,
‘‘Software startup engineering: A systematic mapping study,’’ J. Syst.
Softw., vol. 144, pp. 255–274, Oct. 2018, doi: 10.1016/j.jss.2018.06.043.

[3] A. Majchrowski, C. Ponsard, S. Saadaoui, J. Flamand, and J.-C. Deprez,
‘‘Software development practices in small entities: An ISO29110-based
survey,’’ J. Softw., Evol. Process, vol. 28, no. 11, pp. 990–999, Nov. 2016.

[4] N. Tripathi, E. Annanperä, M. Oivo, and K. Liukkunen, ‘‘Exploring
processes in small software companies: A systematic review,’’ in Software
Process Improvement and Capability Determination, vol. 609. Cham,
Switzerland: Springer, Jun. 2016, pp. 150–165, doi: 10.1007/978-3-319-
38980-6_12.

[5] E. Commission. (2020). User Guide to the SME Definition.
Publications Office of the European Union. Accessed: May 30, 2021.
[Online]. Available: https://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=OJ:L:2003:124:0036:0041:en:PDF

[6] N. G. Lester, F. G. Wilkie, D. McFall, and M. P. Ware, ‘‘Investigating
the role of CMMI with expanding company size for small-to medium-
sized enterprises,’’ J. Softw. Maintenance Evol., Res. Pract., vol. 22, no. 1,
pp. 17–31, Jan. 2010.

[7] N. Paternoster, C. Giardino, M. Unterkalmsteiner, T. Gorschek, and
P. Abrahamsson, ‘‘Software development in startup companies: A system-
atic mapping study,’’ Inf. Softw. Technol., vol. 56, no. 10, pp. 1200–1218,
Oct. 2014, doi: 10.1016/j.infsof.2014.04.014.

[8] R. V. O’Connor, ‘‘Developing software and systems engineering stan-
dards,’’ in Proc. 16th Int. Conf. Comput. Syst. Technol. (CompSysTech),
2015, pp. 13–21, doi: 10.1145/2812428.2812430.

[9] E. Mnkandla, ‘‘About software engineering frameworks and methodolo-
gies,’’ in Proc. AFRICON, Sep. 2009, pp. 1–5.

[10] A. M. AL-Ashmori, B. B. Rad, and S. Ibrahim, ‘‘Software process
improvement frameworks as alternative of CMMI for SMEs: A literature
review,’’ J. Softw. Eng., vol. 11, no. 2, pp. 123–133, Apr. 2017.

[11] S. Alexandre, A. Renault, and N. Habra, ‘‘OWPL: A gradual approach for
software process improvement in SMEs,’’ in Proc. 32nd EUROMICRO
Conf. Softw. Eng. Adv. Appl. (EUROMICRO), 2006, pp. 328–335.

[12] A. Anacleto, C. G. von Wangenheim, C. F. Salviano, and R. Savi,
‘‘Experiences gained from applying ISO/IEC 15504 to small software
companies in Brazil,’’ in Proc. 4th Int. SPICE Conf. Process Assessment
Improvement, Lisbon, Portugal, 2004, pp. 33–37.

[13] V. Claudia, M. Mirna, and M. Jezreel, ‘‘Characterization of software pro-
cesses improvement needs in SMEs,’’ in Proc. Int. Conf. Mechatronics,
Electron. Automot. Eng., Nov. 2013, pp. 223–228.

[14] M. Choras, T. Springer, R. Kozik, L. Lopez, S. Martinez-Fernandez,
P. Ram, P. Rodriguez, and X. Franch, ‘‘Measuring and improving agile
processes in a small-size software development company,’’ IEEE Access,
vol. 8, pp. 78452–78466, 2020, doi: 10.1109/ACCESS.2020.2990117.

[15] B. Komal, U. I. Janjua, F. Anwar, T. M. Madni, M. F. Cheema,
M. N. Malik, and A. R. Shahid, ‘‘The impact of scope creep on
project success: An empirical investigation,’’ IEEE Access, vol. 8,
pp. 125755–125775, 2020, doi: 10.1109/ACCESS.2020.3007098.

[16] T. Yaghoobi, ‘‘Prioritizing key success factors of software projects using
fuzzy AHP,’’ J. Softw., Evol. Process, vol. 30, no. 1, p. e1891, Jan. 2018.

[17] (1999). The Software Engineering Process: Definition and Scope.
Accessed: Feb. 14, 2020. [Online]. Available: https://www.mendeley.
com/research-papers/?query=10.1145/75110.75122

[18] C. Gralha, D. Damian, A. Wasserman, M. Goulão, and J. Araújo,
‘‘The evolution of requirements practices in software startups,’’ in
Proc. 40th Int. Conf. Softw. Eng. (ICSE), May 2018, pp. 823–833, doi:
10.1145/3180155.3180158.

130384 VOLUME 9, 2021

http://dx.doi.org/10.1016/j.jss.2018.06.043
http://dx.doi.org/10.1007/978-3-319-38980-6_12
http://dx.doi.org/10.1007/978-3-319-38980-6_12
http://dx.doi.org/10.1016/j.infsof.2014.04.014
http://dx.doi.org/10.1145/2812428.2812430
http://dx.doi.org/10.1109/ACCESS.2020.2990117
http://dx.doi.org/10.1109/ACCESS.2020.3007098
http://dx.doi.org/10.1145/3180155.3180158


M. Tuape et al.: Software Engineering in SSCs: Consolidating and Integrating Empirical Literature

[19] N. Tripathi, M. Oivo, K. Liukkunen, and J. Markkula, ‘‘Startup
ecosystem effect on minimum viable product development in software
startups,’’ Inf. Softw. Technol., vol. 114, pp. 77–91, Oct. 2019, doi:
10.1016/j.infsof.2019.06.008.

[20] R. Anwar, M. Rehman, K. S. Wang, M. A. Hashmani, and A. Shamim,
‘‘Investigation of knowledge sharing behavior in global software devel-
opment organizations using social cognitive theory,’’ IEEE Access, vol. 7,
pp. 71286–71298, 2019, doi: 10.1109/ACCESS.2019.2912657.

[21] A. I. Wasserman, ‘‘Low ceremony processes for short lifecycle projects,’’
in Managing Software Process Evolution. Cham, Switzerland: Springer,
2016, pp. 1–13, doi: 10.1007/978-3-319-31545-4_1.

[22] C. G. V. Wangenheim, S. Weber, J. C. R. Hauck, and G. Trentin, ‘‘Experi-
ences on establishing software processes in small companies,’’ Inf. Softw.
Technol., vol. 48, no. 9, pp. 890–900, Sep. 2006.

