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ABSTRACT Since the Dempster-Shafer evidence theory was developed, it has been extensively concerned
by researchers. Compared with Bayesian probability theory, Dempster-Shafer evidence theory satisfies
weaker constraints and has the advantage to indicate uncertainty, so it is widely used in the information
system. However, how to measure the uncertainty of basic probability assignment in Dempster-Shafer
evidence theory is still a problemworthy of attention. Therefore, based on Renyi entropy, this paper proposes
a novel method to measure the uncertainty of basic probability assignment in Dempster-Shafer evidence
theory. In addition, after proving that this method is compatible with Shannon entropy, a large number of
comparative experiments are carried out to illustrate its effectiveness. Finally, through the application in
decision-making, it is proved that the combination rule considering uncertainty can produce more reasonable
results.

INDEX TERMS Uncertainty measure, Dempster-Shafer evidence theory, basic probability assignment,
Renyi entropy, Shannon entropy, decision-making.

I. INTRODUCTION
The real world is full of uncertainty, and the existence of
uncertainty will interfere with our correct judgment of things.
In order to solve this issue, a number of theories have been
proposed, such as Bayesian probability theory [1], Dempster-
Shafer evidence theory [2]–[4], generalized evidence the-
ory [5], [6], soft set [7], rough set [8], [9], D-number [10],
Z-number [11], [12], Pythagorean fuzzy set [13], and other
theories. In addition, based on these theories, a number of
researchers have developedmanymethods [14]–[19]. Among
these theories andmethods, Dempster-Shafer evidence theory
has been widely developed by researchers because of its
weak constraints [20]. Because of this advantage, Dempster-
Shafer evidence theory is applied in a number of fields, such
as DS-VIKOR [21], Dempster-Shafer Electre [22], measur-
ing divergence [23], multi-sensor data fusion [24], decision-
making [25], andmany other fields. However, how tomeasure
the uncertainty of basic probability assignment (BPA) in
Dempster-Shafer evidence theory is still a problem worthy
of attention.

In 1865, the concept of entropy [26] was first proposed by
German physicist Clausius. In the beginning, he only applied
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it to the study of chemistry and thermodynamics. In 1948,
Shannon proposed Shannon entropy [27] and introduced it to
information theory for the first time. In the following decades,
many researchers continue to improve Shannon entropy and
use entropy theory to measure the uncertainty of BPA in
Dempster-Shafer evidence theory [28]–[32]. When measur-
ing uncertainty, researchers usually start from inconsistency
and non-specificity. Therefore, there are three famous entropy
models in entropy theory based on the two aspects: (1) Dubois
and Prade proposed weighted Hartley entropy [33]. This
model measures the uncertainty of BPA from a non-specific
point of view (2) Yager investigated the inconsistency of BPA
based on the plausibility function [34]. (3) Based on Shannon
entropy, Kilr considers the disorder and conflict measurement
of BPA [35], [36], and proposes five axioms of the entropy
model.

Recently, Deng’s entropy [28] and Gao’s method based on
Tsallis entropy [31] are proposed to measure the uncertainty
of BPA. Experiments show that these two kinds of entropy
have superior performance in uncertainty measurement, and
meet the five axioms proposed by Kilr [36].

Another entropy widely used in image segmentation is
Renyi entropy [37], which is also an extension of Shannon
entropy. Renyi entropy introduces an adjustable parameter q,
which makes the measurement of information more general
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and flexible. However, what should be noted in Renyi entropy
is that how to define the parameter q. Therefore, we propose
a new BPA uncertainty measurement model based on Renyi
entropy and determines the value of q by identifying the size
of the frame of discernment and the cardinality of BPA. It’s
proved that the model is compatible with Shannon entropy.

Other sections of this paper can be organized as follows.
In section II, we will review classical Dempster-Shafer evi-
dence theory and introduce three methods of uncertainty
measuring. In section III, the mathematical formula of Renyi
entropy is reasoned and rewritten. After it, a novel method
of measuring BPA’s uncertainty is proposed. In addition,
we also summarize several properties of Renyi entropymodel
through mathematical proof. In section IV, several numer-
ical experiments are carried out to verify the effectiveness
of the proposed model. After comparing with other meth-
ods, our method is superior. In section V, we apply the
proposed method to the decision-making field. The experi-
mental results show that the proposed method is reasonable.
In section VI, this paper summarizes the advantages and
discusses the further research of the model.

