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ABSTRACT We consider the uplink of firefly ultra dense networks which combine the promising features of
ultra dense deployment and centralized processing. In these networks, a large number of remote radio units
which we denote as firefly nodes (FNs) are spatially distributed over an area. The mobile devices (MDs) in
the coverage area are simultaneously connected via sub-6 GHz radio frequency links to all FNs. Unlike the
cloud radio access network (C-RAN) architecture, in firefly ultra dense networks, the FNs forward the MDs’
data through multi-hop millimeter-wave (mmWave) links to one or multiple root nodes since the coverage
radius of each mmWave link is limited. These root nodes then forward the data via optical fiber links further
to a central unit (CU), where the MDs’ signals are decoded. The amount of data that is received at each FN
is potentially huge, and hence, efficient signal processing is needed at each FN before the received signals
can be forwarded to other FNs. Therefore, we propose a nonlinear processing strategy, which quantizes the
received signals at each FN. In particular, we formulate an optimization problem for a local design strategy
for the nonlinear forwarding at the FNs, and present an optimal solution by exploiting strong duality and
using the Lagrangian method to convert the optimization problem into an unconstrained problem via its
dual formulation. A closed-form solution for the primal variables and a bisection algorithm for finding the
optimal dual variables are presented. Moreover, based on the cut-set bound, we develop an upper bound on
the achievable sum rate of the considered firefly network. The proposed nonlinear forwarding strategy is
shown to outperform a benchmark linear forwarding strategy and to approach the performance upper bound
in relevant transmit power regimes at the expense of a higher computational complexity. Our results reveal
that having more root nodes in the topology improves the performance of linear and nonlinear forwarding
but requires additional optical fiber links to the CU.

INDEX TERMS Cloud radio access network (C-RAN), millimeter wave (mmWave), multi-hop system,
nonlinear forwarding, ultra dense network (UDN).

I. INTRODUCTION
It is expected that the number of devices that will use the
fifth generation (5G) of wireless communication technology
will reach tens or even hundreds of billions world wide, and
the total data volume demand is predicted to increase to
over 175 Zettabytes until 2025 [1]. To support this tremen-
dous demand for wireless data, there are two promising key
strategies, namely ultra dense deployment and centralized
processing [2]–[6]. Here, ultra dense deployment refers to
the use of low power, dense small cell networks, where the
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distance between the base stations (BSs) and the mobile
devices (MDs) is reduced significantly compared to the cur-
rent networks which leads to higher achievable data rates.
However, as the network becomes denser, the multiple access
interference caused by the MDs in the uplink increases which
results in more complex interference scenarios [2], [3]. Here,
we are considering the uplink and to overcome the problem
of multiple access interference, centralized processing can be

The downlink of similar networks is discussed in [7]–[9], where the
main design goals are to ensure fairness among the MDs, to increase the
system throughput, to improve the network coverage probability, to copewith
the huge multi-hop backhaul traffic, and to optimize the downlink resource
allocation.
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FIGURE 1. Illustration of the considered firefly network architecture,
where FN 7 is the root node. Only a single MD is shown for clarity of
illustration.

used, where all received signals in the network are processed
at a central unit (CU), and thus, interference can be efficiently
mitigated. Cloud radio access networks (C-RANs) are com-
bining these two features, where several remote radio units
are typically directly connected to the CU [4]–[6]. However,
to cover a certain area and to reach high data rates, C-RAN
architectures mostly rely on expensive optical fiber links to
connect each remote radio unit to the CU [6], [10]. To over-
come this cost issue, we consider a network of spatially dis-
tributed remote radio units, which we refer to as firefly nodes
(FNs). The MDs in the coverage area are simultaneously
connected to several FNs via sub-6 GHz links and the FNs are
in turn connected via multi-hop millimeter-wave (mmWave)
links (fronthaul links). A subset of the FNs serve as root
nodes and are connected to other FNs via optical fiber links
to the CU where the joint decoding of the MDs’ messages is
performed. We refer to such a network as firefly ultra dense
network. The two different frequency bands ensure that the
MDs’ access channels do not interfere with the multi-hop
channels between the FNs. However, unlike in C-RAN archi-
tectures, in the considered firefly ultra dense network, the FNs
have to forward the received signals to the root nodes via other
intermediate FNs over capacity-constrained mmWave links.
Thereby, each FN may be connected to several other FNs,
see Figure 1. The intermediate connections between the FNs
are necessary since the coverage range of mmWave links is
typically limited [11]–[14]. Since the positions of the FNs are
fixed, beamforming can be used to achieve high-rate inter-
FN links and to avoid inter-link interference [11]–[14]. Thus,
this multi-hop mmWave topology allows the coverage of a
certain area and can support highMD rates. Expensive optical
fiber links are employed only to connect the FNs serving as
root nodes to the CU, which reduces the overall cost. Having

multiple root nodes reduces the required number of mmWave
link hops, and hence, depending on the topology, may lead to
a lower end-to-end delay for the MDs.

One of the main challenges of firefly networks is that the
amount of data that is received at each FN is potentially
huge, and hence, efficient signal processing is needed at each
FN before the signals can be forwarded over the mmWave
links to the next FNs such that the transmit data rate does
not exceed the mmWave link capacity. In [15], we investi-
gated linear processing techniques for FNs employing linear
filter matrices. We proposed several locally-designed linear
forwarding schemes and evaluated their performance. In this
paper, we will investigate nonlinear forwarding schemes
since we expect a better performance at the expense of
an increased computational complexity. In [16], a similar
network architecture was studied and a data compression
strategy for the intermediate nodes was designed to reduce
the amount of data to be processed in the network. More
precisely, the authors of [16] investigated a decompress-
process-and-recompress (DPR) scheme that applies linear
processing of the decompressed signals before further non-
linear forwarding. In this paper, we investigate a compress-
and-forward (CF) approach, whereby compared to DPR,
the decompressed signals are multiplexed, instead of being
linearly processed, before recompression and forwarding, and
hence, the computational complexity is reduced. In addition,
the authors of [16] assumed a fixed link capacity between
the intermediate nodes of the network, whereas the mmWave
links in the considered firefly ultra dense network are suscep-
tible to fading.

In this paper, we investigate nonlinear processing tech-
niques based on vector quantization at the FNs, where each
FN exploits the correlation between the MD signals received
at different antennas and jointly quantizes the corresponding
inphase and quadrature (IQ) data streams [17], [18]. Themain
contributions of this paper can be summarized as follows:
• We derive an upper bound, based on the cut-set
bound [19], on the achievable sum rate of the considered
firefly network. This upper bound is valid for any linear
and nonlinear strategy and provides significant insights
regarding the performance bottlenecks of the considered
communication system.

• We consider central and local design strategies for the
nonlinear forwarding at the FNs and formulate cor-
responding optimization problems. Due to the high
complexity of the optimization problem for the cen-
tral design strategy, we focus on solving the optimiza-
tion problem for the local design strategy. In particular,
exploiting strong duality, we present an optimal solution
using the Lagrangianmethod to convert the optimization
problem to an unconstrained problem via its dual for-
mulation. More precisely, a closed-form solution for the
primal variables and a bisection algorithm for finding the
optimal dual variables are presented [20].

• We show via simulations that the performance of the
resulting locally-designed nonlinear forwarding scheme
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outperforms the linear forwarding schemes in [15] and
approaches the derived upper bound for the achievable
rate for relevant transmit power regimes.

• We compare the overall delay of different firefly net-
work topologies and investigate the impact of the num-
ber of expensive root nodes on the delay. Furthermore,
we compare the complexity of the linear forwarding
schemes reported in [15] with that of the proposed non-
linear forwarding schemes. This allows us to evaluate
the trade-off that the different forwarding strategies and
firefly network topologies offer in terms of achievable
rate, delay, and cost.

The remainder of this paper is organized as follows.
In Section II, we describe the system model and the channel
models for the radio access and fronthaul links. In Section III,
a performance upper bound for the achievable sum rate of
the firelfy ultra dense network is derived. In Section IV,
we introduce the general problem formulation for the design
of the proposed nonlinear forwarding schemes based on
vector quantization. Then, the optimization problems for
centrally-designed and locally-designed nonlinear forward-
ing are formulated and an efficient solution for the latter prob-
lem is presented. Furthermore, in Section V, the performance
of the proposed nonlinear forwarding scheme is evaluated for
several firefly network topologies. Finally, the main results
are summarized in Section VI.
Notations:We use the following notations throughout this

paper: Bold upper-case and bold lower-case letters are used
for matrices and vectors, respectively. AH and AT are the
Hermitian transpose and transpose of matrix A, respectively,
whereas a∗ denotes the complex conjugate of a. Further-
more, In represents an n × n identity matrix, and 0n×m is
an n × m all-zero matrix. E {·} stands for the expectation
operator, | · | represents the determinant of a matrix or the
cardinality of a set, and C is the set of complex numbers.
Moreover, φ = {} denotes the empty set. Additionally, let
I be an arbitrary set of integers, then Blockdiag(An, n ∈ I)
is a block-diagonal matrix with An, ∀n ∈ I, on the
main diagonal, diag(an, n ∈ I) is a diagonal matrix with
an, ∀n ∈ I, on the main diagonal, and 6x := E

{
xxH

}
denotes the covariance matrix of zero-mean random vector
x. Furthermore, CN (a,8) represents a complex Gaussian
distributed random variable (RV) with mean vector a ∈ Cm×1

and covariance matrix 8 ∈ Cm×m. In addition, I (X;Y )
represents the mutual information between RVs X and Y ,
f (x) is the probability density function of RV X , and f (x, y)
denotes the joint probability density function of RVs X and
Y . Vercut(An, n ∈ I) := [AT

n1 , . . . ,A
T
n|I| ]

T with a set I ={
n1, . . . , n|I|

}
and matricesAn, n ∈ I. Moreover, b·c denotes

the floor function.