[23] C. G. von Wangenheim, A. Anacleto, and C. F. Salviano, ‘‘Helping
small companies assess software processes,’’ IEEE Softw., vol. 23, no. 1,
pp. 91–98, Jan. 2006, doi: 10.1109/MS.2006.13.

[24] M. E. Fayad, M. Laitinen, and R. P. Ward, ‘‘Thinking objectively:
Software engineering in the small,’’ Commun. ACM, vol. 43, no. 3,
pp. 115–118, Mar. 2000, doi: 10.1145/330534.330555.

[25] Y. Li, K.-C. Chang, H.-G. Chen, and J. J. Jiang, ‘‘Software devel-
opment team flexibility antecedents,’’ J. Syst. Softw., vol. 83, no. 10,
pp. 1726–1734, Oct. 2010, doi: 10.1016/j.jss.2010.04.077.

[26] I. F. da Silva, P. A. da Mota Silveira Neto, P. O’Leary, E. S. de Almeida,
and S. R. D. L. Meira, ‘‘Software product line scoping and require-
ments engineering in a small and medium-sized enterprise: An indus-
trial case study,’’ J. Syst. Softw., vol. 88, pp. 189–206, Feb. 2014, doi:
10.1016/j.jss.2013.10.040.

[27] X. Larrucea, R. V. O’Connor, R. Colomo-Palacios, and C. Y. Laporte,
‘‘Software process improvement in very small organizations,’’ IEEE
Softw., vol. 33, no. 2, pp. 85–89, Mar. 2016, doi: 10.1109/MS.2016.42.

[28] N. Tripathi, E. Klotins, R. Prikladnicki, M. Oivo,
L. B. Pompermaier, A. S. Kudakacheril, M. Unterkalmsteiner,
K. Liukkunen, and T. Gorschek, ‘‘An anatomy of requirements
engineering in software startups using multi-vocal literature and
case survey,’’ J. Syst. Softw., vol. 146, pp. 130–151, Dec. 2018, doi:
10.1016/j.jss.2018.08.059.

[29] E. Klotins, M. Unterkalmsteiner, P. Chatzipetrou, T. Gorschek,
R. Prikladnicki, N. Tripathi, and L. B. Pompermaier, ‘‘Exploration
of technical debt in start-ups,’’ in Proc. 40th Int. Conf. Softw. Eng., Softw.
Eng. Pract., May 2018, pp. 75–84, doi: 10.1145/3183519.3183539.

[30] R. V. O’Connor, ‘‘Evaluating management sentiment towards ISO/IEC
29110 in very small software development companies,’’ in Software
Process Improvement and Capability Determination, vol. 290. Berlin,
Germany: Springer, May 2012, pp. 277–281, doi: 10.1007/978-3-642-
30439-2_31.

[31] M. Mun̄oz, A. Pen̄a, J. Mejia, G. P. Gasca-Hurtado,
M. C. Gómez-Alvarez, and C. Laporte, ‘‘A comparative analysis of
the implementation of the software basic profile of ISO/IEC 29110 in
thirteen teams that used predictive versus adaptive life cycles,’’ in Proc.
Eur. Conf. Softw. Process Improvement, 2019, pp. 179–191.

[32] C. Y. Laporte and J. M. Miranda, ‘‘Delivering software- and systems-
engineering standards for small teams,’’ Computer, vol. 53, no. 8,
pp. 79–83, Aug. 2020, doi: 10.1109/MC.2020.2993331.

[33] A. Aldaeej, ‘‘Towards effective technical debt decision making in soft-
ware startups,’’ SIGSOFT Softw. Eng. Notes, vol. 44, no. 3, p. 22, 2019,
doi: 10.1145/3356773.3356793.

[34] J. Melegati, A. Goldman, F. Kon, and X. Wang, ‘‘A model of require-
ments engineering in software startups,’’ Inf. Softw. Technol., vol. 109,
pp. 92–107, May 2019.

[35] U. Rafiq, S. S. Bajwa, X. Wang, and I. Lunesu, ‘‘Requirements elicitation
techniques applied in software startups,’’ in Proc. 43rd Euromicro Conf.
Softw. Eng. Adv. Appl. (SEAA), Aug. 2017, pp. 141–144.

[36] A. Mishra and D. Mishra, ‘‘Software project management tools: A brief
comparative view,’’ ACM SIGSOFT Softw. Eng. Notes, vol. 38, no. 3,
pp. 1–4, May 2013, doi: 10.1145/2464526.2464537.

[37] G. Marks, R. O’Connor, M. Yilmaz, and P. Clarke, ‘‘An ISO/IEC 12207
perspective on software development process adaptation,’’ Softw. Qual.
Prof., vol. 20, no. 2, pp. 48–58, 2018.

[38] R. V. O’Connor and G. Coleman, ‘‘Ignoring ‘best practice’: Why Irish
software SMEs are rejecting CMMI and ISO 9000,’’ Australas. J. Inf.
Syst., vol. 16, no. 1, pp. 1–24, Nov. 2009.

[39] D. Truex, R. Baskerville, and J. Travis, ‘‘Amethodical systems develop-
ment: The deferred meaning of systems development methods,’’ Account-
ing, Manage. Inf. Technol., vol. 10, no. 1, pp. 53–79, Jan. 2000.

[40] E. Klotins,M. Unterkalmsteiner, and T. Gorschek, ‘‘Software engineering
knowledge areas in startup companies: A mapping study,’’ in Software
Business, vol. 210. Cham, Switzerland: Springer, Jun. 2015, pp. 245–257,
doi: 10.1007/978-3-319-19593-3_22.

[41] K. Petersen, R. Feldt, S.Mujtaba, andM.Mattsson, ‘‘Systematic mapping
studies in software engineering,’’ in Proc. 12th Int. Conf. Eval. and
Assessment Softw. Eng. (EASE), Jun. 2008, pp. 1–10.

[42] J. Bailey, D. Budgen, M. Turner, B. Kitchenham, P. Brereton, and
S. Linkman, ‘‘Evidence relating to object-oriented software design: A
survey,’’ in Proc. 1st Int. Symp. Empirical Softw. Eng. Meas. (ESEM),
Sep. 2007, pp. 482–484.

[43] D. H. Lee and M. H. Kim, ‘‘Accommodating subjective vagueness
through a fuzzy extension to the relational data model,’’ Inf. Syst., vol. 18,
no. 6, pp. 363–374, Sep. 1993.