II. PRELIMINARIES
In this section, the traditional Dempster-Shafer evidence the-
ory proposed will be reviewed, and several important entropy
models will be introduced.

A. EVIDENCE THEORY
The treatment of uncertainty problems has promoted the birth
of Dempster-Shafer evidence theory. And Dempster-Shafer
evidence theory [38]–[42] has become a useful tool for
researchers to measure uncertainty because of its weaker
constraints than Bayesian probability theory [20]. Therefore,
this section will introduce several important definitions.
Definition 1: Suppose that� is a nonempty finite set. Each

element A is mutually exclusive and corresponds to a possible
proposition. The set is known as the frame of discernment.

� = {A1,A2, . . . ,An} (1)

Definition 2: Suppose there are n elements in the set, then
the length of it is n, and its power set 8 with 2n samples can
be defined as:

8 = {A1,A2, . . . ,An, {A1,A2} , . . . ,∅, �} (2)

Definition 3: Denote there is a frame of discernment � =
{A1,A2, . . . ,An}. For any subset A of the frame of discern-
ment, let it correspond to a function m, which satisfies the
following definitions [43]:∑

A⊆�

m (A) = 1 (3)

with

m (∅) = 0 (4)

Such a function m is named mass function or basic proba-
bility assignment (BPA).

Definition 4: For any subset A of �, the plausibility func-
tion and belief function can be defined as follows [43]:

Pl (A) =
∑

B∩A6=∅

m (B) (5)

Bel (A) =
∑
B⊆A

m (B) (6)

According to the above definition, it’s easy to know that the
relationship between plausibility function and belief function
satisfies Pl (A) = 1 − Bel

(
A
)
. In addition, for ∀A ∈ �,

the numerical relationship between them is Bel (A) < Pl (A).
Therefore, if we regard Bel (A) as the lower bound and Pl (A)
as the upper bound, we can obtain the belief interval of A, that
is [Bel (A) ,Pl (A)]. And the belief interval can represent the
support degree of evidence [43].
Definition 5: The reason why Dempster-Shafer evidence

theory can be developed is that Dempster-Shafer proposed a
combination formula for each evidence. Suppose the system
has generated two BPAs, the fusion rule between them can be
represented as:

m (A) =

∑
B∩C=A

m1 (B)m2 (C)

1− K
(7)

where K ∈ [0, 1) is the conflict coefficient between evi-
dences. The greater the K is, the stronger the conflict will
be. And the smaller the K is, the weaker the conflict will be.
The definition of K is represented as [43]:

K =
∑

B∩C=∅

m1 (B)m2 (C) (8)

These are the main definitions of Dempster-Shafer
evidence theory.

B. SHANNON ENTROPY
Entropy in chemistry and thermodynamics is a measure of the
total amount of energy that cannot do work in dynamics [26].
In the beginning, it is used to represent the disorder phe-
nomenon in the system. Shannon introduced the concept of
entropy into the information field in 1948 [27]. He proposed
Shannon entropy to express the uncertainty of a piece of
information. Let H = (p1, p2, . . . pn, ) be a finite discrete
distribution set, where i is the event and pi is the probability
corresponding to the event. Therefore, for ∀p ∈ H , pi ≥ 0,
with [27]

n∑
i=1

pi = 1 (9)

Definition 6:On the basis of the above conditions, Shannon
entropy formula is represented as [27]:

H (p1, p2, . . . pn) = −
n∑
i=1

pi log2 pi (10)

Through the formula, it is not difficult to find that the
greater the probability of the event, the less uncertainty of
information contained.
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C. DENG ENTROPY
Recently, to measure the uncertainty of BPA, Deng proposed
Deng entropy based on Shannon entropy [28]. He verified
the superiority of Deng entropy in many aspects through
examples.
Definition 7: Assuming that the system has generated a

BPA for subset A, Deng entropy can be defined as [28]:

Ed (m) = −
∑

m (A) log2
m (A)
2|A| − 1

(11)

where |A| is the number of elements of A. In order to simplify
the operation, Deng defined the change form of Deng entropy
from the perspective of nonspecificity and discord, which is
represented as [28]:

Ed (m) =
∑

m (A) log2
(
2|A| − 1

)
−

∑
m (A) log2 m (A)

(12)

where
∑
m (A) log2

(
2|A| − 1

)
is the total nonspecificity of

BPA. And
∑
m (A) log2 m (A) is the measure of discord of

BPA.