II. SYSTEM AND CHANNEL MODELS
We consider an uplink communication system where K
single-antenna MDs send their data to a CU via M FNs, see
Figure 1. We assume that no direct connection between the

MDs and the CU is available. The MDs are connected to
the FNs via sub-6 GHz radio frequency (RF) links and the
FNs communicate with each other through mmWave links.
Furthermore, we assume that a subset of the FNs, referred
to as root nodes, is connected to the CU via optical fiber
links. Each FN is equipped with N RF receive antennas,
Nt mmWave transmit antennas, and Nr mmWave receive
antennas. M = {1, 2, . . . ,M} denotes the index set of all
FNs in the considered communication system. Moreover,
E =

{
(n,m)|an,m = 1

}
is the set of all available edges, where

an,m = 1 specifies that the link from FN n to FN m is
available, whereas an,m = 0 means that FN n and FN m are
not connected. Note that the notation (n,m) describes that FN
n transmit its signals to FNm via mmWave link. Furthermore,
N ⊂ M is the index set of root nodes. The indices of root
nodes are denoted as ν1, . . . , νT , i.e.,N = {ν1, . . . , νT } with
|N | = T .
We consider a wideband multicarrier communication sys-

tem with Nf = WRF

WRF
sub

orthogonal subcarriers for the RF link

and Nρ = WmmW

WmmW
sub

orthogonal subcarriers for the mmWave

link, respectively, i.e., orthogonal frequency-division multi-
plexing (OFDM) is applied in the sub-6 GHz band as well
as in the mmWave band. Here, WRF is the total available
RF bandwidth and WmmW is the total available mmWave
bandwidth. Moreover, WRF

sub and WmmW
sub are the bandwidths

of each RF and mmWave subcarrier, respectively. In addition,
due to the N RF receive antennas, N RF signals have to
be processed at each FN. For the mmWave links between
the FNs, we assume single-input single-output (SISO) com-
munication, where a single stream is transmitted and the
multiple antennas at the mmWave transceivers are used for
beamforming and enhancing the overall link budget (see
the detailed description in the following). Since generally,
in ultra dense networks, we have Nρ > Nf to forward the
RF symbols over a mmWave link from one FN to another
FN, the RF symbols can be multiplexed across the frequency
and time domain of the mmWave channel. In particular, there

are NL =
⌊
WmmW

WRF

⌋
=

⌊
Nρ
Nf
·

TRF
sub

TmmW
sub

⌋
mmWave symbols per

N -dimensional RF vector symbol available for frequency and
time multiplexing. Here, TRF

sub =
1

WRF
sub

and TmmW
sub =

1
WmmW

sub
are the durations of an RF OFDM symbol and a mmWave
OFDM symbol, respectively. Furthermore, we enumerate the
RF subcarriers as Nf =

{
1, . . . ,Nf

}
. For the subsequent

investigations, we assume that each MD k is only active in
a certain subset of RF subcarriers, Fk ⊆ Nf . Hence, MD k
is active on Fk = |Fk | subcarriers. For subcarrier allocation,
ck,s indicates whether MD k is active on subcarrier s or not,
i.e., ck,s = 1 means that MD k is active on subcarrier s and
ck,s = 0 implies that MD k is not active on subcarrier s.
The set of MDs which are active on subcarrier s is given by
Ks =

{
k ∈ K|ck,s = 1

}
, where K is the set of all MDs in the

communication system. The number of MDs active on sub-
carrier s is given by Ks = |Ks|. Note that the layer structure
of our network will be discussed in detail in Section V-A1.
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In the following, we introduce the channel models for
the radio access and mmWave links, respectively, where we
assume flat fading for each subcarrier. For simplicity of
presentation, the subsequent equations do not include the
subcarrier index. Moreover, we do not consider the problem
of subcarrier allocation. Furthermore, we assume uniform
power allocation across different mmWave subcarriers and
RF subcarriers, respectively.

1) RADIO ACCESS LINKS
The received RF symbol vector on subcarrier s at FN m is
denoted by yRFFNm ∈ CN×1, and can be modeled as

yRFFNm = HFNmx+ zFNm, (1)

where vector x ∈ CKs×1 contains the transmit symbols xk of
all MDs which are active on subcarrier s. The transmit sym-
bols of the k-th MD, xk ∈ C, are independent and identically
distributed (i.i.d.), zero-mean, complex Gaussian RVs. The
average power of transmit symbol xk is constrained by the
maximumRF transmit power of the k-thMD,PRFk , divided by
the number of used RF subcarriers. In addition, zFNm ∈ CN×1

is the additive white Gaussian noise (AWGN) vector at FN
m, which is assumed to be independent from the transmitted
symbol vector x, i.e., zFNm ∼ CN

(
0, σ 2

RFIN
)
, where σ 2

RF
is the variance of each entry of zFNm. HFNm ∈ CN×Ks is
the channel coefficient matrix corresponding to the RF links
between all MDs active on subcarrier s and FN m. Channel
matrix HFNm can be written as HFNm = [hi1,m, . . . ,hiKs ,m],
where i1, . . . , iKs are the indices of the MDs which transmit
on subcarrier s. Here, hk,m ∈ CN×1 is a vector containing
the coefficients of the channel from the k-th MD to FN m.
For the average power gain of hk,m, we employ the formula
in [21, Equation (2)]. Due to the short distances between the
MDs and FNs, the probability of a line-of-sight (LOS) link
between the MDs and the FNs, denoted as PLOS, is high.
Hence, for the RF links, we adopt a probabilistic model such
that 80% of the channels are Rician fading and 20% of the
channels are Rayleigh fading modeling LOS and non-LOS
scenarios, respectively [21]–[23]. Furthermore, we assume a
Rician K -factor of KRF = 6 dB [21] for the RF LOS links.

2) mmWave LINKS
Measurement results in [11] have shown that mmWave
LOS channels are very directional and include only few
relevant components due to reflections. The number and
strength of such components decreases with decreasing dis-
tance between transmitter and receiver. Thus, we assume the
presence of only one direct path from the transmitter to the
receiver. In addition, we assume ideal beamforming, such
that the mmWave transmit antenna array with Nt antennas
and the mmWave receive antenna array with Nr antennas
can be equivalently modeled as single antennas with corre-
spondingly large antenna gains, respectively. Consequently,

The design of power and subcarrier allocation schemes for firefly ultra
dense networks is beyond the scope of this paper but constitutes an interesting
research problem for future work.

we model the mmWave links between the FNs as SISO
links. Each FN is equipped with several shielded transmit
and receive antenna arrays to connect to other FNs. Note
that the number of shielded transmit and receive antenna
arrays at an FN is depending on its number of incoming and
outcoming mmWave links, defined by the topology. Hence,
the mmWave links are assumed to be independent and to
not interfere with each other. Moreover, the FNs employ full
duplex transmission, where self-interference is assumed to be
negligible because of the shielding and high directionality of
transmission. Hence, the mmWave signal received at FN m
from FN n, ymmW

(n,m) , ∀(n,m) ∈ E , is an NL-dimensional vector
containing NL frequency and time multiplexed signals and is
given by

ymmW
(n,m) = G(n,m)xmmW

(n,m) + z(n,m) ∈ CNL×1, ∀(n,m) ∈ E . (2)

Here, xmmW
(n,m) ∈ CNL×1 is Gaussian distributed and

denotes themmWave transmit vector withNL elements which
are transmitted over NL different mmWave time-frequency
resource elements from the n-th FN to the m-th FN. Further-
more, G(n,m) = diag(g(1)(n,m), g

(2)
(n,m), . . . , g

(NL )
(n,m)) ∈ CNL×NL ,

where g(i)(n,m) ∈ C is the mmWave channel gain between FN
n and FN m for mmWave time-frequency resource element i.
Moreover, z(n,m) ∈ CNL×1 denotes the zero-mean complex
AWGN vector at FN m for the mmWave link from FN n
to FN m, i.e., z(n,m) ∼ CN

(
0, σ 2

mmWINL
)
, where σ 2

mmW
denotes the variance of the mmWave AWGN. We assume
that z(n,m) is independent of the transmit signal vector xmmW

(n,m) .
Furthermore, due to the high probability of having an LOS,
we assume Rician fading for the mmWave links [12] with a
Rician K -factor of KmmW = 10 dB [24]. We assume uni-
form power allocation across different mmWave subcarriers.
Hence, the average power of the mmWave transmit signal
from FN n to FN m, xmmW

(n,m) is constrained as

E−1mm
{
(xmmW

(n,m) )
HxmmW

(n,m)

}
≤
NLPmmW

n

Nρ
, ∀(n,m) ∈ E, (3)

where PmmW
n is the maximummmWave transmit power of the

n-th FN per link.

III. PERFORMANCE UPPER BOUND
In this section, we derive an upper bound on the achievable
sum rate of the firefly network. This upper bound will allow
us to investigate which links of the firefly network are the
performance bottlenecks. In the following, we first introduce
some variables which we require to formally present the pro-
posed performance upper bound for the firefly network. Let
S be a subset ofM andD contain all the remaining elements
of M which are not in S. In other words, S ∪ D =M and
S ∩D = φ hold. These two sets describes a cut, whereby the
FNs are separated namely into the sets of the transmitting FNs
S and the receiving FNs D. As an example, Fig. 2 illustrates
one cut in a firefly network with eight FNs. Furthermore,
hsk,S denotes a vector of length |D| · N containing all the
RF channel coefficients from MD k to the FNs in set D at
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FIGURE 2. Possible cut of the firefly network model specified by
S = {1, 2, 3, 4} and D = {5, 6, 7}.

subcarrier s, whereas gs(m,n),S is the mmWave channel gain
from FN m in S to FN n in D on subcarrier s. Furthermore,
letH andG contain all RF andmmWave channel coefficients,
respectively. Finally, let R̄k denote the achievable ergodic rate
ofMD k to the CU. Exploiting these definitions, the proposed
upper bound based on the cut-set principle [19] is provided
in the following theorem.
Theorem 1: Assuming uniform power allocation across all

RF and mmWave subcarriers, respectively, the achievable
ergodic sum rate of the MDs to the CU for the firefly network
specified by graph (M, E,N ) is upper bounded by

K∑
k=1

R̄k ≤ CMFMC (4)

where

CMFMC
=EH,G

{
min
∀S⊂M\N

(
CMAC
S (H)+ CmmW

S (G)
)}
,

(5)

and

CMAC
S (H) =

Nf∑
s=1

WRF

Nf

· log2

∣∣∣∣∣I|D|·N+
K∑
k=1

ck,s
PRFk
Fkσ 2

RF

hsk,S
(
hsk,S

)H∣∣∣∣∣ , (6)
CmmW
S (G) =

Nρ∑
s=1

WmmW

Nρ

∑
m∈S

∑
n∈D

am,n

· log2

(
1+

PmmW
m

Nρσ 2
mmW

|gs(m,n),S |
2

)
, (7)

respectively.
Proof: The proof is provided in Appendix A.

Corollary 1: Under the same assumptions as in Theo-
rem 1, CMFMC is further upper bounded by

CMFMC
≤ CUPP, (8)

where

CUPP
= min

∀S⊂M\N

(
EH

{
CMAC
S (H)

}
+EG

{
CmmW
S (G)

})
,

(9)

and CMAC
S (H) and CmmW

S (G) are defined as in (6) and (7),
respectively.

