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ABSTRACT An automatic train protection (ATP) system is the core to ensure operation safety of high-speed
railway. At present, failure rate change rules of the system are not well understood and the maintenance
strategy is not refined. In order to improve the protection capability and maintenance level of high-speed
trains, this paper proposes a decision tree machine learning model for failure feature extraction of ATP
systems. First, system type, mean operation mileage, mean service time, etc. are selected as ATP failure
feature parameters, and cumulative failure rate is selected as a model output label. Second, support vector
machine, AdaBoost, artificial neural networks and decision tree model are adopted to train and test practical
failure data. Performance analysis shows that decision tree learning model has better generalization ability.
The accuracy of 0.9761 is significantly greater than the other machine learning models. Therefore, it is
most suitable for failure features analysis. Third, interpretability analysis reveals the quantitative relationship
between system failure and features. Finally, an intelligent maintenance system for ATP systems is built,
which realize the refined maintenance throughout life cycle.

INDEX TERMS Automatic train protection system, intelligent maintenance, failure feature, machine
learning, model interpretability, high-speed train.

I. INTRODUCTION
On August 1, 2008, the first high-speed railway at a speed
of 350 km/h was put into operation in China. By the end
of 2020, the operation mileage had reached 38000 km, more
than two-thirds of the world’s mileage. China has become the
country with the longest mileage and largest scale of high-
speed train networks in the world.

Automatic Train Protection (ATP) system is critical
to ensure the safety and efficiency of high-speed trains.
It can automatically determine speed, position and headway
towards the preceding train by calculating speed profile.
There are two sets of ATP systems, one is equipped at the
head of the train, and the other is at the end. It is composed
of Vital Computer (VC), Speed & Distance Processing Unit
(SDU), Balise Transmission Module (BTM), Track Circuit
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Reader (TCR), Train Interface Unit (TIU), GSM-Railway
(GSM-R), Driver Machine Interface (DMI), Juridical
Recorder Unit (JRU), etc. Each sub-equipment cooperates
with each other to ensure train safety, so failure of any
equipment affects operation.

The daily operation and maintenance of an ATP system
shows the following characteristics.

1) The system in the high-speed vibration moving train
belongs to on-board system. It directly controls the
operation of high-speed train and emphasizes logic
relationship and calculation accuracy.

2) The system spans five geographical time zones from
east to west and six temperature zones from north
to south with high-speed trains running all over the
country. Therefore, its nature operation environment is
very complicated.

3) The daily maintenance can only be carried out in a
specific period, which is usually between 0:00 a.m.
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and 5:00 a.m. every day after the train completes the
transportation task. So maintenance at any time is not
available.

4) The number of ATP systems has been increasing with
continuous expansion of construction scale and grow-
ing traffic density. While some systems have been used
for over 10 years and a large number of ATP systems
enter the high incidence period of failures over time.

5) As a repairable systemwith multiple failures, the deter-
minism and non-determinism of quality change rule of
an ATP system exist simultaneously, which requires
higher reliability and maintainability.

At present, daily maintenance is the most important means
to ensure the stability and reliability of ATP systems. How-
ever, the following problems still exist, and further improve-
ment and optimization are necessary.

• Fixed single maintenance strategy. It mainly reflects
in the following two aspects: fixed cycle and items.
An ATP system is maintained at a fixed interval accord-
ing to the fixed items [1], which wastes resources to a
certain extent and causes some unnecessary economic
losses.

• Single maintenance strategy is adopted in the whole life
cycle, regardless of failure rate. However, its failure rate
is a function of time for most sub-equipment of ATP sys-
tems belongs to electronic equipment. Therefore, in the
whole life cycle, there should be different maintenance
strategies that can be dynamically adjusted according to
failure features in different stages.

• All systems adopt same maintenance mode. Currently,
there are five types of ATP systems in China, including
300T, 300S, 300H, 200H and 200C. In each, there are
a certain number of ATP systems. Different production
processes, technical architectures and design platforms
result in different system operation qualities and failure
features. Therefore, refined and differentiated mainte-
nance strategies should be formulated for each.

In order to solve the above problems, the machine learning
model of decision tree for ATP failure analysis is proposed,
and the intelligent maintenance system is established by
model mechanism of quantitative analysis. The main contri-
butions of this paper are as follows.

• Machine learning model suitable for failure feature of
ATP systems is proposed, and its validity is verified by
10 years’ practical data. The mechanism of the model is
revealed through model interpretability analysis.

• Quantitative relationship between failure rate and fea-
tures of China’s high-speed automatic train protection
system is revealed. It is shown that the change of failure
rate is closely related to mean operation mileage and
service time, but not to time feature.

• Intelligentmaintenance for anATP system of high-speed
train is put forward. The intelligent maintenance system
and technology implementation platform are built, and

the refined maintenance of each set of ATP systems in
the whole life cycle is realized.

The rest of this paper is organized as follows. In section II,
the related work is reviewed. In section III, the failure features
of ATP systems are selected and analyzed. In section IV, the
learning model of failure feature is established. In section V,
the interpretability of model is given. In section VI, the
intelligent maintenance system is built. In section VII, the
conclusion of work is drawn.