D. TSALLIS ENTROPY
In 1988, Brazilian physicist Constantino Tsallis proposed an
entropy expression with exponent q, which is a non-extensive
entropy Sq [44]. Gao et al. used Tsallis entropy to measure
uncertainty from the side of information field [31].
Definition 8: The definition of Tsallis entropy can be rep-

resented as [44]:

Sq (m) =
α

q− 1

(
1−

∑
m (A)q

)
(13)

where α is the Boltzmann constant. When q → 1, Tsallis
entropy degenerates to Shannon entropy.
Definition 9: The method based on Tsallis to measure the

uncertainty proposed by Gao can be defined as [31]:

T (m) =
∑ (

2|A| − 1
)
m (A)

(
1−

(
m(A)
2|A|−1

)|A|−1)
|A| − 1

(14)

E. RENYI ENTROPY
Renyi entropy is a new entropy model proposed by Alfred
Renyi [37]. Alfred extended the probability distribution of
Shannon entropy and introduced an exponential parameter θ
(In order to distinguish the exponential parameter in Tsal-
lis entropy, we use θ to replace the parameter q in Renyi
entropy).
Definition 10: The basic formula of Renyi entropy can be

represented as [37]:

Hθ (m) =
1

1− θ
log2

∑
m (A)θ (15)

where θ is the exponential coefficient of Renyi entropy. Simi-
lar to Tsallis entropy, if θ → 1, Renyi entropy will degenerate
to Shannon entropy. To simplify the operation, we can rewrite
Renyi entropy as Eq.16 [31].

Hθ (m) =
1

1− θ
log2

∑{
m (A)

[
m (A)θ−1 + 1

]
− 1

}
(16)

III. A NEW METHOD FOR MEASURING UNCERTAINTY
A. MEASURE UNCERTAINTY BASED ON RENYI ENTROPY
Shannon introduced entropy theory into the field of infor-
mation, which broadened the research of uncertainty mea-
surement [27]. Since Shannon entropy was proposed, entropy
theory has been widely developed and improved [45]–[49].
However, in Dempster-Shafer evidence theory, how to cal-
culate the uncertainty of BPA is still a developmental prob-
lem. Therefore, based on Renyi entropy, we propose a novel
approach to handle the uncertainty of BPA.

Suppose there has been a frame of discernment�, the value
of each subset attaches to a BPA and the size of each sub-
set is n. In Dempster-Shafer evidence theory, the problem
of probability assignment of empty set is not considered,
so there are at most 2n − 1 possible potential states for each
BPA. Therefore, we only need to divide each BPA by 2n − 1
to represent the uncertainty measure of it. In addition, we can
replace the value of exponent parameter θ in Renyi entropy
with the cardinality of every BPA. Thus, the method can be
defined as follow:

R (m) =
n log2

∑(
m(A)
2n−1

)(
1+

(
m(A)
2n−1

)n−1
−

1
2n−1

)
1− n

(17)

It should be noted that when n = 1, R (m) will degenerate
into Shannon entropy. The proof process of this property is as
follows:

lim
n→1

R (m) =
n log2

∑(
m (A)

(
1+ m (A)n−1 − 1

))
1− n

= lim
n→1

n log2
∑
m (A)n

1− n

= lim
n→1

log2
∑
m (A)n +

∑
m(A)n lnm(A)
ln 2

∑
m(A)n

−1

= − log2
∑

m (A)−

∑
m (A) lnm (A)
ln 2

∑
m (A)

= −

∑
m (A) log2 m (A)