[44] S. Ali, H. Li, S. U. Khan, Y. Zhao, and L. Li, ‘‘Fuzzy multi
attribute assessment model for software outsourcing partnership
formation,’’ IEEE Access, vol. 6, pp. 55431–55461, 2018, doi:
10.1109/ACCESS.2018.2871710.

[45] S. Ali, N. Ullah, M. F. Abrar, Z. Yang, and J. Huang, ‘‘Fuzzy multicri-
teria decision-making approach for measuring the possibility of cloud
adoption for software testing,’’ Sci. Program., vol. 2020, Apr. 2020,
Art. no. 6597316, doi: 10.1155/2020/6597316.

[46] D. Budgen and P. Brereton, ‘‘Performing systematic literature reviews in
software engineering,’’ in Proc. 28th Int. Conf. Softw. Eng., May 2007,
pp. 1051–1052.

[47] P. A. da Mota Silveira Neto, I. do Carmo Machado, J. D. McGregor,
E. S. de Almeida, and S. R. de Lemos Meira, ‘‘A systematic mapping
study of software product lines testing,’’ Inf. Softw. Technol., vol. 53, no. 5,
pp. 407–423, May 2011.

[48] V. Gupta, J. M. Fernandez-Crehuet, T. Hanne, and R. Telesko, ‘‘Require-
ments engineering in software startups: A systematic mapping study,’’
Appl. Sci., vol. 10, no. 17, p. 6125, Sep. 2020.

[49] M. Ivarsson and T. Gorschek, ‘‘A method for evaluating rigor and indus-
trial relevance of technology evaluations,’’ Empirical Softw. Eng., vol. 16,
no. 3, pp. 365–395, Jun. 2011.

[50] M. Shaw, ‘‘Writing good software engineering research papers,’’ in Proc.
25th Int. Conf. Softw. Eng., 2003, pp. 726–736.

[51] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, ‘‘Requirements
engineering paper classification and evaluation criteria: A proposal and a
discussion,’’ Requir. Eng., vol. 11, no. 1, pp. 102–107, Mar. 2006.

[52] K. C. Dangle, P. Larsen, M. Shaw, and M. V. Zelkowitz, ‘‘Software
process improvement in small organizations: A case study,’’ IEEE Softw.,
vol. 22, no. 6, pp. 68–75, Oct. 2005, doi: 10.1109/MS.2005.162.

[53] M. A. Almomani, S. Basri, A. K. B. Mahmood, and Y. M. Baashar,
‘‘An empirical analysis of software practices in Malaysian small and
medium enterprises,’’ inProc. 3rd Int. Conf. Comput. Inf. Sci. (ICCOINS),
Aug. 2016, pp. 442–447.

[54] M. Ateeq, ‘‘The adoption of software process improvement in Saudi
Arabian small and medium size software organizations: An exploratory
study,’’ Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 3, pp. 195–201, 2018.

[55] F. Caffery, P. Taylor, and G. Coleman, ‘‘Adept: A unified assessment
method for small software companies,’’ IEEE Softw., vol. 24, no. 1,
pp. 24–31, Jan. 2007, doi: 10.1109/MS.2007.3.

[56] F. X. Bru, G. Frappin, L. Legrand, E. Merrer, S. Piteau, G. Salou,
P. Saliou, and V. Ribaud, ‘‘Building an observatory of course-of-action
in software engineering: Towards a link between ISO/IEC software engi-
neering standards and a reflective practice,’’ Commun. Comput. Inf. Sci.,
vol. 42, pp. 185–200, Sep. 2009, doi: 10.1007/978-3-642-04133-4_16.

[57] T. Nonoyama, L. Wen, and T. Rout, ‘‘Current challenges and proposed
software improvement process for VSEs in developing countries,’’ in
Proc. Int. Conf. Softw. Process Improvement Capability Determination,
2016, pp. 437–444.

[58] K. Suteeca and S. Ramingwong, ‘‘A framework to apply ISO/IEC29110
on SCRUM,’’ in Proc. Int. Comput. Sci. Eng. Conf. (ICSEC), Dec. 2016,
pp. 1–5.

[59] M.-L. Sanchez-Gordon, R. V. O’Connor, and R. Colomo-Palacios, ‘‘Eval-
uating VSEs viewpoint and sentiment towards the ISO/IEC 29110 stan-
dard: A two country grounded theory study,’’ in Proc. Int. Conf. Softw.
Process Improvement Capability Determination, 2015, pp. 114–127.

[60] L. Rivas, M. Pérez, L. E. Mendoza, and A. Grimán, ‘‘Towards a selec-
tion model for software engineering tools in small and medium enter-
prises (SMEs),’’ in Proc. 3rd Int. Conf. Softw. Eng. Adv., Sliema, Malta,
Oct. 2008, pp. 264–269, doi: 10.1109/ICSEA.2008.51.

VOLUME 9, 2021 130385

http://dx.doi.org/10.1016/j.infsof.2019.06.008
http://dx.doi.org/10.1109/ACCESS.2019.2912657
http://dx.doi.org/10.1007/978-3-319-31545-4_1
http://dx.doi.org/10.1109/MS.2006.13
http://dx.doi.org/10.1145/330534.330555
http://dx.doi.org/10.1016/j.jss.2010.04.077
http://dx.doi.org/10.1016/j.jss.2013.10.040
http://dx.doi.org/10.1109/MS.2016.42
http://dx.doi.org/10.1016/j.jss.2018.08.059
http://dx.doi.org/10.1145/3183519.3183539
http://dx.doi.org/10.1007/978-3-642-30439-2_31
http://dx.doi.org/10.1007/978-3-642-30439-2_31
http://dx.doi.org/10.1109/MC.2020.2993331
http://dx.doi.org/10.1145/3356773.3356793
http://dx.doi.org/10.1145/2464526.2464537
http://dx.doi.org/10.1007/978-3-319-19593-3_22
http://dx.doi.org/10.1109/ACCESS.2018.2871710
http://dx.doi.org/10.1155/2020/6597316
http://dx.doi.org/10.1109/MS.2005.162
http://dx.doi.org/10.1109/MS.2007.3
http://dx.doi.org/10.1007/978-3-642-04133-4_16
http://dx.doi.org/10.1109/ICSEA.2008.51


M. Tuape et al.: Software Engineering in SSCs: Consolidating and Integrating Empirical Literature

[61] V. Ribaud, P. Saliou, R. O’Connor, and C. Y. Laporte, ‘‘Software engi-
neering support activities for very small entities,’’ in Systems, Software
and Services Process Improvement, vol. 99. Berlin, Germany: Springer,
Sep. 2010, pp. 165–176, doi: 10.1007/978-3-642-15666-3_15.