II. RELATED WORKS
To improve the safety and comfort of future high-speed
railways, intelligence has become an important direction for
global railways research [2], [3]. Moreover, it plays a crit-
ical role in the competition of high-speed railway around
the world. Combined with the intelligent development trend,
the Chinese Academy of Engineering launched a project to
carry out Intelligent High-speed Railway Strategy Research
(2035) in January 2018. It aimed to promote the leading
position of China’s high-speed railways. It passed the final
review in January 2020, marking that China railway hadmade
important achievements in top level planning and design
of intelligent high-speed railway. At the same time, global
scholars dig into the intelligent fields of train control [4], [5],
train dispatch [6], [7], train communication [8], [9], railway
traffic conflict control [10] and other fields [11], [12].

The main embodiment of intelligence in high-speed rail-
way was the integration of advanced technology methods
represented by machine learning [13], [14] and high-speed
railway networks. Intelligent failure diagnosis and predic-
tion [5], [15], [16], condition monitoring and health manage-
ment [17] were studied, such as failure intelligent diagnosis
of rolling bearings [18], [19] or bogies [20], [21] of high-
speed trains, switch failure prediction [22], [23], vehicle-
body vibration prediction [24], as well as online condition
monitoring of the pantograph slide plate [25]. It can be seen
that machine learning methods have achieved remarkable
results compared with the traditional methods.

As an important part of intelligent high-speed rail-
way, intelligent maintenance of infrastructure was also
actively explored and studied by scholars. Its basic idea
was to take the reliability as the center, which was
believed to be a cost-effective and safety-assured strat-
egy [26]. Liu et al. [27] developed a dynamic maintenance
strategy for a system subject to aging and degradation.
Its effectiveness was demonstrated through a case study
of locomotive wheel-sets. Wang et al. [28] proposed a
bilevel feature extraction-based text mining. It resolved the
unstructured verbatim and imbalance of maintenance data.
Ferreira et al. [29] proposed a solution based on wearable
components for safety of maintenance personnel on the
railway. Durazo-Cardenas et al. [30] designed a high-level
architecture automatic system for British railway extended
infrastructure to realize optimum and intelligent maintenance
scheduling. Su et al. [31] presented a multi-level decision
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making approach to determine an optimal long-term mainte-
nance intervention plan for railway infrastructure, which had
been applied to Eindhoven-Weert line in Dutch railway net-
work. Considering that train operation and maintenance were
mutually exclusive, Liden and Joborn [32], [33] presented
a mixed integer programming model for Swedish Northern
Main Line to solve the problems of integrated railway traf-
fic and maintenance planning. The above research results
showed that intelligent maintenance could reduce malfunc-
tion process time, save resources [22], and optimize the route
planning of high-speed trains [34].

The application scenarios and maintenance methods for
ATP systems of high-speed trains were different from those
of wayside systems. Meanwhile, the existing maintenance
strategies could not meet the demand of high-speed train
development. Therefore, they need to be studied further, espe-
cially the cycle and items that maintenance personnel are
most concerned.

This study extracted the failure features of ATP systems
from 10 years’ practical data, and established failure learn-
ing models of Support Vector Machine, AdaBoost, Artificial
Neural Networks and Decision Tree. By performance mea-
surement analysis, learning model of decision tree was most
suitable and effective. The quantitative relationship between
the change of failure rate and multiple failure features was
obtained through interpretability analysis of the learning
model, on the basis of which the intelligent maintenance
system of an ATP system was established. Finally, dynamic
and refinedmaintenance of the whole life cycle were realized.

III. ATP FAILURE FEATURE PROCESSING
Machine learning (ML) refers to the method of learning gen-
eral rules from limited observation data and applying these
rules to unobserved samples [13], [14]. It mainly focuses on
how to learn a prediction model [35]. Firstly, factors that
may affect ATP failure rate are expressed as a set of features,
fromwhich some effective features are selected. Then, feature
data that will be input as models are cleaned, formatted
and reorganized. In general, ATP failure feature processing
includes feature selection and feature data preprocessing.

A. ATP FEATURE SELECTION
The key to develop intelligent maintenance strategy of an
ATP system is to obtain the change rule of failure rate of
system. Furthermore, the possible factors that may affect the
failure rate will be selected as features for model training
and learning. We carefully analyze the historical data of ATP
failure in the past 10 years, and find that the possible factors
related to the failure rate are: system type, number of systems,
mean cumulative service time, mean cumulative operation
mileage, and time feature. On the basis of analysis, from
Aug 16, 2020 to Nov 20, 2020, we investigated and visited
all 67 ATP system maintenance locations in China, and com-
municated with maintenance personnel deeply. According
to on-site maintenance experience, the influence factors of
failure rate are basically consistent with the analysis results.

Therefore, the extracted failure features are the combination
of historical data analysis and actual maintenance experience.

1) System type
ATP system type usually corresponds to different tech-

nology platforms, production processes and source quality,
which inevitably affects the system failure rate. In addition,
different types of ATP systems adopt different maintenance
strategies. Therefore, system type is selected as failure feature
parameter, and expressed by x_atptype,

x_atptype = {300T, 300S, 300H, 200H, 200C} (1)

2) Number of systems
A random number of ATP systems are put into use in

batches. Whether the change of number is related to failure
rate is unknown. Therefore, the number of ATP systems
is selected as failure feature parameter, and expressed by
x_atpnum,

x_atpnumi = {1, 2, . . . , n} (2)

where x_atpnumi represents the number of ATP systems of a
certain type on the i-th day, x_atpnum1 represents the initial
value of a certain type. Since new products may not be put
into use every day, and the number is random, so x_atpnumi
is a discontinuous natural number.