B. THE PROPERTY OF PROPOSED MODEL
In this section, wewill discuss the specific properties of Renyi
entropy model.
Theorem 1 (Nonnegativity of Values): Nonnegativity

means R (m) ≥ 0 is always true.
Proof: Analyzing Eq.17, it’s easy to know that

0 ≤ m (A) ≤ 1

0 ≤
∑(

m (A)
2n − 1

)(
1+

(
m (A)
2n − 1

)n−1
−

1
2n − 1

)
≤ 1

1−n ≤ 0

therefore

log2

(
m (A)
2n − 1

)(
1+

(
m (A)
2n − 1

)n−1
−

1
2n − 1

)
≤ 0

⇒
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log2
(
m(A)
2n−1

)(
1+

(
m(A)
2n−1

)n−1
−

1
2n−1

)
1− n

≥ 0

finally, R (m) ≥ 0.
Theorem 2 (Probability Consistency): If the frame of dis-

cernment � = {A1,A2, . . . ,An}, that is to say, all the ele-
ments in� are a set of a single proposition, the Renyi entropy
will degenerate to Shannon entropy.

Proof: Define function:

f (x) =
x log2

∑(
m(A)
2x−1

)(
1+

(
m(A)
2x−1

)x−1
−

1
2x−1

)
1− x

lim
x→1

f (x) =
x log2

∑(
m (A)

(
1+ m (A)x−1 − 1

))
1− x

= lim
x→1

x log2
∑
m (A)x

1− x

= lim
x→1

log2
∑
m (A)x +

∑
m(A)x lnm(A)
ln 2

∑
m(A)x

−1

= − log2
∑

m (A)−

∑
m (A) lnm (A)
ln 2

∑
m (A)

= −

∑
m (A) log2 m (A)

The form of this model is the same as Shannon entropy.
Therefore, in Dempster-Shafer evidence theory, the uncer-
tainty model proposed by us based on Renyi entropy is com-
patible with the Shannon entropy.
Theorem 3 (Set Inconsistency): R (m) does not satisfy the

set consistency. Given a � = {A1,A2, . . .An} and all the
probabilities are assigned to the whole set, which means
m (A) = 1, R (m) won’t be equal to log2 |A|.

Proof: Let x = |A|, when m (A) = 1, the model can
change into x2 log2(2

x
−1)

x−1 , and we do the following operations

R (m)− log2 x =
x2 log2 (2

x
− 1)

x − 1
− log2 x

It’s easy to know that

x2 log2 (2
x
− 1)

x − 1
− log2 x ≥ x log2

(
2x − 1

)
− log2 x (x≥2)

Then let g (x) = x log2 (2
x
− 1)− log2 x, the derivative of

g (x) is obtained

d
dx
g (x) = log2

(
2x − 1

)
+ x

2x ln 2
(2x − 1) ln 2

−
1

x ln 2

∵


x

2x ln 2
(2x − 1) ln 2

−
1

x ln 2
≥ x −

1
x ln 2

x −
1

x ln 2
=
x2 ln 2− 1
x ln 2

≥ 0

∴
d
dx
g (x) = log2

(
2x − 1

)
+ x

2x ln 2
(2x − 1) ln 2

−
1

x ln 2
≥ 0

Therefore, the function increases monotonically in the
interval [2,+∞], and the minimum value of g (x) is g (2).

∵ g (2) = 2 log2
(
22 − 1

)
− log2 2 > 0

∴ R (m)− log2 x > g (2)

∴ R (m) > log2 x

Therefore, R (m) does not satisfy the set consistency.
Theorem 4 (Nonadditivity): Denote X and Y be two differ-

ent frames of discernment. If the set satisfies additivity, then
m (X × Y ) = m (X)m (Y ), A ⊆ X ,B ⊆ Y .
Example: Suppose there are two frame of discernments

X = {x1, x2}, Y = {y1, y2, y3} and the system has generated
four BPAs, they are m (X) = 1, m (Y ) = 0.7, m (y1) = 0.2,
m (y2, y3) = 0.1 respectively. The result of m (X × Y ) are as
follows:

m (x1y1, x2y1) = 0.2

m (x1y2, x1y3, x2y2, x2y3) = 0.1

m (XY ) = 0.7

Use Renyi entropy model to calculate the uncertainty of
BPAs, the results are as follows:

R (m (XY )) = 26.2978

R (m (X))= 3.1699

R (m (Y ))= 16.5987

It’s easy to see that R (m (X)) + R (m (Y )) 6= R (m (XY )).
Therefore, the model proposed in this paper does not satisfy
the additivity.
Theorem 5 (Nonsubadditivity): Let X and Y be two

frames of discernment. If the set satisfies subadditivity, then
R (m (X))+ R (m (Y )) ≥ R (m (XY )).
Example: The example in theorem 4 is also applicable to

this theorem.

m (x1y1, x2y1) = 0.2

m (x1y2, x1y3, x2y2, x2y3) = 0.1

m (XY ) = 0.7

and the result

R (m (X))+ R (m (Y )) = 19.7686 < R (m (XY ))

Therefore, the model based on Renyi entropy does not
satisfy subadditivity.

IV. EXAMPLES AND DISCUSSION
In this section, we will use a large number of calculation
examples to verify the effectiveness of Renyi entropy model.
In addition, at the end of this section, we will compare the
proposed method with other methods and existing entropy.

A. EXAMPLES
Several numerical examples will be calculated to show the
properties of Renyi entropy model in this section.
Example 4.1: Suppose there is an information source

�1 = {a}, which means m1 (a) = 1. The results of Shannon
entropy H (m), Deng entropy Ed (m), Gao’s method T (m)
and R (m) is calculated as follows.

H (m) = 1× log2 1 = 0
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Ed (m) = 1× log2 1 = 0

T (m) = 1× log2 1 = 0

R (m) = 1× log2 1 = 0

From the results, we can find that for BPA of a single
subset proposition, if its probability of occurrence is 1, then
the amount of information it contains is 0. The uncertainty
of BPA measurement based on Renyi entropy produces a
common-sense result, and this example also verifies the
non-negativity of our method.
Example 4.2: There is a frame of discernment �2 =

{a, b, c, d}, and the system allocates all probabilities equally
to four BPAs, which means m2 (a) = m2 (b) = m2 (c) =
m2 (d) = 1

4 . Thus, the results of Shannon entropy H (m),
Deng entropy Ed (m), Gao’s method T (m) and R (m) will be
calculated as follow.

H (m) = −
1
4
log2

1
4
−
1
4
log2

1
4
−

1
4
log2

1
4
−

1
4
log2

1
4
=2

Ed (m) = −
1
4
log2

1
/
4

21 − 1
−
1
4
log2

1
/
4

21 − 1
−

1
4
log2

1
/
4

21 − 1

−
1
4
log2

1
/
4

21 − 1
= 2

T (m) = −
1
4
log2

1
4
−

1
4
log2

1
4
−

1
4
log2

1
4
−
1
4
log2

1
4
=2

R (m) = −
1
4
log2

1
4
−

1
4
log2

1
4
−

1
4
log2

1
4
−
1
4
log2

1
4
=2

By analyzing examples 4.1 and 4.2, it can be found that
when each BPA is a single subset proposition, Deng entropy,
Gao’s method and the method proposed in this paper are
equal to Shannon entropy. In addition, this example verifies
the probability consistency of R (m), and also shows that
Dempster-Shafer evidence theory is an extension of Bayesian
probability theory.
Example 4.3: Suppose there is a frame of discernment

�3 = {a, b, c, d}, and the system allocates all probabilities
to the whole set, which means m3 (�3) = 1. The results of
proposed method can be calculated as follows.

R (m) =
4 log2

(
1
24
− 1

)((
1+

(
1
24
− 1

))4−1
−

1
24
− 1

)
1− 4

= 5.34

We can find that under the same frame of discernment,
the result of this example is greater than that of example 4.2.
But our method is reasonable. This is because when BPA is
not a proposition of a single subset, probability distribution no
longer conforms to Bayesian probability theory. On the one
hand, our proposed method considers the cardinality of BPA,
and the more information contained in BPA, the greater the
uncertainty of it. On the other hand, the elements in BPAmay
interact with each other, which will also lead to an increase
in uncertainty. Therefore, the results obtained by our method
are reasonable.
Example 4.4: Suppose the frame of discernment is �4 =

{X}, but its cardinality is an unknown variable. The results

of Deng entropy, Gao’s method and proposed method can be
shown as Fig. 1.