[62] F. J. Pino, O. Pedreira, F. García, M. R. Luaces, and M. Piattini, ‘‘Using
scrum to guide the execution of software process improvement in small
organizations,’’ J. Syst. Softw., vol. 83, no. 10, pp. 1662–1677, Oct. 2010,
doi: 10.1016/j.jss.2010.03.077.

[63] R. V. O’Connor, ‘‘Exploring the role of usability in the software process:
A study of Irish software SMEs,’’ in Proc. Eur. Conf. Softw. Process
Improvement, 2009, pp. 161–172.

[64] S. F. Ochoa, R. Robbes, M. Marques, L. Silvestre, and A. Quispe, ‘‘What
differentiates Chilean niche software companies: Business knowledge
and reputation,’’ IEEE Softw., vol. 34, no. 3, pp. 96–103, May 2017.

[65] L. M. A. Nascimento and G. H. Travassos, ‘‘Software knowledge
registration practices at software innovation startups: Results of an
exploratory study,’’ in Proc. 31st Brazilian Symp. Softw. Eng. (SBES),
2017, pp. 234–243.

[66] M. Muñoz, A. Peña, J. Mejía, G. P. Gasca-Hurtado,
M. C. Gómez-Alvarez, and C. Y. Laporte, ‘‘Analysis of 13
implementations of the software engineering management and
engineering basic profile guide of ISO/IEC 29110 in very small
entities using different life cycles,’’ J. Softw., Evol. Process, vol. 32,
no. 11, Nov. 2020, doi: 10.1002/smr.2300.

[67] M. E. Morales-Trujillo and G. A. García-Mireles, ‘‘Evolving with pat-
terns: A 31-month startup experience report,’’ in Proc. 27th ACM Joint
Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., Aug. 2019,
pp. 1037–1047.

[68] S. Lucho, K. Melendez, and A. Dávila, ‘‘Analysis of environmental
factors in the adoption of ISO/IEC 29110. Multiple case study,’’ in Proc.
Int. Conf. Softw. Process Improvement, 2017, pp. 82–93.

[69] M. Muñoz, J. Mejia, and C. Y. Laporte, ‘‘Reinforcing very small entities
using agile methodologies with the ISO/IEC 29110,’’ in Proc. Int. Conf.
Softw. Process Improvement, 2018, pp. 88–98.

[70] G. A. García-Mireles, ‘‘Addressing product quality characteristics using
the ISO/IEC 29110,’’ in Trends and Applications in Software Engi-
neering, vol. 405. Cham, Switzerland: Springer, 2016, pp. 25–34, doi:
10.1007/978-3-319-26285-7_3.

[71] R. Souza, K. Malta, and E. S. De Almeida, ‘‘Software engineering in
startups: A single embedded case study,’’ in Proc. 1st IEEE/ACM Int.
Workshop Softw. Eng. Startups (SoftStart), Buenos Aires, Argentina,
May 2017, pp. 17–23, doi: 10.1109/SoftStart.2017.2.

[72] P. Borges, P. Monteiro, and R. J. Machado, ‘‘Tailoring RUP to small
software development teams,’’ in Proc. 37th EUROMICRO Conf. Softw.
Eng. Adv. Appl., Aug. 2011, pp. 306–309.

[73] M. A. Almomani, S. Basri, and A. R. Gilal, ‘‘Empirical study of software
process improvement in Malaysian small and medium enterprises: The
human aspects,’’ J. Softw., Evol. Process, vol. 30, no. 10, p. e1953,
Oct. 2018, doi: 10.1002/smr.1953.

[74] C. Y. Laporte, M. Munoz, J. M. Miranda, and R. V. O’Connor, ‘‘Applying
software engineering standards in very small entities: From startups to
grownups,’’ IEEE Softw., vol. 35, no. 1, pp. 99–103, Jan. 2018.

[75] G. C. L. Leal, R. Prikladnicki, C. Ebert, R. Balancieri, and
L. B. Pompermaier, ‘‘Practices and tools for software start-ups,’’
IEEE Softw., vol. 37, no. 1, pp. 72–77, Jan. 2020.

[76] E. Klotins, M. Unterkalmsteiner, and T. Gorschek, ‘‘Software engineer-
ing antipatterns in start-ups,’’ IEEE Softw., vol. 36, no. 2, pp. 118–126,
Mar. 2019, doi: 10.1109/MS.2018.227105530.

[77] J. Kasurinen and K. Smolander, ‘‘Defining an iterative ISO/IEC 29110
deployment package for game developers,’’ Int. J. Inf. Technol. Syst.
Approach, vol. 10, no. 1, pp. 107–125, Jan. 2017.

[78] J. Melegati, R. Chanin, A. Sales, R. Prikladnicki, and X. Wang, ‘‘MVP
and experimentation in software startups: A qualitative survey,’’ in
Proc. 46th Euromicro Conf. Softw. Eng. Adv. Appl. (SEAA), Aug. 2020,
pp. 322–325.

[79] S. Galván-Cruz, M. Muñoz, J. Mejía, C. Y. Laporte, and M. Negrete,
‘‘Building a guideline to reinforce agile software development with the
basic profile of ISO/IEC 29110 in very small entities,’’ in Proc. Int. Conf.
Softw. Process Improvement, 2020, pp. 20–37.

[80] E. Carmel and S. Becker, ‘‘A process model for packaged software devel-
opment,’’ IEEE Trans. Eng. Manag., vol. 42, no. 1, pp. 50–61, Feb. 1995.

[81] T. Clark and P.-A.Muller, ‘‘Exploiting model driven technology: A tale of
two startups,’’ Softw. Syst. Model., vol. 11, no. 4, pp. 481–493, Oct. 2012,
doi: 10.1007/s10270-012-0260-1.

[82] A. M. Sharif and S. Basri, ‘‘Risk assessment factors for SME software
development companies in Malaysia,’’ in Proc. Int. Conf. Comput. Inf.
Sci. (ICCOINS), Jun. 2014, pp. 1–5.

[83] Y.-M. García, M. Mun̄oz, J. Mejia, G. P. G. Hurtado, and A. M. Medina,
‘‘Application of a risk management tool focused on helping to small
and medium enterprises implementing the best practices in software
development projects,’’ in Trends and Advances in Information Systems
and Technologies, vol. 746. Cham, Switzerland: Springer, Mar. 2018,
pp. 429–440, doi: 10.1007/978-3-319-77712-2_41.