3) Mean cumulative service time
As electronic product, the quality of an ATP system can be

reflected by service time. Therefore, mean cumulative service
time is selected as failure feature parameter, and expressed by
x_meantime,

x_meantimei =

i∑
j=1

x_timej

x_atpnumi
(3)

where x_meantimei is mean cumulative service time of a
certain type of ATP systems on the i-th day, x_timej is service
time of a certain type of total ATP systems on the j-th day,
x_time1 is its initial value.
4) Mean cumulative operation mileage
The operation of an ATP system goes along with the start

and stop of the train. Therefore, cumulative operationmileage
is key indicators to measure system quality. For several same
type of ATP systems, the mean cumulative operation mileage
is selected as failure feature parameter, and expressed by
x_meanmile,

x_meanmilei =

i∑
j=1

x_milej

x_atpnumi
(4)

where x_meanmilei is mean cumulative operation mileage
of a certain type of ATP systems on the i-th day, x_milej is
operation mileage of a certain type of total ATP systems on
the j-th day, x_mile1 is its initial value.

5) Time feature
Time feature reflects whether the failure rate of an ATP

system is closely related to time. For instance, month could
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indicate which period of each year failure occurs intensively
or is relatively stable. It could also indirectly represent the
partial information of natural environment, such as climate,
temperature and humidity. Therefore, month is selected as
failure feature parameter, and expressed by x_month,

x_month = {1, 2, . . . , 12} (5)

6) Cumulative failure rate
Failure rate is key factor and basis for developing

maintenance strategy and realizing intelligent maintenance
of systems. An ATP system works intermittently rather than
continuously from power on. Therefore, although it belongs
to electronic products, its failure rate is defined by operation
mileage instead of service time [15], which accords with
practical application of systems. Cumulative failure rate is
expressed by x_failurerate,

x_failureratei =

i∑
j=1

x_faultnumj

i∑
j=1

x_milej

(6)

where x_failureratei is the cumulative failure rate of a certain
type of ATP systems on the i-th day, x_faultnumj represents
the total number of a certain type of failure ATP systems on
the j-th day.

To sum up, the selection of failure feature parameters
basically emphasizes cumulative effect and mean effect, and
dismiss the influence of relatively large or small individual
values on analysis results. Combined with practical applica-
tion experience and maintenance requirements, system type,
number of systems, mean cumulative service time, mean
cumulative operation mileage and month are finally selected
as the failure feature parameters of ATP systems. They are
expressed asX_feature= [x_atptype, x_atpnum, x_meantime,
x_meanmile, x_month]. The label parameter is cumulative
failure rate, i.e. Y_label = [x_failurerate]. The former is the
input of failure feature learning model, and the latter is the
output.

B. FEATURE DATA PREPROCESSING
China’s high-speed railway has begun to develop rapidly
since 2010. In the same year, four types of ATP systems i.e.
300T, 300S, 200H and 200C, began to be put into operation
on a large scale, and 300H-type ATP systems started from
2013. In this study, daily original data from January 1, 2010 to
March 31, 2020 are taken as samples. Label parameter is
regarded as failure rate and its basic information is shown
in Table 1.

1) Data normalization
The distribution range of the value varies wildly due to

different sources and measurement unit of each dimension
feature in the original features of samples. Feature with wide
range of values plays a leading role in Euclidean distance
calculation among different samples. Therefore, samples are
preprocessed to normalize the features of each dimension to

TABLE 1. The basic information of the label parameter.

the same value range [0,1] and eliminate correlation among
different features. In this way, each feature can be treated
equally when using the supervised learner. For each dimen-
sion feature x, the normalization criteria is,

f : x → y =
x −min(x)

max(x)−min(x)
(7)

where min(x) and max(x) are the minimum and maximum
values of feature on all samples respectively.

It can be seen from formula (1) that the value of system
type is not a number. While in general, the expected value
of learning algorithm is a number. The One-hot Encoding
is adopted to create a virtual variable for each possible type
of the system to convert the value into a number, as shown
in Table 2.

TABLE 2. One-hot encoding value of system type.

After the transformation of formula (7) and One-hot
Encoding, values of different feature parameters of ATP sys-
tems are normalized to interval [0,1], and each feature is
equally treated by machine learning model.

2) Mixing and splitting data
From the perspective of Bias and Variance, Mitchell [36]

pointed out that when about two thirds to four fifths of the
original data samples are used for training and the remaining
are used for testing, the model performance would be better.
In this study, four fifths of original data samples are for
training, and the remaining are for testing. The generalization
ability of model in application is estimated by discrimination
effect on testing set. At the same time, the training data
are divided into training set and validation set. The training
samples and validation samples are four fifths and one fifth
respectively. Model selection and parameter tuning are based
on the performance of validation set. Finally, it is obtained
that the total sample size is 17619, among which the training
set is 11276, validation set is 2819, and testing set is 3524.