FIGURE 1. Uncertainty measure of each method with the varied size of X .

Since the elements are mutually exclusive, the uncertainty
should vary linearly. In Fig. 1, it’s easy to find that Gao’s
method changes exponentially. This is because Gao’s method
has a coefficient 2x − 1. While Deng entropy changes lin-
early, and our method is very close to Deng entropy. To be
noticed, R (m) increases linearly with the increase of the
cardinality of uncertain information sources. In other words,
the uncertainty of BPA increases linearly with the increase of
parameter θ . However, Gao’s method changes exponentially,
which is inconsistent with reality. Therefore, from this point
of view, it is reasonable that we use the cardinality of BPA to
replace the parameter θ in Renyi entropy model.
Example 4.5: In this example, let’s discuss a normal sit-

uation. Suppose there is a discernment �5 = {a, b, c}, and
the BPAs are m5 (a) = m5 (b) = m5 (c) = 1

9 , m5 (a, b) =
m5 (a, c) = m5 (b, c) = 1

9 , m5 (a, b, c) = 1
3 , then the results

of Deng entropy Ed (m), T (m), and our method R (m)will be
calculated as follows.

Ed (m)

= −3×
1
9
log2

1
/
9

21 − 1
− 3×

1
9
log2

1
/
9

22 − 1

− 3×
1
9
log2

1
/
3

23 − 1
= 4.1057

T (m)

= −3×
1
9
log2

1
/
9

21 − 1

− 3×

(
22 − 1

)
× 1

/
9×

(
1−

(
1
/
9
/
22 − 1

)2
− 1

)
2− 1

−

(
23 − 1

)
× 1

/
3×

(
1−

(
1
/
3
/
23 − 1

)3
− 1

)
3− 1

= 3.1783
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R (m)

= −3×
1
9
log2

1
/
9

21 − 1

− 3×
2× log2

((
1
/
9
/
22 − 1

)2−1
− 1

/
23 − 1

)
1− 2

−

3× log2
((
1
/
3
/
23 − 1

)3−1
− 1

/
23 − 1

)
1− 3

= 15.3268

From the result, we can find that when BPA assigns proba-
bility to multi subset propositions, R (m) can also effectively
measure their uncertainty. Since the information in the real
world is usually not a single proposition, we can know from
this point that R (m) is universal. To be noticed, the value of
R (m) is large in some cases.
Example 4.6: Given a frame of discernment �6 with

10 elements, the BPAs are assigned as m (x1, x2, x3) =
0.05,m (x4) = 0.05,m (A) ,m (�6) = 0.1. When the length
of m (A) changes, the uncertainty of BPA changes, as shown
in Fig. 2. Table 2 lists all the calculation results.

FIGURE 2. Uncertainty measure of each method with the varied size of A.

The analysis results show that Gao’s method increases
exponentially. This may cause a problem that the amount
of information contained is not very large, but the evidence
uncertainty is very great. However, Deng entropy and our
method grow linearly, which is in line with the development
law of things. It should be noted that the value of R (m) is
greater than the value of Deng entropy. This is because we
use the cardinality of BPA to replace the parameter θ in Renyi
entropy model, which is more reasonable.

B. COMPARATIVE ANALYSIS
In this section, we will compare the proposed method with
other methods and existing entropy. And table 3 lists some of
the existing uncertainty measures of BPA.

Since Shannon introduced entropy into the field of infor-
mation, using information entropy to calculate uncertainty
has been extensively considered by researchers. In the
past decades, many researchers have proposed different

measurement methods to measure uncertainty, but not all of
them are effective.

For example, Dubois and Prade’s method cannot sat-
isfy the probability consistency. However, the fact is that
in Dempster-Shafer evidence theory, when each BPA is a
single subset proposition, Dempster-Shafer evidence theory
will degenerate into Bayesian probability theory. Therefore,
the proposed method should also satisfy the probability con-
sistency. In addition, uncertainty measuring is used to calcu-
late the amount of information. Common sense tells us that
the results obtained according to the establishedmodel should
be non-negative, but some methods do not perform well in
this aspect.