[84] S. Basri and R. V. Oconnor, ‘‘Software development team dynamics in
SPI: A VSE context,’’ in Proc. Asia–Pacific Softw. Eng. Conf. (APSEC),
vol. 2, Dec. 2012, pp. 1–8, doi: 10.1109/APSEC.2012.26.

[85] F. J. L.-L. Hinojo, ‘‘Agile, CMMI, RUP, ISO/IEC 12207. . . Is there a
method in this madness?’’ ACM SIGSOFT Softw. Eng. Notes, vol. 39,
no. 2, pp. 1–5, Mar. 2014, doi: 10.1145/2579281.2579299.

[86] X. Larrucea, I. Santamaria, andB. Fernandez-Gauna, ‘‘Managing security
debt across PLC phases in a VSE context,’’ J. Softw., Evol. Process,
vol. 32, no. 3, p. e2214, Mar. 2020.

[87] R. V. O’Connor and C. Y. Laporte, ‘‘Software project management in very
small entities with ISO/IEC 29110,’’Commun. Comput. Inf. Sci., vol. 301,
pp. 330–341, Jun. 2012, doi: 10.1007/978-3-642-31199-4_29.

[88] T. Nonoyama, L. Wen, T. Rout, and D. Tuffley, ‘‘Cultural issues and
impacts of software process in very small entities (VSEs),’’ in Software
Process Improvement and Capability Determination, vol. 770. Cham,
Switzerland: Springer, Oct. 2017, pp. 70–81, doi: 10.1007/978-3-319-
67383-7_6.

[89] A. Mesquida and A. Mas, ‘‘A project management improvement program
according to ISO/IEC 29110 and PMBOK?’’ J. Softw. E, vol. 26, no. 9,
pp. 846–854, 2014.

[90] A. Boden, G. Avram, L. Bannon, and V. Wulf, ‘‘Knowledge sharing
practices and the impact of cultural factors: Reflections on two case
studies of offshoring in SME,’’ J. Softw., Evol. Process, vol. 24, no. 2,
pp. 139–152, 2012.

[91] S. M. Neves, C. E. S. Da Silva, V. A. P. Salomon, and
A. L. A. Santos, ‘‘Knowledge-based risk management: Survey on
Brazilian software development enterprises,’’ in Advances in Information
Systems and Technologies, vol. 206. Berlin, Germany: Springer, 2013,
pp. 55–65, doi: 10.1007/978-3-642-36981-0_6.

[92] M. Yilmaz, R. V. O’Connor, and P. Clarke, ‘‘Software development roles:
A multi-project empirical investigation,’’ ACM SIGSOFT Softw. Eng.
Notes, vol. 40, no. 1, pp. 1–5, Feb. 2015, doi: 10.1145/2693208.2693239.

[93] M. Verlage and T. Kiesgen, ‘‘Five years of product line engineering in a
small company,’’ in Proc. 27th Int. Conf. Softw. Eng. (ICSE), May 2005,
pp. 534–543.

[94] I. Garcia, C. Pacheco, M. Arcilla, and N. Sanchez, ‘‘Project management
in small-sized software enterprises: A metamodeling-based approach,’’
in Trends and Applications in Software Engineering, vol. 405. Cham,
Switzerland: Springer, 2016, pp. 3–13, doi: 10.1007/978-3-319-26285-
7_1.

[95] K.-K. Kemell, A. Elonen, M. Suoranta, A. Nguyen-Duc, J. Garbajosa,
R. Chanin, J. Melegati, U. Rafiq, A. Aldaeej, N. Assyne, A. Sales,
S. Hyrynsalmi, J. Risku, H. Edison, and P. Abrahamsson, ‘‘Business
model canvas should pay more attention to the software startup team,’’ in
Proc. 46th Euromicro Conf. Softw. Eng. Adv. Appl. (SEAA), Aug. 2020,
pp. 342–345.

[96] A. Tereso, C. P. Leão, and T. Ribeiro, ‘‘Project management practices
at Portuguese startups,’’ in Proc. World Conf. Inf. Syst. Technol., 2019,
pp. 39–49.

[97] S. S. Bajwa, X. Wang, A. N. Duc, and P. Abrahamsson, ‘‘‘Failures’
to be celebrated: An analysis of major pivots of software startups,’’
Empirical Softw. Eng., vol. 22, no. 5, pp. 2373–2408, Oct. 2017, doi:
10.1007/s10664-016-9458-0.

[98] M. Tuape, P. Ntebane, and P. Majoo, ‘‘Does context matter? Assess-
ing the current state of quality practice during software development
in small software companies,’’ in Proc. Future Technol. Conf., 2020,
pp. 341–356.

[99] M. Muñoz, J. Mejia, and C. Y. Laporte, ‘‘Implementing ISO/IEC 29110
to reinforce four very small entities of Mexico under an agile approach,’’
IET Softw., vol. 14, no. 2, pp. 75–81, Apr. 2020.

[100] J. Mejia, E. Muñoz, and M. Muñoz, ‘‘Reinforcing the applicability
of multi-model environments for software process improvement using
knowledge management,’’ Sci. Comput. Program., vol. 121, pp. 3–15,
Jun. 2016.

[101] S. Basri, M. A. T. Almomani, A. A. Imam, T. Murugan, A. R. Gilal,
and A. O. Balogun, ‘‘The organisational factors of software process
improvement in small software industry: Comparative study,’’ in Emerg-
ing Trends in Intelligent Computing and Informatics, vol. 1073. Cham,
Switzerland: Springer, Sep. 2019, pp. 1132–1143, doi: 10.1007/978-3-
030-33582-3_106.