IV. ATP FAILURE LEARNING MODEL
The common typical machine learning methods are Sup-
port Vector Machine (SVM) [37], AdaBoost [38], Artificial
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Neural Networks (ANN) [39], Decision Tree (DT) [40], [41].
ATP failure feature processing is the basis of machine learn-
ing model. An evaluation system and process line are built
to evaluate the ATP failure feature analysis and learning
performance of each model. The former is to measure its
generalization ability, and the latter is to make predictions on
validation set with different training sets.

A. MODEL PERFORMANCE MEASURE
Given a training set, machine learning aims to find an ideal
model with low generalization error from the hypothesis
space, so as to better predict the unknown samples, especially
the samples that do not appear in training set. Therefore,
machine learning can be regarded as a generalization problem
to obtain more general rules from finite, high-dimensional
and noisy data. Not only an effective and feasible experi-
mental estimation method but also an evaluation standard,
i.e. performance measure is required to evaluate the gener-
alization performance of ATP failure feature learning model.
Its analysis is a regression problem, and the learning model
evaluation indexes are as follows [42].

1) Mean absolute error (MAE), is used to evaluate the
degree to which the prediction results are close to real data
set. The smaller the value is, the better the fitting ability is.

2) Mean square error (MSE), measures the change of
learning performance caused by change of training set with
same size, and visualizes the impact of data disturbance. The
smaller the value is, the better the fitting ability is.

3) The explained variance score, i.e. square of standard
deviation, indicates the degree to which the independent vari-
able explains the dependent variable. The larger the value is,
the better the effect is.

4) Coefficient of determination (r2), explains the variance
score of regression model. The larger the value is, the better
the future samples can be predicted.

Bias-Variance Decomposition [43] shows that generaliza-
tion performance of ATP failure feature learning model is
determined by the ability of learning algorithm, the suffi-
ciency of data and the difficulty of learning task itself. When
MAE and MSE are small, but explained variance score and
r2 are large, a good balance will be achieved between the
model ability and the complexity, learning model is neither
overfitting nor underfitting, and the generalization perfor-
mance is better.

B. FAILURE LEARNING MODEL
It is necessary to compare same sample data with similar
analysis process in different methods to test the applicability
of various machine learning methods, so the experiment flow
is built. Same failure feature vector is put into regression
models of SVM, AdaBoost, ANN, and DT successively.
The training time and MSE etc. are adopted as performance
indicators to evaluate the advantages and shortcomings of
models. Then the parameters are optimized to obtain the most
suitable model for ATP failure feature analysis. Finally, the

generalization performance of optimal model is verified by
test data.

The four regression methods are as follows.
SVM [15], [44] is an effective structural risk minimization

algorithm based on statistical learning theory. The regression
model of SVM is support vector regression (SVR) [45].

Ensemble learning [38] accomplishes learning tasks by
constructing and combining multiple learners, and aims to
integrate data fusion, data modeling and data mining into
a unified framework. As an iterative integration algorithm,
AdaBoost is the most prominent algorithm in ensemble learn-
ing, whose core idea is to train weak learners for the same
training set, and then combine them to form a strong one [18].
In this study, AdaBoost regression is adopted for calculation.

ANN are the systems which are able to learn to use the
samples by modeling the nerves of human brain, and take
advantage of information they have learned to make judge-
ment about samples they have never seen [46], [47]. Neuron
is the most basic component of neural networks [39], [48].
It is helpful to adopt multi-layer functional neurons, i.e. the
Multi-layer Perceptron (MLP) to solve nonlinear separability
problem more generally.

Decision tree [40], [49] is a top-down recursive learning
method that uses a tree structure to establish a decision
model based on the attributes of data. Its basic idea [12] is
to construct the fastest entropy decline tree with a measure
of information entropy, where the entropy value to the leaf
node is 0. The Classification and Regression Tree (CART) is
adopted to learn algorithm [50], [51].

Since ATP failure feature learning is a regression prob-
lem, therefore, SVR, AdaBoostRegressor, MLPregressor and
DecisionTreeRegressor toolbox are successively selected to
establish learning model and tested in Anaconda software
environment.

C. MODEL LEARNING RESULTS
Ten, fifty and one hundred percentage of training data are
calculated to evaluate their performances in the above four
methods. Time required for training and prediction could
also indicate the qualities of models. The training results are
shown in Figure 1. The evaluation indexes include training
time, prediction time, MAE, MSE, explained variance score
and r2. The most critical quantitative values of indicators are
shown in Table 3.

TABLE 3. ATP failure model performance of different methods.

As shown in Figure 1 and Table 3,
• In terms of the time, the neural networks take the most
and the decision tree takes the least in the process of
training. SVM takes the most time and the decision tree
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FIGURE 1. Training results of four failure learning models.

takes the least in the process of prediction. Therefore,
decision tree model wins from the perspective of time.

• In terms of error,MSE andMAE of decision tree method
are the lowest among the four methods, indicating that
the fitting effect is the best, and the possibility of over-
fitting and underfitting is the lowest.

• In terms of model interpretability, the explained variance
score and r2 of decision treemethod tend to be 1, indicat-
ing that independent variables can explain the variance
changes of dependent variables better, and future sam-
ples can be better predicted and analyzed by this model.

On the basis of above performance indicators, decision
tree learning model has the strongest generalization ability.
Therefore, it is selected to analyze and predict the failure
feature of an ATP system.