Proof: The proof is provided in Appendix B.
Remark 1: Since both the RF and the mmWave channel

coefficients are random variables, CMAC
S (H) and CmmW

S (G)
vary and their minimum with respect to S may change from
one channel realization to the next. In this paper, we assume
that each codeword spans one channel realization and thus,
Theorem 1 provides a realistic estimate of the data flow
through the network, i.e.,CMFMC is the relevant upper bound.
Note that by using Theorem 1, we only obtain a probabilistic
measure of which links constitute the bottleneck cut. In com-
parison, Corollary 1 computes the expectation of the capacity
of each cut, and thus, provides the performance bottleneck
of the firefly network over a long time period. However,
Corollary 1 ignores the instantaneous behavior of the firefly
network at a given time step and thus, it is only applicable
for a system design, where the instantaneous behavior of the
network can be compensated, e.g., by using codewords that
span many channel realizations. In this case, CUPP becomes
the upper bound for the achievable ergodic sum rate. To facil-
itate the discussion of our simulation results in Section V-D,
we define further CMAC

= EH

{
CMAC
φ (H)

}
and refer to it

as the virtual MAC capacity. Note that if S = φ, the set of
transmitting FNs is empty and all FNs of the topology are
in set D, the set of receiving FNs. Thus, the corresponding
cut describes the RF access from all MDs to all FNs, and
hence, the MAC channel. In addition, we define CFN

=

min
∀S⊆{M\ν1,...,νT }∧S 6=φ

(
EH

{
CMAC
S (H)

}
+EG

{
CmmW
S (G)

})
and refer to it as the firefly network capacity. Note that
by excluding the cut, where S = φ, CFN describes the
capacity of the mmWave fronthaul part of the network.
Thereby, the upper bound in (8) can be written as CUPP

=

min{CMAC,CFN
} [25], [26]. This implies that when CUPP

=

CMAC holds, the RF access part of the firefly network is the
performance bottleneck. In contrast, when CUPP

= CFN

holds, the mmWave fronthaul part of the network is the
bottleneck.

IV. NONLINEAR FORWARDING VIA QUANTIZATION
In this section, we propose a nonlinear processing scheme
for the FNs based on quantization of the received signals
to reduce the amount of data that has to be forwarded to
other FNs. The received MD symbols on different RF sub-
carriers are processed at each FN independently. Each FN
receives N versions of the same MD symbol on a given RF
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subcarrier via the N RF antennas. In addition, depending on
the network topology, it may also receive several already
quantized versions of this MD symbol from other FNs it
is connected to. On the other hand, each FN has a limited
mmWave link capacity available for forwarding its received
symbols to other FNs. As a result, the main challenge of
nonlinear processing via quantization is how to compress the
received data streams such that the resulting data rate does not
exceed the fronthaul capacity of the outgoing mmWave link.
Therefore, the covariance matrix of the quantization noise,
the so-called distortionmatrix of each FN, has to be optimized
for each outgoing mmWave link.

A. NONLINEAR FORWARDING AT FN m
Each FN employs a sampling rate of fq ≥ WRF

sub. However,
considering a given FN m, the information content of yFNm,
which is to be forwarded over the mmWave link (m, n), is in
general larger than the limited fronthaul capacity, denoted as
CmmW
m,n , i.e.,

fq · H (yFNm) > CmmW
m,n , (10)

where H (yFNm) is the entropy of yFNm. This is because yFNm
is a continuous random variable and hence, its entropy is
infinitely large, see (1) and (2). However, the information
content of yFNm, which originates from the MDs’ transmit
symbols, is finite, of course. Thus, to fully exploit the fron-
thaul capacity, all received data streams are jointly com-
pressed. In particular, the overall received signal composed
of the received signals from the MDs and the decompressed
quantized signals received from neighboring FNs is com-
pressed before it is forwarded to other FNs [16]. Thereby,
each FN has to be informed about the adopted quantization
codebook. We employ vector quantization, which is a lossy
compression technique. In fact, the higher the capacity of the
fronthaul links, the higher the resolution of the compressed
signal can be. Thus, a key problem in vector quantization
is the design of a good codebook of representative vectors
which are typical for the data to be sent, and in this way,
reduce the distortion caused by quantization [17]. If there are
more than one outgoing mmWave link at an FN, the overall
received signal at this FN is compressed for each available
outgoing mmWave link separately via independent code-
books [16]. Hence, the overall received signal at FN m is
compressed separately for each outgoing mmWave link as
the distortion matrix Q(m,n) caused by compressing yFNm for
forwarding to FN n depends on the mmWave link capacity
CmmW
m,n , cf. Section IV-B. We assume that this results in inde-

pendent quantization noises at FNs which have a mmWave
link connection to the same FN [16]. Moreover, we define Em
as the set of all available mmWave links which influence the
signal received at FN m, due to the multi-hop structure of the
given topology. Furthermore, for simplicity, we assume that
the considered FN topologies also exhibit at most two incom-
ing mmWave links per FN. Thus, considering one RF time-
frequency resource, cf. Subsection II-1, the overall received

FIGURE 3. Illustration of the nonlinear processing at the m-th FN. ŷ(m,n)
is transmitted to FN n.

signal at FN m, yFNm, is given by

yFNm =
[
(ŷFNm)T, (yRFFNm)

T
]T
, ∀m ∈ {1, . . . ,M} , (11)

where the quantized signal received from other FNs at FN m,
ŷFNm is defined as

ŷFNm = Vercut
(
ŷ(j,m), j ∈M : (j,m) ∈ E

)
. (12)

Here, yRFFNm ∈ CN×1 is the received RF signal at FN m

defined as yRFFNm =
[
yRF(1)FNm , . . . , y

RF(N )
FNm

]T
, where yRF(n)FNm ∈

C, n ∈ {1, . . . ,N }, is the received signal at RF receive
antenna n of FN m. Moreover, ŷ(j,m) for (j,m) ∈ E is the
quantized version of yFNj to be forwarded over mmWave link
(j,m) to FN m. Since the fronthaul capacity constraint is met,
cf. Section IV-B, the decompressor at the receiving FN can
identify the transmitted quantized signal in its quantization
codebook. This means that at the receiving FN, the perfectly
decompressed mmWave signal from a transmitting FN is
identical to the quantized transmit signal of this transmitting
FN. Figure 3 illustrates the forwarding scheme at FN m,
where we assume that FN m has an incoming mmWave link
from FN j and ŷ(m,n) is nonlinearly processed for transmission
to FN n. In general, yFNm is quantized at FN m before it is
forwarded over the mmWave link to FN n and based on rate-
distortion theory, the quantized signal, ŷ(m,n), is modeled as

ŷ(m,n) = yFNm + n(m,n), (13)

where n(m,n) ∈ C(|Em|+1)N×1 denotes the Gaussian quanti-
zation noise of the compressed signal transmitted from FN
m to FN n. n(m,n) is independent of yFNm and follows a
Gaussian distribution where n(m,n) ∼ CN (0,Q(m,n)) with
Q(m,n) = E

{
n(m,n)nH(m,n)

}
being the distortion matrix of the

compressed transmit signal of FN m for FN n [26]. Thus,
the quantization noise statistics are fully characterized by
Q(m,n). Note that since we assume that all elements of yFNm
are jointly quantized, Q(m,n) is in general non-diagonal [18].

In general, the overall received signal at FN m, yFNm, m ∈
{1, . . . ,M}, is an (|Em|+ 1)N -dimensional vector, which can
be modeled as

yFNm = H̄FNmx+ z̄FNm + n̄FNm, (14)
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where H̄FNm ∈ C(|Em|+1)N×Ks , z̄FNm ∈ C(|Em|+1)N×1, and
n̄FNm ∈ C(|Em|+1)N×1, n̄FNm ∼ CN (0, Q̄FNm ), are the stacked
RF channels, the stacked RF noise vectors, and the stacked
quantization noise vectors of the mmWave links which have
an influence on the signal received at FN m, respectively.
Here, Q̄FNm = E

{
n̄FNmn̄HFNm

}
is the distortion matrix of the

quantization noise received at FN m. Due to the received N -
dimensional RF signal, which is stacked as the ‘‘last’’ signal
in yFNm, see (11), Q̄FNm is a block diagonal matrix where the
‘‘last’’ N × N -dimensional diagonal block is equal to 0N×N .
Assuming that FN m has a mmWave link to FN n, ŷ(m,n) ∈

C(|Em|+1)N×1 in (13) can be modeled as

ŷ(m,n) = H̄FNmx+ z̄FNm + n̄FNm + n(m,n). (15)

The overall received signal at the CU, yCU, comprises the
received signals at all available root nodes ν1, . . . , νT . At the
root nodes, compression is not necessary due to the infinite
capacity of the optical fiber link which connects the root
nodes to the CU. Hence, yCU is defined as

yCU =
[
yTFNν1 , . . . , y

T
FNνT

]T
= H̄x+ z̄+ n̄, (16)

where H̄ ∈ C((|Eν1 |+1)N+···+(|EνT |+1)N )×Ks , z̄ ∈ C((|Eν1 |+1)N+
···+(|EνT |+1)N )×1, and n̄ ∈ C((|Eν1 |+1)N+···+(|EνT |+1)N )×1, n̄ ∼
CN (0, Q̄), are the stacked RF channel matrices, the stacked
RF noise vectors, and the stacked quantization noise vectors
of all RF channels received at the CU, respectively.Moreover,
the total distortion matrix Q̄ = E

{
n̄n̄H

}
is a block diago-

nal matrix, where the blocks corresponding to the received
N -dimensional RF signal are N ×N all-zero matrices, 0N×N .

B. FRONTHAUL LINK CAPACITY CONSTRAINT
As illustrated in Figure 3, at FN m, the signal received
from the access network is multiplexed and then compressed
jointly with the already compressed signal received from
neighboring FN j which is connected to FN m. This multi-
plexing increases the bandwidth requirement from one FN
to the next. Hence, the more the fronthaul link capacities
CmmW
m,n , ∀(m, n) ∈ E are limited, the higher may be the

needed compression rates leading to significant distortions
and potentially low sum rates [29]. Therefore, the compres-
sion across the ultra dense network should be carefully opti-
mized. This can be achieved by optimizing the distortion
matrices such that the received signals are efficiently com-
pressed before forwarding them to the next FNs in the multi-
hop architecture.