130386 VOLUME 9, 2021

http://dx.doi.org/10.1007/978-3-642-15666-3_15
http://dx.doi.org/10.1016/j.jss.2010.03.077
http://dx.doi.org/10.1002/smr.2300
http://dx.doi.org/10.1007/978-3-319-26285-7_3
http://dx.doi.org/10.1109/SoftStart.2017.2
http://dx.doi.org/10.1002/smr.1953
http://dx.doi.org/10.1109/MS.2018.227105530
http://dx.doi.org/10.1007/s10270-012-0260-1
http://dx.doi.org/10.1007/978-3-319-77712-2_41
http://dx.doi.org/10.1109/APSEC.2012.26
http://dx.doi.org/10.1145/2579281.2579299
http://dx.doi.org/10.1007/978-3-642-31199-4_29
http://dx.doi.org/10.1007/978-3-319-67383-7_6
http://dx.doi.org/10.1007/978-3-319-67383-7_6
http://dx.doi.org/10.1007/978-3-642-36981-0_6
http://dx.doi.org/10.1145/2693208.2693239
http://dx.doi.org/10.1007/978-3-319-26285-7_1
http://dx.doi.org/10.1007/978-3-319-26285-7_1
http://dx.doi.org/10.1007/s10664-016-9458-0
http://dx.doi.org/10.1007/978-3-030-33582-3_106
http://dx.doi.org/10.1007/978-3-030-33582-3_106


M. Tuape et al.: Software Engineering in SSCs: Consolidating and Integrating Empirical Literature

[102] A. Tosun, A. Bener, and B. Turhan, ‘‘Implementation of a software quality
improvement project in an SME: A before and after comparison,’’ in
Proc. 35th Euromicro Conf. Softw. Eng. Adv. Appl., Patras, Greece, 2009,
pp. 203–209, doi: 10.1109/SEAA.2009.52.

[103] I. Garcia, C. Pacheco, J. A. Calvo-Manzano, and H. Hernández-Moreno,
‘‘Implementing the Ki Wo Tsukau model to strengthen the commitment
of small-sized software enterprises in software process improvement ini-
tiatives,’’ in Proc. Int. Conf. Softw. Process Improvement, 2016, pp. 3–12.

[104] M. Muñoz and J. Mejia, ‘‘Letting organizations to find the correct way
to start in the implementation of software process improvements,’’ in
New Contributions in Information Systems and Technologies, vol. 353.
Cham, Switzerland: Springer, 2015, pp. 503–512, doi: 10.1007/978-3-
319-16486-1_49.

[105] A. Singh and S. S. Gill, ‘‘Measuring the maturity of Indian small and
medium enterprises for unofficial readiness for capability maturity model
integration-based software process improvement,’’ J. Softw., Evol. Pro-
cess, vol. 32, no. 9, p. e2261, Sep. 2020, doi: 10.1002/smr.2261.

[106] A.Nguyen-Duc, S.M.A. Shah, and P. Ambrahamsson, ‘‘Towards an early
stage software startups evolution model,’’ in Proc. 42th Euromicro Conf.
Softw. Eng. Adv. Appl. (SEAA), Aug. 2016, pp. 120–127.

[107] X. Larrucea and I. Santamaria, ‘‘Comparing SPI survival studies in small
settings,’’ in Proc. Int. Conf. Softw. Process Improvement Capability
Determination, 2017, pp. 45–54.

[108] T. Varkoi, ‘‘Process assessment in very small entities,’’ in Proc. 7th Int.
Conf. Qual. Inf. Commun. Technol. Process, 2010, pp. 436–440.

[109] Q. Boucher, G. Perrouin, J.-C. Deprez, and P. Heymans, ‘‘Towards con-
figurable ISO/IEC 29110-compliant software development processes for
very small entities,’’ in Systems, Software and Services Process Improve-
ment, vol. 301. Berlin, Germany: Springer, Jun. 2012, pp. 169–180, doi:
10.1007/978-3-642-31199-4_15.

[110] M. Sivashankar, A. M. Kalpana, and A. E. Jeyakumar, ‘‘A framework
approach using CMMI for SPI to Indian SME’S,’’ in Proc. Int. Conf.
Innov. Comput. Technol. (ICICT), Feb. 2010, pp. 1–5.

[111] R. Eito-Brun and M.-A. Sicilia, ‘‘Innovation-driven software devel-
opment: Leveraging small companies’ product-development capabil-
ities,’’ IEEE Softw., vol. 33, no. 5, pp. 38–46, Sep. 2016, doi:
10.1109/MS.2016.63.

[112] S. Galván-Cruz, M. Mora, and R. O’Connor, ‘‘A means-ends design of
SCRUM+: An agile-disciplined balanced SCRUM enhanced with the
ISO/IEC 29110 standard,’’ in Proc. Int. Conf. Softw. Process Improve-
ment, 2017, pp. 13–23.

[113] M. Negrete, U. Infante, andM.Muñoz, ‘‘A case study of improving a very
small entity with an agile software development based on the basic profile
of the ISO/IEC 29110,’’ in Proc. Int. Conf. Softw. Process Improvement,
2020, pp. 3–19.

[114] C. Y. Laporte and R. V. O’Connor, ‘‘A multi-case study analy-
sis of software process improvement in very small companies using
ISO/IEC 29110,’’ in Proc. Eur. Conf. Softw. Process Improvement, 2016,
pp. 30–44.

[115] P. Knauber, D. Muthig, K. Schmid, and T. Widen, ‘‘Applying product line
concepts in small and medium-sized companies,’’ IEEE Softw., vol. 17,
no. 5, pp. 88–95, Sep. 2000, doi: 10.1109/52.877873.

[116] T. Besker, A. Martini, R. E. Lokuge, K. Blincoe, and J. Bosch, ‘‘Embrac-
ing technical debt, from a startup company perspective,’’ in Proc. IEEE
Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2018, pp. 415–425,
doi: 10.1109/ICSME.2018.00051.

[117] M. Chicote, ‘‘Startups and technical debt: Managing technical debt with
visual thinking,’’ in Proc. IEEE/ACM 1st Int. Workshop Softw. Eng.
Startups (SoftStart),May 2017, pp. 10–11, doi: 10.1109/SoftStart.2017.6.

[118] F. Silva, R. Souza, and I. Machado, ‘‘Taming and unveiling software reuse
opportunities through white label software in startups,’’ in Proc. 46th
Euromicro Conf. Softw. Eng. Adv. Appl. (SEAA), Aug. 2020, pp. 302–305.

[119] L. Riungu-Kalliosaari, O. Taipale, and K. Smolander, ‘‘Testing in the
cloud: Exploring the practice,’’ IEEE Softw., vol. 29, no. 2, pp. 46–51,
Mar. 2012.

[120] M. Felderer and R. Ramler, ‘‘Risk orientation in software testing pro-
cesses of small and medium enterprises: An exploratory and comparative
study,’’ Softw. Qual. J., vol. 24, no. 3, pp. 519–548, Sep. 2016, doi:
10.1007/s11219-015-9289-z.