D. RESULTS DISCUSSION
The decision tree learning model represents a mapping
between ATP failure rate and features. Each node in the
tree represents the judgment condition of failure feature,
and its branches represent the objects that meet the node
conditions. The leaf nodes of the tree represent the failure
rate prediction results, and each decision question raised in
the decision-making process is a test of a certain feature
that affects failure rate. This is a very natural mechanism
for humans to deal with decision-making problems, so the

application requirements are consistent with the idea of the
theoretical method.

Decision tree learning process [12] is shown in
Algorithm 1, and the key is how to optimally select the splits
feature in row 8. With continuous learning, it is expected that
the samples contained in the branch nodes belong to the same
category as possible, that is, the purity of the nodes is getting
higher and higher. The CART method uses the Gini index to
measure the purity of data set D.

Gini(D) =
|y|∑
k=1

∑
k ′ 6=k

pkpk ′ = 1−
|y|∑
k=1

p2k (8)

where the proportion of the k-th sample in the current sample
set D is pk . Gini(D) reflects the probability that two samples
are randomly selected from the setD, and their class labels are
inconsistent. Therefore, the smaller the Gini(D) is, the higher
the purity is.

The Gini index of feature a is defined as,

Gini_index(D, a) =
V∑
v=1

|Dv|
|D|

Gini(Dv) (9)

In the candidate feature set A, select the feature with the
smallest Gini index split as the optimal one, that is,

a∗ = argmin
aεA

Gini_index(D, a) (10)

Main parameter values of the decision tree learning model
are shown in Table 4. The validation set is adopted to eval-
uate the generalization ability of the model roughly, and
its performance is not so ideal. Then, GridSearch Cross
Validation (CV) method [52] is adopted for parameter tuning
of decision tree model. The maximum depth of decision tree
is expressed as max_ depth, which limits its depth and avoids
overfitting to a certain extent. The minimum impurity of node
decrease is expressed asmin_ impurity_ decrease to designate
the threshold value of Gini impurity. When information gain
is lower than this threshold, the decision tree will not split
again.

The optimization ranges of two parameters are
max_depth = [1,2,. . . ,50], and min_impurity_decrease =
[0,0.002,0.004,. . . ,0.2]. By Gridsearch CV, we enumerate all
the values in the list to calculate the model score, and finally
obtain the evaluation index of the specified parameter value,
i.e. the best max_ depth = 18 and the best min_ impurity_
decrease = 0. The results show that MSE of 0.0021% and
r2 of 0.9833 in the optimal learning model are better than
those of decision tree in Table 3.

At last, the test set is adopted to test the generalization
ability.MSE of 0.0029% and r2 of 0.9761 are obtained, which
indicates that decision tree learning model is effective and
suitable for analysis of failure features of ATP systems.

V. ATP FAILURE LEARNING MODEL INTERPRETABILITY
The best learning model for ATP failure feature analysis is
determined. However, it is difficult to understand the relation-
ship between predictors and model outcome since the four
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Algorithm 1 Decision Tree Learning Model
Input: Training set D = {(x1, y1), (x2, y2), . . . , (xm, ym)}.

Feature set A ={a1, a2, . . . , ad}.
Process: Function TreeGenerate(D,A)
1: Generate node;
2: if All samples in D belong to the same category C , then
3: Mark node as a C-type leaf node; return
4: end if
5: if A = 8 OR The samples in D have the same value on A, then
6: Mark node as a leaf node, and its category is marked as the category

with the largest number of samples in D; return
7: end if
8: Select the optimal splits feature a∗ from A;
9: for every av∗ do

10: Generate a branch for the node. Let Dv denote the subset of samples in
D whose value is av∗ on a∗.

11: if Dv is null, then
12: Mark the branch node as a leaf node, and its category is marked with

the largest number of samples in D; return
13: else
14: Take TreeGenerate(Dv,A\{a∗}) as the branch node.
15: end if
16: end for

Output: A decision tree with node as the root node.

TABLE 4. Main parameter values of the decision tree learning model.

models are black box machine learning algorithms. There-
fore, we are faced with the following questions.

• What is the logic behind the model learning of ATP
failure analysis? How to extract important insights from
the model?

• How important is each of the features that affect ATP
failure rate?

• In terms of each sample, what is the function of different
characteristic variables in each prediction decision? For
overall samples, how does each feature affect the predic-
tion results of model?

All above questions involve the interpretability of
model [53], [54]. Model interpretability refers to the under-
standing of internal mechanism of a model and understanding
level of its results [55]. The purpose of machine learning

in this study is to develop intelligent maintenance strategy
for ATP systems. How maintenance managers and person-
nel understand and trust the maintenance strategy depends
on the interpretability of ATP failure learning model. The
more interpretable the learning model is, the easier it is for
staff to understand why certain decisions or predictions are
made.

In practical application, different types of ATP sys-
tems usually correspond to different maintenance strategies
due to the difference in production processes, techni-
cal platforms, source qualities and so on. The following
model interpretability analysis divides samples according
to ATP types. 300T-type ATP systems accounting for
37.98% of all types, had been the most numerous and
widely used type by March, 2020. Therefore, samples
data of 300T-type are taken as examples to illustrate the
model.