Considering vector quantization, the mutual information
between yFNm and ŷ(m,n) is obtained as [29]

I (yFNm; ŷ(m,n))

= log2
|H̄FNm6xH̄H

FNm+6z̄FNm + Q̄FNm+Q(m,n)|

|Q(m,n)|
, (17)

where6x and6z̄FNm are the covariance matrices of the MDs’
signals, x, and the stacked RF noise vectors received at FNm,
z̄FNm, respectively. Based on the source coding theorem [19]

and the channel coding theorem [19], in order to be able
to perfectly decompress ŷ(m,n) at FN n, i.e., for FN n to be
able to identify the quantized signal in its codebook [18],
the following constraint has to be fulfilled:

fqI
(
yFNm; ŷ(m,n)

)
≤ CmmW

m,n , ∀m ∈M\N , (m, n) ∈ E,
(18)

where the fronthaul link capacity of mmWave link (m, n) is
given by

CmmW
m,n =

WmmW

Nf
log2

(
1+

PmmW
m

Nf σ 2
mmW

|g(m,n)|2
)
. (19)

Note that we allocate the same mmWave bandwidth,
WmmW

Nf
, to each RF subcarrier.

In the following subsection, we will formulate optimiza-
tion problems for the design of the distortion matricesQ(m,n),
∀(m, n) ∈ E .

C. PROBLEM FORMULATION AND SOLUTION
In this subsection, we propose an optimization problem for
a central design strategy, where the total distortion matrix Q̄
is to be centrally designed at the CU and thus, is expected
to yield the best performance results. However, the central
design strategy would require global CSI at the CU. More-
over, this optimization problem is difficult to tackle and
requires high complexity. Therefore, we also introduce an
alternative optimization problem for a local design strategy,
where the distortion matrices for each FN, Q̄FNm, ∀ m ∈
M\N , are designed locally at the corresponding FN. The lat-
ter approach entails a lower complexity. Moreover, while the
central design strategy requires global CSI at the CU, for the
local design strategy, a given FNm requires only full receiver
CSI (CSIR) and knowledge of all CmmW

m,n , ∀(m, n) ∈ E . How-
ever, it is expected that the local design strategy yields a lower
achievable sum rate than central design strategy, of course.

1) OPTIMIZATION PROBLEM
We first consider the so-called central design strategy, where
we assume that all distortion matrices are computed centrally
at the CU and full CSI is available at the CU.

a: CENTRAL DESIGN STRATEGY
We employ the sum rate as the performance metric for opti-
mization of Q̄. Hence, the sum rate of all MDs is maxi-
mized with respect to the distortion matrices Q(m,n), ∀m ∈
M\N , (m, n) ∈ E , to find the optimal compression strate-
gies to be used at the FNs. Moreover, we fix fq = WRF

sub and
note that the CU performs joint decoding of the messages of
all MD signals based on its overall received signal yCU.

Finding quantization schemes which correspond to the determined dis-
tortion matrices, i.e., designing practical quantization code books is beyond
the scope of this paper but constitutes an interesting research problem for the
future.
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The optimal distortion matrices, Qopt
(m,n), ∀m ∈

M\N , (m, n) ∈ E , or equivalently, the optimal total distor-
tion matrix Q̄maximizing the sum rate, are obtained from the
following optimization problem:

max
Q(m,n),∀m∈M\N ,(m,n)∈E

R(Q̄)

subject to fqI (yFNm; ŷ(m,n)) ≤ CmmW
m,n ,

∀m ∈M\N , ∀(m, n) ∈ E (20)

where the rate of the proposed nonlinear forwarding scheme
as a function of the total distortion matrix, denoted as R(Q̄),
is calculated as

R(Q̄) = WRF
sublog2|I(|E |+1)N + H̄6xH̄H(6z̄ + Q̄)−1|. (21)

Based on the Shannon-Hartley theorem [19], equation (21)
constitutes as the formula of the channel capacity, where
H̄6xH̄H(6z̄+Q̄)−1 describes the signal-to-noise-ratio (SNR)
of the overall firefly ultra dense network. The problem in (20)
is difficult to solve since jointly optimizing all distortion
matrices, Q(m,n), ∀(m, n) ∈ E , entails a high complexity
due to the high dimensionality of the optimization problem.
Furthermore, note that each distortion matrix, Q(m,n),∀m ∈
M\N , (m, n) ∈ E , depends also on all previous distortion
matrices in the forwarding topology network which have an
impact on the received signal at FN m. This dependency
of a distortion matrix on other distortion matrices further
contributes to the high complexity of the problem in (20).
In addition, the problem in (20) is non-convex and would
require global CSI at the CU. Hence, for practical reasons,
we focus on solving the following optimization problem for
the so-called local design strategy.

b: LOCAL DESIGN STRATEGY
In comparison to problem (20), for the local design strategy,
we design the distortion matrices at each FN for each outgo-
ing mmWave link for an efficient compression of the received
signals. Therefore, an optimality criterion is needed to quan-
tify the performance. In (20), the optimality criterion was the
achievable sum rate at the CU. For the local design strategy,
since the sum rate depends on the compression strategy used
by the FNs via the distortion matrices Q(m,n), ∀m ∈ M\N ,
∀(m, n) ∈ E , ideally, at FN m we would locally design
the distortion matrix for each outgoing mmWave link (m, n)
such that the achievable sum rate at the CU is maximized.
However, using the sum rate at the CU as the objective func-
tion leads to an untractable optimization problem in terms of
Q(m,n) at FN m, ∀m ∈ M\N , ∀(m, n) ∈ E . Thus, we adopt
the maximization of the mutual information, I (x; ŷ(m,n)),
between the MDs’ signals and the quantized version of the
overall received signal at FN m for forwarding to FN n as
optimality criterion instead. In other words, we maximize the
information content of the quantized signal while meeting the
fronthaul link capacity constraint. Note that fq is again fixed
to WRF

sub, i.e., fq = WRF
sub.

For FN m, ∀m ∈ M\N , the optimal distortion matrices,
Qopt

(m,n), ∀ (m, n) ∈ E , maximizing the mutual information

between the MDs’ signals and the signal quantized at FN m
for forwarding to FN n, I (x; ŷ(m,n)), are obtained from the
following optimization problem:

max
Q(m,n)

I (x; ŷ(m,n))

subject to fqI (yFNm; ŷ(m,n)) ≤ CmmW
m,n , (22)

where the objective function I (x; ŷ(m,n)) is given by

I (x; ŷ(m,n))

= log2
|H̄FNm6xH̄H

FNm+6z̄FNm+Q̄FNm +Q(m,n)|

|6z̄FNm+Q̄FNm +Q(m,n)|
. (23)

We assume that all Q(m,n), ∀(m, n) ∈ Em are optimized
according to (22). Furthermore, note that (22) is formulated
for each outgoing mmWave link of FN m separately. Thus,
the optimization problem in (22) is easier to solve than the
optimization problem in (20) since the distortion matrix of
a given mmWave link is designed which requires only the
CSIR at the transmitting FN and knowledge of the fronthaul
link capacity of the considered mmWave link, i.e., less CSI
is needed compared to (20). Moreover, the dimensionality of
the optimization problem in (22) is reduced by a factor of |E |
compared to that of (20).

2) SOLUTION VIA DUAL PROBLEM
Problem (22) is a non-convex optimization problem inQ(m,n),
as the objective function of the maximization problem is con-
vex inQ(m,n) instead of concave. In the following, we present
a method that can handle the non-convexity of problem (22).
Here, the constrained optimization problem in (22) is con-
verted to an unconstrained problem using the dual of the
problem. Then, the primal variables can be computed in
closed form. We show that the dual problem is monotonic
in the dual variable. Hence, we propose a bisection algorithm
to find the optimal value. Moreover, the dual problem results
in an optimal solution since strong duality is valid. In this
subsection, we first formulate the Lagrangian, then we pro-
pose an iterative optimization algorithm for maximizing the
Lagrangian.

The Lagrangian of optimization problem (22) is given by

L(Q(m,n), µ)=Fo
(
Q(m,n)

)
−µ
(
Fc
(
Q(m,n)

)
−CmmW

m,n /fq
)
,

(24)

where µ is the Lagrange multiplier, the objective function is
defined as

Fo
(
Q(m,n)

)
= log2|H̄FNm6xH̄H

FNm+6z̄FNm+Q̄FNm+Q(m,n)|

log2|6z̄FNm+Q̄FNm+Q(m,n)|, (25)

and the constraint function is given by

Fc
(
Q(m,n)

)
= log2|H̄FNm6xH̄H

FNm+6z̄FNm+Q̄FNm+Q(m,n)|

− log2|Q(m,n)|. (26)

The dual function of (22) is stated as

D(µ) = max
Q(m,n)�0

L(Q(m,n), µ), (27)
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and the corresponding dual problem is given by

min
µ≥0

D(µ). (28)

The overall approach for solving (22) is to find the dual
function (27) and then to search in an outer loop for the
optimal µ denoted as µ∗ which results in

Fc
(
Q∗(m,n)

)
= CmmW

m,n /fq. (29)

Note that for a fixed Lagrange multiplier µ, a stationary
point of the Lagrangian is found by (27) since the original
problem is non-convex. µ∗ must be in [0, 1) since µ ≥ 0
holds due to the dual feasibility condition [30]. Moreover,
in case of µ ≥ 1,Q∗(m,n) would be infinite and Fc

(
Q∗(m,n)

)
=

0, see (48) in Appendix C. The outer loop for searching forµ∗

corresponds to a one-dimensional root finding problem that
can be solved by using a standard bisection method since the
dual function is a convex function in µ.
Now, we provide a closed-form solution for theQ(m,n) that

maximizes the Lagrangian in (24) for a fixed µ ∈ [0, 1).
The Lagrangian in (24) can be rewritten as

L(Q(m,n), µ) = −µ)log2|A+Q(m,n)| + µlog2|Q(m,n)|

−log2|B+Q(m,n)| + µCmmW
m,n /fq, (30)

where A and B are defined as

A = H̄FNm6xH̄H
FNm +6z̄FNm + Q̄FNm, (31)

B = 6z̄FNm + Q̄FNm. (32)

The key for maximizing (30) is the following simultaneous
diagonalization of A and B based on [31, Corollary 7.6.5]:
Lemma 1 (Generalized Eigen-Decomposition): For Her-

mitian positive definite matrices A ∈ C(|Em|+1)N×(|Em|+1)N

and B ∈ C(|Em|+1)N×(|Em|+1)N , there exists a non-singular
matrix C ∈ C(|Em|+1)N×(|Em|+1)N such that CHAC = 3 and
CHBC = I(|Em|+1)N , where3 is a diagonal matrix. The diag-
onal elements λi of 3 are called the generalized eigenvalues,
see the following proof for their definition. Moreover, λi ≥ 1
for i = 1, . . . , (|Em| + 1)N .