[121] R. Kaushik, C. J. M. Tauro, V. D. Souza, and K. Bhowmick, ‘‘A novel
approach for collaborative last-mile performance testing implementation
using an object-oriented approach,’’ ACM SIGSOFT Softw. Eng. Notes,
vol. 39, no. 2, pp. 1–4, 2014.

[122] L. Mathiassen and A. M. Vainio, ‘‘Dynamic capabilities in small soft-
ware firms: A sense-and-respond approach,’’ IEEE Trans. Eng. Manage.,
vol. 54, no. 3, pp. 522–538, Jul. 2007, doi: 10.1109/TEM.2007.900782.

[123] U. Rafiq et al., ‘‘Requirements elicitation techniques applied in software
startups,’’ in Proc. 43rd Euromicro Conf. Softw. Eng. Adv. Appl. (SEAA),
2017, pp. 141–144, doi: 10.1109/SEAA.2017.73.

[124] C. Y. Laporte and R. V. O’Connor, ‘‘Implementing process improvement
in very small enterprises with ISO/IEC 29110: Amultiple case study anal-
ysis,’’ in Proc. 10th Int. Conf. Qual. Inf. Commun. Technol. (QUATIC),
Sep. 2016, pp. 125–130.

[125] M.-L. Sánchez-Gordón and R. V. O’Connor, ‘‘Understanding the gap
between software process practices and actual practice in very small
companies,’’ Softw. Qual. J., vol. 24, no. 3, pp. 549–570, Sep. 2016, doi:
10.1007/s11219-015-9282-6.

[126] V. Vukovic, J. Djurkovic, M. Sakal, and L. Rakovic, ‘‘An empiri-
cal investigation of software testing methods and techniques in the
province of vojvodina,’’ Tehnički Vjesnik, vol. 27, no. 3, pp. 687–696,
2020.

[127] A. L’Erario, H. C. S. Thomazinho, and J. A. Fabri, ‘‘An approach to
software maintenance: A case study in small and medium-sized busi-
nesses IT organizations,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 30, no. 5,
pp. 603–630, May 2020.

[128] J. K. Balikuddembe and M. Tuape, ‘‘An ambiguity minimization
technique during requirements elicitation phase,’’ in Proc. Int. Conf.
Comput. Sci. Comput. Intell. (CSCI), Dec. 2017, pp. 945–950, doi:
10.1109/CSCI.2017.164.

[129] V. Kettunen, J. Kasurinen, O. Taipale, and K. Smolander, ‘‘A study
on agility and testing processes in software organizations,’’ in Proc.
19th Int. Symp. Softw. Test. Anal. (ISSTA), 2010, pp. 231–240, doi:
10.1145/1831708.1831737.

[130] C. Wohlin, D. Šmite, and N. B. Moe, ‘‘A general theory of software engi-
neering: Balancing human, social and organizational capitals,’’ J. Syst.
Softw., vol. 109, pp. 229–242, Nov. 2015.

[131] S. M. Sutton, ‘‘The role of process in software start-up,’’ IEEE Softw.,
vol. 17, no. 4, pp. 33–39, Jul. 2000.

[132] R. Xue, C. Baron, and P. Esteban, ‘‘Optimising product development
in industry by alignment of the ISO/IEC 15288 systems engineering
standard and the PMBoK guide,’’ Int. J. Prod. Dev., vol. 22, no. 1,
pp. 65–80, 2017.

[133] C. Y. Laporte and R. V. O’Connor, ‘‘Systems and software engineering
standards for very small entities: Accomplishments and overview,’’ Com-
puter, vol. 49, no. 8, pp. 84–87, Aug. 2016.

[134] P. Clarke, R. V. O’Connor, and B. Leavy, ‘‘A complexity theory viewpoint
on the software development process and situational context,’’ in Proc.
Int. Conf. Softw. Syst. Process, May 2016, pp. 86–90.

[135] P. Ralph, ‘‘The sensemaking-coevolution-implementation theory
of software design,’’ Sci. Comput. Program., vol. 101, pp. 21–41,
Apr. 2015.

[136] R. V. O’Connor and C. Y. Laporte, ‘‘The evolution of the ISO/IEC 29110
set of standards and guides,’’ Int. J. Inf. Technol. Syst. Approach, vol. 10,
no. 1, pp. 1–21, Jan. 2017, doi: 10.4018/IJITSA.2017010101.

[137] C. Giardino, S. S. Bajwa, X.Wang, and P. Abrahamsson, ‘‘Key challenges
in early-stage software startups,’’ inProc. Int. Conf. Agile Softw. Develop.,
2015, pp. 52–63.

[138] C. Y. Laporte, R. V. O’Connor, and L. H. García Paucar,
‘‘Software engineering standards and guides for very small
entities–implementation in two start-ups,’’ in Proc. 10th Int. Conf.
Eval. Novel Approaches to Softw. Eng., Barcelona, Spain, 2015,
pp. 5–15, doi: 10.5220/0005368500050015.

[139] J. Melegati, ‘‘What influences software startups to use lean startup?’’
in Proc. 19th Int. Conf. Agile Softw. Develop., Companion, May 2018,
pp. 1–3.

[140] K.-K. Kemell, V. Ravaska, A. Nguyen-Duc, and P. Abrahamsson, ‘‘Soft-
ware startup practices–software development in startups through the lens
of the essence theory of software engineering,’’ in Product-Focused Soft-
ware Process Improvement, vol. 12562. Cham, Switzerland: Springer,
Nov. 2020, pp. 402–418, doi: 10.1007/978-3-030-64148-1_25.

[141] Y. S. Lincoln and N. K. Denzin, The Sage Handbook of Qualitative
Research. Newbury Park, CA, USA: Sage, 2011.

[142] S. J. Taylor, R. Bogdan, and M. DeVault, Introduction to Qualitative
Research Methods: A Guidebook and Resource. Hoboken, NJ, USA:
Wiley, 2015.

[143] R. Whittemore, S. K. Chase, and C. L. Mandle, ‘‘Validity in qual-
itative research,’’ Qual. Health Res., vol. 11, no. 4, pp. 522–537,
2001.

[144] B. Kitchenham, H. Al-Khilidar, M. A. Babar, M. Berry, K. Cox, J. Keung,
F. Kurniawati, M. Staples, H. Zhang, and L. Zhu, ‘‘Evaluating guidelines
for reporting empirical software engineering studies,’’ Empirical Softw.
Eng., vol. 13, no. 1, pp. 97–121, Feb. 2008.