A. FEATURE IMPORTANCE ANALYSIS
Feature importance analysis is to quantitatively analyze the
importance of features that affect ATP failure rate and
then put them in order on the basis of their ranking. The
basic principle is to take a specific feature column, ran-
domly disrupt the order, then adopt the optimal model to
predict, calculate how much the variances of MSE and
r2 are, restore the disrupted column, move to the next feature
column and repeat the previous step until all features are
calculated.

The importance of each feature of 300T-type ATP systems
to failure rate is shown in Figure 2.

FIGURE 2. Normalized weights for first four most predictive features.

In Figure 2, it can be seen that the mean operation mileage
of 0.41 is of the highest importance, followed by the number
of systems and the mean service time of 0.38 and 0.20 respec-
tively. The importance of these three features has reached
0.99, and feature of month of 0.01 has little impact on change
of failure rate.

B. AVERAGE IMPACT ANALYSIS OF SINGLE FEATURE
How a single feature affects the change of ATP failure rate
is revealed by Partial Dependence Plot (PDP). It shows the
marginal effect that one or two features have on predicted
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outcome of a machine learning model [56], and whether
the relationship between the label and a feature is linear,
monotonic or more complex.

The partial dependence function for regression is defined
as,

fxs (xs) = Exc [f (xs, xc)] =
∫
f (xs, xc)dP(xc) (11)

where the xs are the features for which the partial depen-
dence function should be plotted and xc are the other features
adopted in the machine learning model f .
Steps of PDP analysis are as follows.
Step 1: Select the best model i.e. decision tree model, and

take F1 . . .Fn as the feature and Y as the failure rate of target
variable.
Step 2: Explore the direct relationship between Y and F1.
Step 3: Replace the F1 column with F1 (1) and find new

predictive values for all observations. Calculate the average
predicted value, named base value.
Step 4: Repeat step 3 for feature F1 to calculate the predic-

tive values from F1 (2) to F1 (m).
The impact of mean operation mileage on change of ATP

failure rate expressed by PDP is shown in Figure 3.

FIGURE 3. PDP for feature mean operation mileage.

In Figure 3, x-axis indicates the value of mean operation
mileage, y-axis represents the variation value of predicted
results of failure rate, and the blue shaded area is the con-
fidence interval. It can be seen from the figure that when
mean operation mileage is smaller than 1.2∗106, i.e. 1.2 mil-
lion kilometers, the increase of mean operation mileage will
reduce the probability of ATP failure rate. When it increases
to 1.2∗106, the change of ATP failure rate is basically sta-
ble. In this way, the PDP of mean service time is obtained.
When the mean service time reaches 550 days, the change
of ATP failure rate is basically stable. It indicates that as
the 300T-type ATP systems run 1.2 million kilometers or
serve 550 days, the maintenance strategy could be adjusted
appropriately, which can extend the maintenance cycle and
refine the maintenance items.

C. INDIVIDUAL IMPACT ANALYSIS OF SINGLE FEATURE
PDP adopts multiple rows of data of a feature for testing and
then draws the plot according to average value. Since the
average value is adopted, individual impact is ignored. How
does the individual affect the results of failure rate? Individual

Conditional Expectation (ICE) plot [56], [57] can answer
this question. It makes the dependence of the prediction on
a feature for each instance visible separately, resulting in
one line per instance, instead of one line overall in partial
dependence plots.

ICE plots can explore individual differences and identify
subgroups and interactions among model inputs deeply. First,
a feature of interest is selected to create an ICE plot. Then,
predictions of each observation for that feature is made across
a range of values on condition that all other features are
constant. Finally, those predictions as curves on a plot are
visible. By plotting these curves, the relationship between
the feature of interest and the predicted target variable can
be obtained. The ICE for each failure feature of 300T-type
ATP systems is shown in Figure 4.

FIGURE 4. ICE for each feature.

In Figure 4, x-axis represents the value of each feature, and
y-axis is the predicted AV percentile of ATP failure rate. Each
black solid line represents the ICE of a value of a feature, and
the red solid line is PDP. The PDP is the average of all ICE
curves on the plot, so it represents the average change in the
predicted AV percentile over the range of a feature.

According to Figure 4, the following can be obtained.

• With the change of eigenvalue, the predicted AV per-
centile shows a stable linear independence, indicating
that the feature of month has little impact on the change
of ATP failure rate.

• There is a nonlinear independence among the number
of systems, mean operation mileage, mean service time
and predicted AV percentile. Firstly, failure rate rises
when the number of systems is between 0 and 150, and
drops slowly between 150 and 800. It is stable and no
longer affects its fluctuation when the number is over
800. Secondly, the failure rate shows a downward trend
as mean operation mileage is between 0 and 1.2∗106,
and is stable after 1.2∗106. Finally, the impact of the
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mean service time on failure rate shows a steady but not
so direct downward trend.

• As mean operation mileage increases, the decrease on
top of predicted AV percentile is larger than that of the
bottom, indicating that its impact on failure rate is not
independent, but related to other features.

D. IMPACT ANALYSIS OF SINGLE SAMPLE
We are interested in how each feature affects the prediction
of a data point. In item prediction, the impact of each feature
on failure rate can be reflected by values of the SHapley
Additive exPlanations (SHAP). It [56], [58] was proposed by
Lloyd Shapley, a professor at theUniversity of California, Los
Angeles, to solve the contribution and income distribution of
cooperative game.