Proof: A and B are both Hermitian positive definite
matrices. Thus, let B−1 = RHR be a unique Cholesky-
decomposition ofB−1, whereR is an upper triangular matrix.
Now, consider the eigen-decomposition RARH

= V3VH.
Note that RARH is a complex normal matrix (a complex
matrix A is normal if it satisfies AHA = AAH). Then, C =
RHV satisfies both CHAC = 3 and CHBC = I(|Em|+1)N .
Moreover, since C is non-singular, A � B implies 3 �
I(|Em|+1)N . �
Now,we apply the approach in [20], [32], [33] to reduce the

matrix optimization problem to a scalar problem and to solve
the resulting scalar optimization problem. For µ ∈ (0, 1],
Lagrangian (30) can be written as (33),

L = (1− µ)log2
|A+Q(m,n)|

|B+Q(m,n)|
+ µlog2

|Q(m,n)|

|B+Q(m,n)|

+µCmmW
m,n /fq

Algorithm 1 Algorithm of Dual Problem
1: initialize µ ∈ [0, 1) and error tolerance 0 ≤ εT � 1.
2: Compute A and B from (31) and (32).
3: Given A and B, compute C and 3 from Lemma 1.
4: repeat
5: Given µ and λi, compute optimal 6(i,i),∗

Q̂
from (48).

6: Given 6(i,i),∗
Q̂

and C, compute optimal Q∗(m,n) from (49).
7: Update µ using bisection.
8: until Fc

(
Q∗(m,n)

)
− CmmW

m,n /fq ≤ εT .

= (1− µ)log2
|CH(A+Q(m,n))C|
|CH(B+Q(m,n))C|

+µlog2
|CHQ(m,n)C|

|CH(B+Q(m,n))C|
+ µCmmW

m,n /fq

(a)
= (1− µ)log2

|3+ Q̂(m,n)|

|I(|Em|+1)N + Q̂(m,n)|

+µlog2
|Q̂(m,n)|

|I(|Em|+1)N + Q̂(m,n)|
+ µCmmW

m,n /fq

= (1− µ)log2|3Q̂
−1
(m,n) + I(|Em|+1)N |

−log2|Q̂
−1
(m,n) + I(|Em|+1)N | + µC

mmW
m,n /fq

(b)
≤ (1− µ)log2|36

−1
Q̂
+ I(|Em|+1)N |

−log2|6
−1
Q̂
+ I(|Em|+1)N | + µC

mmW
m,n /fq,

where (a) follows from Lemma 1 and by defining Q̂(m,n) =

CHQ(m,n)C, with C as in Lemma 1, and inequality (b) fol-
lows from [33, Lemma 5], where 6Q̂ is due to the eigen-

decomposition Q̂(m,n) = U6Q̂U
H. Note that in (b) equality

holds for U = I(|Em|+1)N . In particular, for any nondiagonal
Q̂(m,n), there exists a diagonal matrix 6Q̂ that achieves a

higherL. Thus, without loss of optimality, Q̂(m,n) is restricted
to be diagonal.
Proposition 1: For a non-singular matrixC ∈ C(|Em|+1)N×

(|Em|+1)N and optimal 6Q̂ denoted as 6∗
Q̂
, the optimal distor-

tion matrix Q(m,n) is given by

Q∗(m,n) =
(
C−1

)H
6∗

Q̂
C−1. (33)

Proof: The proof is provided in Appendix C.
The overall iterative approach is summarized in Algo-

rithm 1, where we initialize first µ with a suitable value,
compute the matrices A and B, and apply Lemma 1 to obtain
C and3. Then, we iteratively compute the optimal distortion
matrix Q(m,n) and update µ by using bisection until the con-
straint in (22) is fulfilled within the desired error tolerance
εT . Moreover, the following theorem holds.
Theorem 2: Algorithm 1 is guaranteed to converge

within the tolerance εT to the optimal solution of the
original problem (22) which fulfills equation (29), i.e.,
Fc
(
Q∗(m,n)

)
= CmmW

m,n /fq. In addition, strong duality is valid
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TABLE 1. Computational complexity comparison, where W := (|Em| + 1)N , D := M · N , F := |E|NL, R := N + NLnlink
m , and J := NnFN

l + NLnin
l [15].

between the primal problem in (22) and the dual problem
in (28).

Proof: The proof is provided in Appendix D.

D. COMPLEXITY COMPARISON OF LOCALLY-DESIGNED
NONLINEAR AND LINEAR FORWARDING
In this section, we compare the computational complexity
of the proposed nonlinear forwarding scheme based on the
local design strategy in Section IV-C2 with the two locally
designed linear forwarding strategies proposed in [15]. For
simplicity, we denote the proposed local design strategy
as ‘‘NONLINEAR’’. The linear forwarding strategy, where
the mean squared error (MSE) is minimized at each FN
before dimension reduction via principal component anal-
ysis (PCA), is referred to as ‘‘LOCAL PCA’’ [15]. More-
over, ‘‘LOCAL MMSE R‘’ denotes the linear forwarding
scheme, where a dimension reduction is accomplished via
a pre-defined combining matrix, and subsequently the MSE
is minimized [15]. Table 1 summarizes the computational
complexities (number of multiplications) of the three con-
sidered forwarding strategies at an FN. In Table 1, O(·) is
the big-O notation and Ti stands for the number of itera-
tions required for Algorithm 1 to converge. In addition, nlinkm
denotes the number of incoming mmWave links at FN m,
nFNl is the number of FNs in layer l, and ninl denotes the
number of incoming mmWave and delay links of layer l [15].
LOCAL MMSE requires a matrix inversion of dimension
R × R. Furthermore, LOCAL PCA requires a singular value
decomposition (SVD) of dimension Ks × Ks. NONLINEAR
requires two matrix inversions, a Cholesky-decomposition,
and an Eigen-decomposition, each of dimension W × W .
The computational complexities of matrix inversion, SVD,
Cholesky-decomposition, and Eigen-decomposition are pro-
vided in [34]. Together with the computational complexi-
ties of the required matrix multiplications, we obtain the
computational complexity results of the considered forward-
ing schemes given in Table 1. Table 1 shows that LOCAL
PCA entails a slightly higher computational complexity than
LOCAL MMSE R. However, the simulation results in [15]
reveal that LOCAL PCA also achieves a higher performance
than LOCAL MMSE R. The comparison between the com-
plexities of the linear and nonlinear forwarding scheme is
governed by the number of NL , which does not play a role for
the complexity of the nonlinear forwarding scheme. In this
case, however, for NONLINEAR the number of iterations
steps Ti required for Algorithm 1, according to Table 1, is not

Layer γ in the network is specified by a set Vγ which contains the indices
of the FNs which belong to the layer, see Section V-A1 and Definition 1.

negligible, such that a higher complexity already arises for
more than 160 iterations. On the other hand, our simulation
results in Section V show that NONLINEAR also achieves
a significantly higher performance than LOCAL PCA. Thus,
the schemes LOCAL MMSE R, LOCAL PCA, and NON-
LINEAR offer a trade-off between performance and com-
plexity. Moreover, the simulation results in Section V show
that for power constellations, where the RF transmit power
is high in respect to the mmWave transmit power, the perfor-
mance gain of NONLINEAR over LOCAL PCA is signifi-
cant, which justifies the high complexity of NONLINEAR.

V. NUMERICAL RESULTS
In this section, we first introduce several firefly network
topologies with one andmultiple root nodes, respectively. For
these proposed topologies, we investigate the performance of
the proposed nonlinear forwarding strategy NONLINEAR.
In addition, we also investigate the performance of LOCAL
PCA which, for simplicity, we refer now to as ‘‘LINEAR‘’ in
the following [15]. Moreover, we compare the performance
of NONLINEAR and LINEAR to the upper bound derived
in Section III. We do not consider LOCAL MMSE R, since
LOCAL PCA outperforms LOCAL MMSE R as was shown
in [15].

A. TOPOLOGIES FOR THE FRONTHAUL LINK
In the following, different firefly network topologies are
presented for the fronthaul links. In particular, we consider
different variations of a Street Canyon Scenario as well as a
Small Scale Street Canyon Scenario, cf. Figure 4. However,
first, we introduce a layer structure which is useful to analyze
the delays in the firefly network topologies.

1) LAYER STRUCTURE
The routing layer structure of the network provides insights
regarding the overall communication delay introduced by the
multi-hop transmission, and hence, it is useful for comparing
different topologies. We first provide the formal definition of
a layer. In particular, layer γ in the network is specified by a
set Vγ which contains the indices of the FNs which belong to
the layer.
Definition 1 (See [16]): AnFNbelongs to layer 1 if it does

not receive any data from other FNs. An FN belongs to layer
γ if it receives data from at least one FN in layer γ − 1.
Note that an FN may belong to more than one layer. In such
a case, this FN introduces an additional delay since it can
forward the signals to the FNs in the next layer only after
it has received the signals from all FNs in the previous layers.
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FIGURE 4. Street Canyon Scenario Variant 1 (left) and Small Scale Street Canyon Scenario (right).

TABLE 2. Data flow of MDs’ messages received at FN 1 through the
multi-hop structure of the Small Scale Street Canyon Scenario.

Moreover, we denote the layer which contains all available
root nodes of a topology as layer r , i.e., Vr = {ν1, . . . , νT }.
In Table 2, the data flow of the MDs’ messages received
at FN1 through the multi-hop structure of the Small Scale
Street Canyon Scenario in Figure 4 is illustrated. Table 2
reveals how many packet transmissions are needed for the
MDs’ messages transmitted in the i-th time slot, denoted as
Wi, ∀i ∈ {1, 2, . . . }, to arrive at the CU. For the Small Scale
Street Canyon Scenario, there is a communication delay of 3
time steps, which explains also the 3 layers of this topology,
given by V1 = {1, 3}, V2 = {2}, Vr = V3 = {4}, see right
hand side of Figure 5. Note that, in general, messageWi is also
received at all other FNs in the considered topology. Hence,
Wi is held at a given FN until the FN has received Wi from
all the other FNs from which it receives data via an incoming
link.

2) VARIATIONS OF STREET CANYON SCENARIO
The Street Canyon Scenario comprises 8 FNs, where 4 FNs
are deployed on each side of the street, see Figure 4. In addi-
tion, for all variants of the Street Canyon Scenario, we assume
a coverage area of 200 m× 100 m and the distance between
two neighboring FNs on the same street side is equal to 50 m.
As a consequence of the FN deployment, the link distance
between two FNs on opposite sides of the street is 103 m
following the Pythagorean theorem. Moreover, the positions
of the 8 FNs are identical for all considered variants of the
Street Canyon Scenario. The left hand side of Figure 4 shows
the topology of Street Canyon Scenario Variant 1, where
FN 8, which serves as a root node, is connected via an optical
fiber link to the CU. Due to the large number of mmWave
hops from the FNs to the single root node at the end of

FIGURE 5. Layer structure of Street Canyon Scenario Variant 1 (left) and
of Small Scale Street Canyon Scenario (right).

the communication chain, this topology has 5 layers, see
left-hand side of Figure 5. Hence, this topology entails a large
inherent delay. In Tables 3 and 4, the topology and the layer
structure of the 5 considered Street Canyon Scenario Variants
are given, respectively. Compared to Street Canyon Scenario
Variant 1, Street Canyon Scenario Variant 2 uses FN 1 as
a second root node in addition to FN 8. Therefore, FNs 2,
3, and 4 forward now their received signals to FN 1 instead
of FN 8. Moreover, the links between FN 3 and FN 5 and
between FN 4 and FN 5 have been removed to reduce the
maximum number of hops from any FN to a root node to two.
We note that for this variant, the root nodes are located at the
edges of the area. One benefit of this topology compared to
Street Canyon Scenario Variant 1 is that the corresponding
layer structure contains only 3 layers, and thus, the inherent
delay is reduced.