VOLUME 9, 2021 130387

http://dx.doi.org/10.1109/SEAA.2009.52
http://dx.doi.org/10.1007/978-3-319-16486-1_49
http://dx.doi.org/10.1007/978-3-319-16486-1_49
http://dx.doi.org/10.1002/smr.2261
http://dx.doi.org/10.1007/978-3-642-31199-4_15
http://dx.doi.org/10.1109/MS.2016.63
http://dx.doi.org/10.1109/52.877873
http://dx.doi.org/10.1109/ICSME.2018.00051
http://dx.doi.org/10.1109/SoftStart.2017.6
http://dx.doi.org/10.1007/s11219-015-9289-z
http://dx.doi.org/10.1109/TEM.2007.900782
http://dx.doi.org/10.1109/SEAA.2017.73
http://dx.doi.org/10.1007/s11219-015-9282-6
http://dx.doi.org/10.1109/CSCI.2017.164
http://dx.doi.org/10.1145/1831708.1831737
http://dx.doi.org/10.4018/IJITSA.2017010101
http://dx.doi.org/10.5220/0005368500050015
http://dx.doi.org/10.1007/978-3-030-64148-1_25


M. Tuape et al.: Software Engineering in SSCs: Consolidating and Integrating Empirical Literature

[145] T. Dybå, R. Prikladnicki, K. Rönkkö, C. Seaman, and J. Sillito, ‘‘Quali-
tative research in software engineering,’’ Empirical Softw. Eng., vol. 16,
no. 4, pp. 425–429, Aug. 2011, doi: 10.1007/s10664-011-9163-y.

[146] P. Runeson and M. Höst, ‘‘Guidelines for conducting and reporting case
study research in software engineering,’’ Empirical Softw. Eng., vol. 14,
no. 2, pp. 131–164, Apr. 2009.

[147] B. C. O’Brien, I. B. Harris, T. J. Beckman, D. A. Reed, and D. A. Cook,
‘‘Standards for reporting qualitative research: A synthesis of recommen-
dations,’’ Academic Med., vol. 89, no. 9, pp. 1245–1251, Sep. 2014, doi:
10.1097/ACM.0000000000000388.

[148] J. S. Molléri, K. Petersen, and E. Mendes, ‘‘CERSE–catalog for empirical
research in software engineering: A systematic mapping study,’’ Inf.
Softw. Technol., vol. 105, pp. 117–149, Jan. 2019.

[149] M. Tuape and Y. Ayalew, ‘‘A roadmap for a comparison framework for
an adaptable software process improvement framework in small software
companies,’’ Ann. Comput. Sci. Inf. Syst., vol. 20, pp. 133–141, 2019.

MICHEAL TUAPE (Member, IEEE) was born in
Pakwach, Uganda, in March 1979. He received
the Bachelor of Science degree (Hons.) in infor-
mation technology fromUganda Christian Univer-
sity Mukono, Uganda, and the Master of Science
degree in software engineering from Makerere
University, Kampala, Uganda. He is currently pur-
suing the Doctor of Science degree in technology
and software engineeringwith Lappeenranta-Lahti
University of Technology, Lappeenranta, Finland.

From 2015 to 2018, he was a Research Associate with the Software
Systems Center, Makerere University, Kampala. From 2018 to 2020, he was
a Research Associate in the UIG Project with the University of Botswana,
Gaborone, Botswana. He has been a Junior Researcher at Lappeenranta-Lahti
University of Technology, since 2020. His research interests include software
engineering, requirements engineering, software development process, small
software companies, and open science.

Mr. Tuape is a member of ACM and PMI.

VICTORIA T. HASHEELA-MUFETI received the
Bachelor of Science degree in computer science
and economics from the University of Namibia,
in 2005, the Bachelor of Science degree (Hons.)
in computer science from Stellenbosch Univer-
sity, South Africa, in 2007, the Master of Sci-
ence degree in informatics from the University of
Mannheim, Germany, in 2010, and the Doctor of
Science degree in technology from Lappeenranta
University of Technology, Finland, in 2018.

She was a Fulbright Scholar at The University of New Mexico, USA,
in 2018. She is currently a Senior Lecturer with the University of Namibia.
Her research interests include digital preservation of African indigenous
knowledge and languages, software development for SMEs, and data
analytics.

ANNA KAYANDA received the Bachelor of Sci-
ence degree in computer science from the Uni-
versity of Dar es Salaam, Tanzania, in 2009, and
the Master of Science degree in computer science
from the University of Mysore, India, in 2013. She
is currently pursuing the Ph.D. degree in science,
technology and computing with the University of
Eastern Finland, Finland.

She is working as an Assistant Lecturer with
the College of Business Education. Her research

interest includes information systems development for decision support.

JARI PORRAS (Member, IEEE) received the
D.Sc. (Tech.) degree from Lappeenranta Univer-
sity of Technology, Finland, in 1998, with a focus
on modeling and simulation of communication
networks in distributed computing environment.

He is currently a Professor of software engi-
neering (especially distributed systems) with
Lappeenranta-Lahti University of Technology
(LUT). He has supervised approximately 500mas-
ter’s thesis works and 22 dissertations as well as

acted as an External Evaluator for 21 doctoral thesis works since the start
of his professorship. He has conducted research on parallel and distributed
computing, wireless and mobile systems and services, and sustainable ICT.
In last years, he has focused his research on human and sustainability aspects
of software engineering. He is actively working in international networks and
organizations.

JUSSI KASURINEN was born in Savonlinna,
Finland. He received the master’s degree in infor-
mation technology from Lappeenranta University
of Technology, in 2007, and a Doctor of Science
(Tech) from Lappeenranta University of Technol-
ogy (LUT), Lappeenranta, Finland, in 2011.

He is currently a Doctor of science (technol-
ogy), specializing in software engineering and
software testing. He is an Adjunct Professor of
entertainment software engineering. He works as

an Associate Professor and the Head of degree programs in software engi-
neering with LUT School of Engineering Sciences. During his career, he has
authored over 50 scientific publications in various topics of software engi-
neering and four non-fiction books discussing programming languages and
software testing. He is the current LUT University Representative of the
Finnish Software Measurement Association (FiSMA), Computer Science
Association of Finland, and Academic Engineers and Architects in Finland
(TEK). He received his adjunct professorship from LUT University, in 2017.
His current research interests include but are not limited to smart systems
for software engineering, games from the viewpoint of software, software
testing practices, and software process quality.

130388 VOLUME 9, 2021

http://dx.doi.org/10.1007/s10664-011-9163-y
http://dx.doi.org/10.1097/ACM.0000000000000388