The SHAP value of a feature is its contribution to ATP
failure rate, weighted and summed over all possible feature
value combinations,

φj =
∑

S⊆{x1,...,xp} {xj}

|S|!(p−|S|−1)!
p!

(val(S ∪ {xj})−val(S))

(12)

where S is a subset of the features adopted in the model, x is
the vector of feature values of the instance to be explained
and p is the number of features. valx(S) is the prediction for
feature values in set S that are marginalized over features that
are not included in set S,

valx(S) =
∫
f (x1, . . . , xp)dPx /∈S − EX (f (X )) (13)

Assuming that the i-th sample is xi, the j-th feature
of the i-th sample is xij, the predicted value for this
sample is yi, and the baseline of whole model, usually
the mean value of the target variables of all samples is
ybase, then the SHAP value accords with the following
equation,

yi = ybase + φ(xi1)+ φ(xi2)+ · · · + φ(xik ) (14)

where Φ(xij) is the SHAP value of xij. Intuitively, Φ(xi,1) is
the contribution value of first feature in the i-th sample to
final predicted value yi. When Φ(xi,1) is greater than 0, it is
indicated that the feature improves the predicted value and
has a positive effect. Otherwise, it reduces the predicted value
and has a negative effect.

Select the data in the 10-th item of validation set, and
observe the impact of different features on final failure rate
results. The SHAP value is shown in Figure 5.

FIGURE 5. SHAP value for one item.

The explanation in Figure 5 shows that each feature has
its own contribution, pushing the prediction results of the

model from the base value to final model output. Base value
of 0.2904 represents the mean output value of failure learning
model on data set. 0.54 is the output value of a single sample
on the 10-th item.

The strip area represents the size of value. The red and the
blue indicate that 8(xij) is greater and smaller than 0 respec-
tively. The positive effect is characterized by the number of
systems, mean operation mileage. The negative effect is char-
acterized by mean service time, which significantly reduces
the predicted value.

E. IMPACT ANALYSIS OF MULTIPLE FEATURES
In the rank of feature importance, mean service time is
medium, which means two possibilities. One is that it has
a great impact on a small number of predictions, but little
impact on overall. The other is that it has a medium impact
on all predictions. This paper draws SHAP value of each
feature for each sample to distinguish which possibility it is,
which helps understand the overall pattern better and discov-
ery the outliers. The SHAP values of all features are shown
in Figure 6.

FIGURE 6. SHAP value for all features.

In Figure 6, x-axis is SHAP value representing the impact
of features on predictive value and y-axis represents features.
The color represents the value of the features, among which
the color from blue to red indicates the value from low to high.
It can be seen that mean operation mileage, mean service time
and the number of systems contribute most to the prediction
results. As the value increases, mean service time in medium
permutation importance will improve the prediction result
with SHAP value greater than 0, and show a positive effect,
but the degree of improvement will be reduced. As the value
increases to a certain extent, the prediction result decreases
with SHAP value less than 0, and show a negative effect.
It is indicated that mean service time has a great impact on
a small number of forecasts, but limited impact on overall.
So mean service time should be considered when formulating
a maintenance strategy.

F. FEATURE DEPENDENCE CONTRIBUTION
According to formula (6), mean operation mileage directly
affects the failure rate of ATP systems. How is its influence
distribution? Is it a constant or a value mostly dependent on
other features? Is there interaction between operationmileage
and service time? In order to understand how a single feature
of operation mileage affects the output of model, this paper
compares its SHAP value with the feature value of all samples
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in the data set, and obtains the impact distribution of mean
operation mileage to failure rate, as shown in Figure 7.

FIGURE 7. Feature dependence contribution.

In Figure 7, each point represents an item of data. The
x-axis is mean operation mileage and y-axis shows the impact
of feature value on prediction result. The dispersion in the
vertical direction of operation mileage represents its interac-
tion with service time. From the slope shape of the general
plot, it can be seen that the longer the operation mileage
is, the more negative impact the failure rate has. Excluding
the impact of all features, the interaction between operation
mileage and service time is described. As shown in the black
circle of the figure, although the operation mileage and ser-
vice time are short, the failure rate is still low.

To sum up, through the interpretability analysis of ATP
failure decision tree learning model, the internal mechanism
is visualized, and how each feature quantitatively affects the
change of ATP failure rate is explained, which lays a solid
and credible foundation for maintenance strategy.

VI. INTELLIGENT MAINTENANCE OF ATP SYSTEMS
The core of intelligent maintenance is to master the failure
rules of ATP systems through decision tree learning model,
dynamically adjust maintenance cycle and items as needed.
It can fundamentally solve the problem of over-maintenance,
save costs and improve the maintenance level of high-speed
trains.

A. INTELLIGENT MAINTENANCE SYSTEM AND
IMPLEMENTATION OF ATP SYSTEMS
The goal of machine learning aims to output the judgment of
intelligent maintenance of ATP systems, and build its archi-
tecture as shown in Figure 8. The whole system is divided
into three layers: the bottom database, the middle learning
and the upper application layer. The bottom database consists
of production information, daily operation mileage, daily
failure information and other data of an ATP system. The
middle layer is decision tree learning model of ATP failure
features established in section IV. The upper application is
to dynamically formulate and implement intelligent mainte-
nance strategy of ATP systems according to the results of the
learning model.

FIGURE 8. Intelligent maintenance architecture of ATP systems.