Street Canyon Scenario Variant 3 has also two root nodes.
However, in order to be able to investigate the impact of the
locations of the root nodes on the sum rate, for Street Canyon
Scenario Variant 3, we choose the two FNs in the center of
the considered area, i.e., FN 4 and FN 5, as root nodes. The
resulting layer structure of Street Canyon Scenario Variant
3 has 3 layers, similar to Street Canyon Scenario Variant 2.
For Street Canyon Scenario Variants 4 and 5, we increase
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TABLE 3. Topology of Street Canyon Scenario Variants 1,2,3,4, and 5.

TABLE 4. Layers of Street Canyon Scenario Variants 1,2,3,4, and 5.

the number of root nodes to four. In Street Canyon Scenario
Variant 4, the root nodes are the four FNs in the center of
the area, i.e., FN 3, FN 4, FN 5, and FN 6. The other
FNs forward their received signals to the nearest root node.
The corresponding layer structure has only two layers. Street
Canyon Scenario Variant 5 constitutes a centralized radio
access network (C-RAN) configuration. Here, FNs 1, 2, 7,
and 8 have been removed and only the four root nodes of
Street Canyon Scenario Variant 4 remain. Note that this topol-
ogy has no mmWave links at all, and hence, the transmission
delay is further reduced compared to the topologies with
mmWave links. This can be observed in the layer structure
in Table 4 which has only one layer containing the four root
nodes.

Overall, the number of distortion matrices or linear fil-
ter matrices (when applying linear forwarding as proposed
in [15]) in the network is reduced when more FNs serve as
root nodes. This is due to the fact that, at the root nodes,
nonlinear or linear processing is not needed as the received
signal can be forwarded directly to the CU over an optical
fiber link with (virtually) unlimited capacity. This reduces the
overall complexity of the system. The impact of the number
of root nodes on the performance will be investigated in
Section V-D.

3) SMALL SCALE STREET CANYON SCENARIO
Furthermore, to provide additional insights into performance,
we also consider a reduced version of the Street Canyon
Scenario with an area of size 75 m× 100 m, which we refer
to as ‘‘Small Scale Street Canyon Scenario’’. The Small Scale
Street Canyon Scenario and the corresponding layer structure
are shown in the right hand sides of Figure 4 and Figure 5,
respectively.

B. SIMULATION SETUP
For simplicity of presentation, we consider subcarrier clus-
tering for the simulation results. Therefore, we split the RF
subcarriers intoNsub subcarrier clusters. Each subcarrier clus-

ter contains Nf ,sub =
Nf
Nsub

subcarriers. We assume that each
MD is allocated to one subcarrier cluster and is only active on
subcarriers which are included in this cluster. Thus, in each
subcarrier cluster, Ksub =

K
Nsub

MDs are active. Additionally,
we assume that the MDs are uniformly distributed over the
entire considered area. For the numerical results, we use
the values of the parameters in Table 5 of the mmWave
links and the RF links, respectively, unless stated otherwise.
For the parameter values in Table 5, we obtain NL = 43.
Remember that NL is the number of mmWave symbols per
N -dimensional RF vector available for frequency and time
multiplexing, cf. Section II. Furthermore, the Rician fading
model used for the RF and mmWave link is applied as in [22]
and for the average power gain based on the path-loss model,
we employ the formula in [21, Equation (2)]. Note that,
for the mmWave links, the average power gain contains a
‘‘natural influence’’ parameter β defined by [β]dB = −(β

′
+

β ′′)dFNn,m , as amultiplicative factor in linear scale [13], which
models influences such as rain and atmospheric absorption
and can be assumed to be constant over a long period of time.
Here, β ′ and β ′′ are the rain and atmospheric absorptions in
dB/m, respectively, and dFNn,m denotes the distance between
FN n and FNm. Moreover, for the RF links, σ 2

RF =
WRF

Nf
NRF
0 ·

NRF
F , where NRF

0 denotes the RF noise power spectral density
of the receiver, and NRF

F is the RF receiver noise figure [21].
For the mmWave links, σ 2

mmW =
WmmW

Nρ
NmmW
0 ·NmmW

F [21].

Here, NmmW
0 is the mmWave noise power spectral density at

the receiver, and NmmW
F is the mmWave receiver noise figure.

C. PERFORMANCE METRIC
For the locally-designed linear forwarding schemes in [15],
the instantaneous achievable rate at the CU, denoted as R,
is obtained as [15]

R=
Nf∑
s=1

WRF
sublog2|I(NLninr+NnFNr )+P

x,s
r 6

s
xP

x,sH
r

·(PRF,s
r 6s

zRFP
RF,sH
r +PmmW,s

r 6s
zmmWP

mmW,sH
r )−1|. (34)
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TABLE 5. Values of the parameters of the mmWave and RF links [13], [21].

Here, Px,sr , PRF,s
r , and PmmW,s

r are the multi-hop channel
matrices of subcarrier s [15] which affect the MD signal,
the RF noise, and the mmWave noise in layer r , respectively.
Furthermore, 6s

x, 6
s
zRF , and 6

s
zmmW are the covariance matri-

ces of x, zRF, and zmmW on subcarrier s, respectively. For the
proposed nonlinear forwarding scheme, R is calculated as

R =
Nf∑
s=1

WRF
sublog2|I(|ε|+T )N + H̄s6s

xH̄
sH (6s

z̄ +6
s
n̄)
−1
|, (35)

where H̄s contains the stacked RF channel matrices of subcar-
rier s received at the CU. Moreover, 6s

x, 6
s
z̄, and 6

s
n̄ are the

covariance matrices of x and the processes z̄ and n̄ received
at the CU, cf. (16), on subcarrier s, respectively. Furthermore,
remember that T is the number of root nodes in the considered
topology. For our simulation results, we averaged the sum
rates in (34) and (35) over 400 channel realizations.

D. PERFORMANCE EVALUATION
In Figures 6 and 7, we show the achievable ergodic sum
rates of the locally-designed nonlinear forwarding strategy
NONLINEAR, the locally-designed linear forwarding strat-
egy LINEAR, and the upper bounds from Section III for
the Small Scale Street Canyon Scenario as functions of the

FIGURE 6. Ergodic sum rate vs. mmWave transmit power for
PRF

k = 20 dBm.

mmWave transmit power and as functions of the RF transmit
power, respectively.

Both figures show that NONLINEAR outperforms LIN-
EAR in the considered power range. We observe that, for
the adopted system parameters, there is a considerable gap
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FIGURE 7. Ergodic sum rate vs. RF transmit power for PmmW
m = 21 dBm.

between the sum rates achieved with LINEAR and the upper
bounds. For example, in Figure 6, for a mmWave transmit
power of 20 dBm, only around 75% of the upper bound can
be achieved with LINEAR. In Figure 6, the sum rates of LIN-
EAR and NONLINEAR increase with increasing mmWave
transmit power, whereby for NONLINEAR and a mmWave
transmit power exceeding 20 dBm, the sum rate approaches
CMAC. However, NONLINEAR achieves around 92% of the
upper bound for a mmWave transmit power of 21 dBm.

In Figure 7, it can be observed that the sum rates of the
locally-designed linear and nonlinear forwarding techniques
increase with increasing RF transmit power. For RF trans-
mit powers exceeding 25 dBm, the multi-hop FN network,
particularly the mmWave link from FN 2 to FN 4 (due to
the topology), becomes the performance bottleneck of the
communication system. This can be inferred from the upper
bounds since in this power region, CUPP

= CFN. It can
be observed that the slopes of the curves of the achievable
rates of both the linear and the nonlinear forwarding schemes
approach the slope of CFN for RF transmit powers exceeding
25 dBm. In the entire considered RF transmit power range,
NONLINEAR outperforms LINEAR and achieves around
93% of the upper bound for an RF power of 20 dBm. In fact,
for RF transmit powers in the interval [0 dBm, 10 dBm],
the performance of NONLINEAR is very close to the upper
bound.

Figure 8 shows the achievable ergodic sum rate versus
the mmWave transmit power for Street Canyon Scenario
Variants 1, 2, and 3 for an RF transmit power of 20 dBm.
In particular, in Figure 8, CMFMC and the achievable sum
rates for LINEAR and NONLINEAR are shown. Regarding
the upper bound, the virtual MAC capacity, CMAC, which is
independent of the mmWave transmit power and identical to
CMFMC for high mmWave transmit powers, is not affected by
the number of root nodes. Recall that, for CMAC, all FNs and
the CU are in the set of receivers D. Hence, increasing the
number of root nodes to two, while keeping the number of

FIGURE 8. Ergodic sum rate vs. mmWave transmit power for
PRF

k = 20 dBm.

the FNs and their position the same, has no influence on the
virtual MAC capacity. However, the firefly network capacity,
CFN, which is identical to CMFMC for low mmWave transmit
powers, increases if the number of root nodes is increased
from one to two. CFN is the capacity of the bottleneck cut,
which is equal to the sum of the achievable rates of all RF
access links from the MDs to the FNs in the set of receivers
D plus the achievable rates of all mmWave links crossing
the bottleneck cut. Moreover, in general, the bottleneck cut
includes the mmWave links closest to the root nodes, i.e., the
cut where all root nodes and the CU are inD and all remaining
FNs as well as the MDs are in the set of transmitters S. For
Street Canyon Scenario Variants 2 and 3, we have two FNs
in D, i.e., the two root nodes, whereas for Variant 1 with one
root node, there is only one FN in D. This results in a higher
CFN, or more precisely, in a higher achievable rate for all RF
access links from the MDs to the FNs inD for Variants 2 and
3, respectively, compared to Variant 1. In addition, in Variants
2 and 3, we have four mmWave links to the two available root
nodes, whereas in Variant 1, we have only twommWave links
to the single root node.