According to the architecture in Figure 8, the informa-
tion implementation platform of intelligent maintenance is
designed to provide refined and personalized maintenance
strategies for each ATP system, so as to realize the health
management of whole life cycle and closed-loop control of
ATP systems. The closed loop control diagram of the platform
is shown in Figure 9.

FIGURE 9. The closed loop control diagram of the platform.

In Figure 9, the closed-loop control process of intelligent
maintenance of ATP systems is as follows.
Step 1: On the basis of historical data, the decision tree

learning model of ATP failure is established.
Step 2: Refined maintenance strategy of each ATP system

is developed based on the results of decision tree learning
model. The maintenance cycle and items are dynamically
formulated. The former specifies how often the maintenance
is carried out, and the latter specifies what is to bemaintained.
Step 3: The maintenance implementation is mainly real-

ized by intelligent handheld terminal. Maintenance person-
nel accomplish task under the prompt and guidance of the
terminal.
Step 4: Timely alarm reminds users to pay special attention

to an ATP system which is to be expired or has been overdue.
Step 5: After maintenance, the change of failure rate of

ATP systems is continuously tracked and analyzed to quanti-
tatively evaluate the maintenance effect.
Step 6: The failure learning model is optimized according

to evaluation results.
So far, the intelligent maintenance information platform of

an ATP system has been built, and the closed-loop control of
the whole process has been formed.
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B. INTELLIGENT MAINTENANCE CYCLE AND ITEMS OF
ATP SYSTEMS
For maintenance personnel, intelligent maintenance is to
determine the maintenance cycle and items. In practical
application, maintenance strategies are differentiated and
implemented according to ATP system types. Therefore,
the maintenance cycle and items of each type of ATP systems
are determined as follows.

According to the interpretability analysis, the number of
systems has great impact on the failure change at a general
view. However, intelligent maintenance targets for each ATP
system, so the mean operation mileage and service time have
the greatest impact on individual level. The quantitative rela-
tionship among system failure, mean operation mileage and
service time is obtained according to the interpretability anal-
ysis of the decision tree learning model in section V. Within
a certain range of operation mileage or service time, the
maintenance cycle will be shortened along with the increase
of failure rate, stabilized as it is stable, and extended with its
decrease. Combined with practical maintenance experience,
the cycle is set as seven, fifteen and thirty days respectively.
As shown in Table 5, the maintenance cycle of each type of
ATP systems can be obtained.

TABLE 5. Maintenance cycle of each type of ATP systems.

In Table 5, the maintenance cycle of each type of ATP sys-
tem is different. For example, for 300T-type, when operation
mileage is less than 1.2 million kilometers or service time is
less than 550 days, and the failure rate shows a downward
trend, the maintenance cycle can be set to 30 days. When
it is more than 1.2 million kilometers or 550 days, and the
failure rate is stable, the cycle can be set to 15 days. For
200C-type, when operation mileage is less than 0.6 million
kilometers or service time is less than 1250 days, and the

failure rate shows an upward trend, the cycle can be set to
7 days. When it is more than 0.6 million kilometers or service
time is between 1250 and 1500 days, the cycle can be set
to 15 days. When it exceeds 1500 days, the cycle can be
set to 30 days. Therefore, when mean operation mileage or
service time reaches a certain range, all types of ATP systems
can adopt the corresponding maintenance cycle. In this way,
the fixed and single maintenance interval in whole life cycle
is converted to dynamic interval mode, where refined and
systematical maintenance are carried out and themaintenance
resources are saved at the same time.

The sub-equipment of ATP systems with high failure
rate should be paid more attention in every maintenance.
Table 6 has listed the top three in each type. It can be seen
that although the equipment with high failure rate in each
type of ATP systems is not the same, the top three exceeds
two thirds of total failures, indicating that most of the failures
are concentrated on some pieces of sub-equipment. As long
as these pieces of sub-equipment are reliably operated, the
main failure sources can be contained.

TABLE 6. (a) Failure ratio of sub-equipment of ATP systems. (b) Failure
ratio of sub-equipment of ATP systems.

In Table 6, VC-S refers to Vital Computer Software.
In daily maintenance, in addition to appearance inspection,
these electrical parameters and software logic should also be
tested. Other sub-equipment such as GSM-R and JRU can be
simply maintained.

To sum up, for each ATP system, the maintenance cycle
and items are dynamically determined on a specific data
service platform to realize refined maintenance in the whole
life cycle.

VII. CONCLUSION
The decision tree learning model of failure features of auto-
matic train protection system was proposed. It was verified
by practical failure data of China’s high-speed railway in the
past 10 years, and its accuracy was 0.9761.

The interpretability analysis of decision tree model showed
that the top three features affecting the failure rate were mean
cumulative operation mileage, mean cumulative service time
and the number of systems, whose importance reached 0.99.
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The time feature had little impact on failure rate, whose
importance was only 0.01. What’s more, the complex quanti-
tative relationship among failure rate of different types of ATP
systems, operation mileage, and service time was revealed.
And the maintenance cycle and items of each system were
adjusted dynamically, and the refined maintenance strategy
in whole life cycle was obtained.

In the future, we will continue to explore more pos-
sible failure features, analyze and improve the accuracy
of the model, and further improve the level of intelligent
maintenance.
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