Overall, there is a significant performance gain for Variants
2 and 3 with two root nodes compared to Variant 1 with one
root node, respectively, since with the additional root node,
there is one FN less, for which linear or nonlinear processing
of the received data and forwarding over a mmWave link
is needed. Hence, there is one FN more (the second root
node), for which the received data can be simply collected and
directly forwarded without any loss to the CU over the optical
fiber link. Furthermore, due to the fewer mmWave multi-
hop links, there is less accumulated quantization error which
results in higher sum rates. In addition, for one root node in
Variant 1, the performance of NONLINEAR is up to 25%
worse than for two root nodes in Variants 2 and 3. However,
NONLINEAR for Variant 1 still outperforms LINEAR for
Variant 3 for mmWave transmit powers exceeding 8 dBm.
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FIGURE 9. Ergodic sum rate vs. mmWave transmit power for
PRF

k = 20 dBm.

Moreover, we can observe that unlike for Variant 1, for Vari-
ants 2 and 3 the performance of NONLINEAR approaches
the maximal ergodic sum rate according to CMFMC for
mmWave transmit powers exceeding 23 dBm. Thus, we can
conclude that, in general, NONLINEAR is preferable since
it outperforms LINEAR. However, for an RF transmit power
lower than 8 dBm, Variant 3 with LINEAR is preferable over
Variant 1 with NONLINEAR since it achieves higher rates,
involves fewer hops, and employs a less complex forwarding
strategy.

Comparing the results for Variants 2 and 3, we observe that
Variant 3 outperforms Variant 2. This is due to the uniform
distribution of the MDs over the considered area. On average
the distance from the MDs to the FNs in the center of the area
is smaller than that between the MDs and the FNs located
at the edges. Thus, for Variant 3 with the root nodes in the
center, the RF signals which can be directly forwarded to the
CU by the root nodes have on average a better quality (i.e.,
a higher SNR due to reduced quantization errors) compared
to Variant 2.

Figure 9 contains the same curves as Figure 8, but addi-
tionally contains the sum rate results for LINEAR, NONLIN-
EAR, and CMFMC for Street Canyon Scenario Variants 4 and
5. Here, a significant performance gain of Variant 4 over Vari-
ants 2 and 3, and a very large performance gain over Variant 1
can be observed. In addition, Variant 4 with NONLINEAR
is very close to the maximal ergodic sum rate according
to CMFMC for mmWave transmit powers exceeding 5 dBm.
Moreover, note that Variant 4 has only 2 layers, i.e., one
packet delay is caused by this topology, see Table 4. For
Variant 5 which represents a C-RAN system, only CMFMC

is shown, which is identical to the corresponding CMAC since
in Variant 5, mmWave links and forwarding are not needed.
Note that, in Variant 5, all available FNs serve as root nodes,
i.e., Variant 5 has only one layer and thus, causes zero delay,

The delay of one layer and thus, only root nodes which forward their
signals to the CU via fiber link is negligible.

FIGURE 10. Ergodic sum rate vs. RF transmit power for PmmW
m = 21 dBm.

see Table 4. From this figure, it can be observed that Variant 4
outperforms Variant 5 since there are only four FNs in Vari-
ant 5. Recall that Variants 1, 2, and 3 employ all eight FNs, but
Variant 1 has one root node, while Variants 2 and 3 both have
two root nodes. Having more root nodes reduces the overall
delay of the topology (Variant 1 has 5 Layers, Variants 2 and
3 have each 3 Layers), see Table 4. Nevertheless, applying
LINEAR, Variants 1, 2, and 3 outperform Variant 5 only in
the high mmWave transmit power regime. In particular, for
PRFk = 20 dBm and PmmW

m = 21 dBm, Variant 5 outperforms
Variant 1 with LINEAR. For the same transmit powers, Vari-
ants 2 and 3 with LINEAR outperform Variant 5. Applying
NONLINEAR, Variant 1 outperforms Variant 5 for mmWave
transmit powers exceeding 12 dBm, Variant 2 shows the same
behavior for mmWave transmit powers exceeding 2 dBm,
and for Variant 3, NONLINEAR outperforms Variant 5 in the
entire considered mmWave transmit power range.

In Figure 10, CMFMC and the achievable ergodic sum
rates for LINEAR and NONLINEAR are shown versus the
RF transmit power for Street Canyon Scenario Variants 1,
2, and 3. From this figure, similar conclusions regarding
the topologies with one and two root nodes can be drawn
as from Figures 8 and 9. Again, the performance gain of
Variants 2 and 3 over Variant 1 is large. Also, NONLIN-
EAR yields a large performance gain compared to LINEAR.
Especially for Variants 2 and 3 and RF transmit powers
lower than 25 dBm, the performance of NONLINEAR is
very close to CMFMC. For RF transmit powers in the range
[0 dBm, 45 dBm], Variant 1 with NONLINEAR outperforms
LINEAR for all three Street Canyon Scenario Variants. For
RF transmit powers exceeding 45 dBm, only LINEAR for
Variant 3 outperformsNONLINEAR for Variant 1. In this fig-
ure, the performance upper bounds for the considered Street
Canyon Scenario Variants almost coincide. This is because
for the simulation parameters in Table 5, over almost the
entire considered RF transmit power range,CFN is larger than
CMAC. Hence, CMFMC

= CMAC for RF transmit powers
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FIGURE 11. Ergodic sum rate vs. RF transmit power for PmmW
m = 21 dBm.

in the range [0 dBm, 40 dBm]. Only for an RF transmit
power exceeding 40 dBm, CMFMC is smaller for Variant 1,
which achieves a lower performance compared to Variants
2 and 3 since, in this transmit power regime, for Variant 1,
CMFMC

= CFN.
Figure 11 contains the same curves as Figure 10, but

we have added the sum rates for LINEAR, NONLINEAR,
and CMFMC for Street Canyon Scenario Variants 4 and 5.
Here, a significant performance gain of Variant 4 over Vari-
ants 2 and 3, and a very large performance gain over Variant 1
can be observed. In particular, Variant 4 with LINEAR out-
performs Variant 1 with NONLINEAR for an RF transmit
power larger than 15 dBm. Note that Variant 4 has 4 root
nodes, whereas Variants 2 and 3 have two root nodes and
Variant 1 has only one root node. Moreover, the performance
of Variant 4 with NONLINEAR coincides withCMFMC in the
entire considered RF transmit power range.

As can be observed, over the entire considered RF transmit
power range, Variant 4 outperforms Variant 5. This empha-
sizes that Variant 5 suffers from having only half the number
of FNs compared to Variant 4, even if all FNs in Variant 5 are
root nodes, i.e., Variant 5 is a C-RAN system. Moreover,
in the entire considered RF transmit power range, Vari-
ants 2 and 3 applying NONLINEAR outperform Variant 5.
In addition, the increased costs of having more root nodes
incurred by the expensive optical fiber links from the root
nodes to the CU makes C-RAN systems (as in Variant 5) less
attractive than the proposed multi-hop structure.

Figures 8 and 10 reveal that increasing the number of root
nodes increases the performance upper bound and the achiev-
able sum rates of both forwarding strategies and reduces
the performance gap between the upper bound and the lin-
ear/nonlinear forwarding strategies.

VI. CONCLUSION
We have studied a firefly ultra dense network where multiple
MDs transmit their data over RF links to FNs and these

FNs forward the received information to root nodes through
multi-hop mmWave links. The root nodes forward the data
further to a CU via optical fiber links. First, we derived an
upper bound for the achievable sum rate of the considered
network. Then, we investigated nonlinear processing strate-
gies for forwarding the signals between the FNs. We adopted
vector quantization at the FNs to efficiently exploit the corre-
lation between signals received at different antennas for com-
pression. Two different optimization problems for nonlinear
processing were formulated, namely a central design and a
local design strategy. Both proposed optimization problems
are non-convex. Due to the high complexity of the central
design strategy, we focused on the local design strategy.
An efficient method for solving the optimization problem
for the local design strategy was presented which can handle
the non-convexity of the problem and resulted in an opti-
mal solution, due to strong duality. Finally, we presented
simulation results to quantify the performance of the pro-
posed nonlinear forwarding strategy and a benchmark lin-
ear forwarding strategy for several topologies with different
numbers of root nodes. Our layer structure analysis of the
proposed topologies revealed that the communication delay
can be reduced by increasing the number of root nodes. Our
simulation results revealed that increasing the number of root
nodes also improves the performance of both the linear and
nonlinear forwarding strategies, whereby the performance of
the nonlinear strategy approaches the proposed upper bound.
However, there is a trade-off between performance and cost
as root nodes have to be connected to the CU via expen-
sive optical fiber links. This trade-off motivates the use of
the proposed nonlinear forwarding strategy which unlike the
linear forwarding strategy, is able to approach the perfor-
mance upper bound even for a small number of root nodes.
An interesting topic for future work is the design of practical
quantization code books for the FNs. Moreover, the design
of power and subcarrier allocation algorithms for firefly ultra
dense networks requires further research.

APPENDIX A
PROOF OF THEOREM 1
The upper bound given in Theorem 1 is based on the cut-set
bound [19]. A cut is defined for given sets S andD where the
FNs in S and the MDs form the set of transmitting nodes and
the FNs inD and the CU form the set of receiving nodes. For
simplicity of presentation, we drop the subcarrier index s for
the subsequent derivations. Let xMD, xmmW

A , and xFibN denote
the vectors of symbols transmitted by the MDs, the FNs in
a given set A, and the root nodes in set N , respectively.
Similarly, let yFibCU, y

RF
A , and ymmW

A denote the received sym-
bols at the CU, the RF antennas of the FNs in set A, and
the mmWave receivers of the FNs in set A, respectively. Let
I (H,G,S|D) be the conditional mutual information between
the transmitted symbols of S and the received symbols in
D under the condition that the transmit symbols of the FNs
in D are known. Thereby, for given H and G, the capacity
of the cut specified by S and D is given by (36) subject to
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feasible probability distributions satisfying the power con-
straints. Here, f (xMD, xmmW

S ) and f (xMD, xmmW
S , xFibN ) are the

joint probability density functions of xMD, xmmW
S and xMD,

xmmW
S , xFibN , respectively. Thereby, based on the max-flow
min-cut theorem [26], [27], the achievable sum rate of the
MDs to the CU is upper bounded by

K∑
k=1

Rk (H,G) ≤ min
∀S⊂M

I (H,G,S|D) , (37)

where Rk (H,G) is the achievable rate from the k-th MD to
the CU.

In the following, we simplify I (H,G,S|D) for the fire-
fly network introduced in Section II. First, we assume the
capacity of the optical fiber links between FNs ν1, . . . , νT
and the CU to be infinite. Hence, for all cuts where N 6⊆ D,
the cut capacity I (H,G,S|D) is infinite. Therefore, these
cuts cannot be the bottleneck cut, i.e., the cut with the min-
imum capacity I (H,G,S|D), and hence can be removed.
Thus, in (36), as shown at the bottom of the page, we have
to consider only the cuts N ⊆ D. For all N ⊆ D, we can
simplify and upper bound I (H,G,S|D) as follows

I (H,G,S|D) (a)
= max

f (xMD)
I (xMD; yRFD )

+ max
f (xmmW

S )
I (xmmW

S ; ymmW
D |xmmW

D )

(b)
≤ CMAC

S (H)+ CmmW
S (G) , (38)

subject to feasible probability distributions satisfying the
power constraints, where f (xMD) and f (xmmW

S ) are the prob-
ability density functions of xMD and of xmmW

S , respec-
tively. Here, equality (a) follows from the fact that the
RF and mmWave links are independent parallel channels
and inequality (b) follows from the assumption that the
FNs in D can jointly decode their received signal where
CMAC
S (H) is given in (6). In particular, CMAC

S (H) is the
capacity of the MIMO MAC channel with channel matrices
[h1,S ,h2,S , . . . ,hKs,S ], cf. Section III, [28]. Note that MDs
1, . . . ,Ks are active on subcarrier s. Due to the directional
mmWave transmission between the FNs, the mmWave links
between the FNs are independent and hence, CmmW

S (G)
given in (7), is the summation of all SISO capacities of all
available mmWave links from the FNs in S to the FNs in D.

Inequality (37) together with inequality (38) results in the
inequality

K∑
k=1

Rk (H,G) ≤ min
∀S⊂M\N

(
CMAC
S (H)+CmmW

S (G)
)
, (39)

for any channel coefficient matrixH andG. A corresponding
inequality holds also for the achievable ergodic sum rate:

K∑
k=1

R̄k = EH,G

{
K∑
k=1

Rk (H,G)

}

≤ EH,G

{
min
∀S⊂M\N

(
CMAC
S (H)+ CmmW

S (G)
)}
,

(40)

and thus, Theorem 1 is proved.

APPENDIX B
PROOF OF COROLLARY 1
Let {Xi}i∈I , I ⊆ N, be a set of random variables. Then,
the following well known Jensen’s inequality holds [35]

E
{
min
i
Xi

}
≤ min

i
E {Xi} , (41)

where we exploited the concavity of the minimum function,
and thus,

EH,G

{
min
∀S⊂M\N

CMAC
S (H)+ CmmW

S (G)
}

≤ min
∀S⊂M\N

(
EH

{
CMAC
S (H)

}
+EG

{
CmmW
S (G)

})
.(42)

Hence, Corollary 1 is simply a consequence of Theorem 1
and the Jensen’s inequality.

APPENDIX C
PROOF OF PROPOSITION 1
We employ the following change of variables [32]:

ci = log2

1+
λi

6
(i,i)
Q̂

 , i = 1, . . . , (|Em| + 1)N , (43)

where 6(i,i)
Q̂

is the i-th diagonal element of 6Q̂. Note that
6Q̂ ≥ 0 and ci ≥ 0. Equation (43) can be reformulated as

1

6
(i,i)
Q̂

=
2ci

λi
−

1
λi
. (44)

Now, using (43) and (44), we obtain from (33)

L =
(|Em|+1)N∑

i=1

(
(1− µ)ci − log2

(
2ci

λi
−

1
λi
+ 1

))
+µCmmW

m,n /fq

=

(|Em|+1)N∑
i=1

((1− µ)ci − log2(2
ci + λi − 1))

I (H,G,S|D) =


max

f (xMD,xmmW
S )

I (xFibN , xMD, xmmW
S ; yFibCU, y

RF
D , y

mmW
D |xFibN , xmmW

D ), N ⊆ D

max
f (xMD,xmmW

S ,xFibN )
I (xFibN , xMD, xmmW

S ; yFibCU, y
RF
D , y

mmW
D |xmmW

D ), N 6⊆ D,
(36)
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−log2

(
1
λi

)
+ µCmmW

m,n /fq. (45)

Setting the derivative of (45) with respect to ci to zero
yields

1− µ−
1

1− 1
2ci +

λi
2ci

= 0 (46)

Hence, by solving (46) with respect to ci, the optimal ci is
given by

c∗i =
[
log2

(
(1− µ)(λi − 1)

µ

)]+
. (47)

Consequently, the optimal 6(i,i)
Q̂

is given by

6
(i,i),∗
Q̂

=


µ

1− 1
λi
− µ

, µ < 1−
1
λi

+∞, µ ≥ 1−
1
λi

(48)

and the optimal Q(m,n) is given by

Q∗(m,n) = (C−1)H6∗
Q̂
C−1. (49)

Equation (48) implies that 6(i,i)
Q̂
≥ 0. Moreover, C =

RHV, see Lemma 1, and thus, Q(m,n) = (C−1)H6Q̂C
−1 is

positive semidefinite. Hence, Q(m,n) � 0 is already implicit
with (48) and Lemma 1. Furthermore, from (48) and (49),
we observe that with decreasing µ, where µ < 1 − 1

λi
,

also 6(i,i),∗
Q̂

decreases and hence, |6∗
Q̂
| and finally |Q∗(m,n)|

decrease. Thus, for decreasing µ, Fc
(
Q∗(m,n)

)
in (26) is a

monotonically increasing function. Moreover, since the dual
function is a convex function in µ, we can apply bisection
to find the optimal µ such that (29) is fulfilled. Note that to
avoid the second case of (48), the bisection approach, applied
in line 7 of Algorithm 1, for finding the optimal µ∗ can be

restricted to µ ∈
(
0,min

i
(1− 1

λi
)
]
.

APPENDIX D
PROOF OF THEOREM 2
To prove Theorem 2, we first present the solution, which
is given in Algorithm 1. Subsequently, we show that this
solution is both primal and dual optimal. Thus, the duality
gap is zero.

A. PROPOSED SOLUTION

Let µ∗ ∈
(
0,min

i
(1− 1

λi
)
]
, ∀i = 1, . . . , (|Em| + 1)N ,

for which the optimal Q∗(m,n) ∈ C(|Em|+1)N×(|Em|+1)N of the
optimization problem

max
Q(m,n)

L(Q(m,n), µ
∗) (50)

satisfies the following equality

Fc
(
Q(m,n)

)
− CmmW

m,n /fq = 0. (51)

Thus, (Q∗(m,n), µ
∗) is the optimal solution of Algorithm 1.

Note that Fc
(
Q∗(m,n)(µ)

)
in (26) is continuous monotonically

increasing for decreasingµ, where
(
Q∗(m,n)(µ)

)
is the optimal

solution of max
Q(m,n)

L(Q(m,n), µ) for a givenµ (see Appendix C).

Moreover, note that in general Fc
(
Q(m,n)(0)

)
= ∞ and

Fc
(
Q(m,n)(1)

)
= 0. Therefore, (Q∗(m,n), µ

∗) exists.

B. PRIMAL OPTIMAL SOLUTION
To show that the solution (Q∗(m,n), µ

∗) is the optimal solution
of the primal problem in (22), we need to show that there
exists no other feasible Q̃(m,n) for which Fo

(
Q̃(m,n)

)
>

Fo
(
Q∗(m,n)

)
. We show this via the method of contradiction.

Let us assume there is a Q̃(m,n) ∈ C(|Em|+1)N×(|Em|+1)N with
Fc
(
Q̃(m,n)

)
≤ CmmW

m,n /fq which maximizes the objective
function of the original problem such that

Fo
(
Q̃(m,n)

)
> Fo

(
Q∗(m,n)

)
= L(Q∗(m,n), µ

∗). (52)

In this case, the following relation is valid

Fo
(
Q̃(m,n)

)
≤ Fo

(
Q̃(m,n)

)
−µ∗

(
Fc
(
Q̃(m,n)

)
−CmmW

m,n /fq
)

= L(Q̃(m,n), µ
∗)

(a)
≤ L(Q∗(m,n), µ

∗)

= Fo
(
Q∗(m,n)

)
, (53)

where (a) is due to L(Q∗(m,n), µ
∗) = max

Q(m,n)
L(Q(m,n), µ

∗).

Equation (53) contradicts (52), and thus,Q∗(m,n), which fulfills
Fc
(
Q(m,n)

)
− CmmW

m,n /fq = 0, is the optimal solution of the
primal problem in (22).

C. DUAL OPTIMAL SOLUTION
Now, to show that the solution (Q∗(m,n), µ

∗) is dual optimal,
we need to show that

min
µ

max
Q(m,n)

L(Q(m,n), µ) = L(Q∗(m,n), µ
∗). (54)

Since max
Q(m,n)

L(Q(m,n), µ) appears on both sides of (54), this

equation does not hold only if there exists a µ̂ such that
max
Q(m,n)

L(Q(m,n), µ̂) < L(Q∗(m,n), µ
∗). Again, we show this

cannot hold via contradiction. Let us assume there is a better
solution than (Q∗(m,n), µ

∗) for the dual problem (28), i.e.,

∃µ̂ ∈

[
0,min

i
(1− 1

λi
)
)
, ∀i = 1, . . . , (|Em| + 1)N , µ̂ 6= µ∗,

such that

max
Q(m,n)

L(Q(m,n), µ̂) < L(Q∗(m,n), µ
∗). (55)

Let Fo
(
Q∗(m,n)

)
be the optimal solution of the primal prob-

lem, i.e., L(Q∗(m,n), µ
∗) = Fo

(
Q∗(m,n)

)
. Then, with (55) the
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following inequality is valid

max
Q(m,n)

L(Q(m,n), µ̂) < Fo
(
Q∗(m,n)

)
. (56)

Relation (56) contradicts the weak duality

min
µ≥0

D(µ) ≥ Fo
(
Q∗(m,n)

)
. (57)

Thus, (Q∗(m,n), µ
∗) is the optimal solution of the dual prob-

lem. Hence, we can conclude that equality holds for the
solutions of the primal problem in (22) and the dual problem
in (28), and thus, strong duality holds, which proves Theo-
rem 2.

At this point, it is worth mentioning that the statement of
the proof meets the geometric interpretation of strong duality
as given by Boyd and Vandenberghe (see [30], Chapter 5.3).
The existence of (Q∗(m,n), µ

∗) with (51) is equivalent to the
existence of a supporting hyperplane at G through the point(
0,Fo

(
Q∗(m,n)

))
, where G is the set of all values taken on

by the constraint and the objective function [36]. Moreover,
Fc
(
Q∗(m,n)(0)

)
= ∞ and Fc

(
Q∗(m,n)(1)

)
= 0 ensure that the

hyperplane is non-vertical. According to [30], the existence
of this hyperplane ensures the strong duality.
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