From the previous analysis results, although Gao’s method
has excellent properties, when the size of BPA is large,
the result of this model increases exponentially, which will
lead to a huge increase in uncertainty.

However, through the above discussion, we can know
that the proposed method can be compatible with Shannon
entropy and also satisfy the probability consistency and non-
negativity. In terms of measurement uncertainty, the model
has a linear growth and can produce results that do not
violate common sense. Therefore, compared with some other
methods, the method based on Renyi entropy can show
superiority [50].

C. ADDRESS THE INCOMPLETE INFORMATION
In the real world, the information we collect is usually incom-
plete. In this case, if we use evidence theory for informa-
tion fusion, we may get results contrary to common sense.
Therefore, researchers put forward the generalized evidence
theory [5] to solve this problem. Generalized evidence theory
allows the allocation of probability to empty sets, which
is also an important standard to measure the integrity of
information. However, how to measure the uncertainty of
incomplete information is still an open problem. Therefore,
in this subsection, we will discuss this issue.
Example 4.7: Suppose there is a frame of discernment and

a BPA.

�7 = {A,B,C,D}

m {A,B,C} = a, m (∅) = 1− a

where 0 ≤ a ≤ 0.5. We do not know whether the information
contains element d , so it is incomplete. When calculating the
uncertainty of m (∅), since the information may or may not
contain d , the parameter n in Eq.17 should be determined as
themaximum length of the information source, which is equal
to the length of the frame of discernment. Fig. 3 shows the
variation of uncertainty with parameter a.

Fig. 3 shows that the uncertainty decreases significantly
with the expansion of parameter a, which is consistent with
common sense. When the value of parameter a is very
small, the probability of assigning to the empty set is very
large. The greater the value of m (∅), the greater the degree
of incompleteness of information. Therefore, the degree of
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FIGURE 3. Variation of uncertainty with a.

uncertainty is very large. On the contrary, when the value of
parameter a is large, the probability assigned to the empty set
is very small, and the completeness of information increases
gradually. Therefore, the uncertainty will gradually decrease.
Example 4.8: In this example, we consider a completely

incomplete situation. This means that we do not know the
information source and cannot determine the probability dis-
tribution. Suppose there is a frame of discernment and a BPA,
which are defined as follows:

�8 = {B,X}

m1 {A} = a,m (∅) = 1− a

where X is defined in Table 1.

TABLE 1. Variable focal element X .

Fig. 4 intuitively shows this situation. When the infor-
mation source contains more information and the value of
parameter a is very small, the uncertainty of information is
very large. This is because of the more information volume,
the greater the probability of incomplete information, and the
smaller the value of parameter a, the higher the degree of
incomplete information. These reasons will make the uncer-
tainty of information very large. On the contrary, when the
information source contains less information and the value
of parameter a is large, the uncertainty of information is
small. This is because of the less information, the lower the
possibility of generating incomplete information. The greater
the value of parameter a, the more complete the information,
thus reducing the uncertainty of information.

Examples 4.7 and 4.8 discuss the uncertainty of measuring
incomplete information with the method proposed R (m) in

FIGURE 4. Variation of uncertainty with a and
∣∣X ∣∣.

FIGURE 5. The flowchart of proposed method in decision-making.

this paper. We get satisfactory answers through these two
examples. This shows that our method can not only measure
the uncertainty of complete information, but also effectively
measure the uncertainty of incomplete information, which is
the performance of the superiority of R (m).

V. APPLICATION
In this section, we will illustrate the effectiveness of the pro-
posed method through the application of R (m) in decision-
making. The flowchart of the model is shown in Fig. 5.
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TABLE 2. Uncertainty measure under different entropy.

TABLE 3. Some existing uncertainty measures of BPA.

TABLE 4. Application in decision-making based on different methods.

Step 1:Determine the frame of discernment by sensors, and
then the basic probability assignment is generated to obtain
the evidence source.
Step 2: Calculated the weight of each evidence. Firstly,

the uncertainty of each basic probability assignment is cal-
culated by R (m), and then the weight of each evidence can
be obtained. The weight calculation formula is as follows.

Wmi =
R (mi)
n∑
i=1

R (mi)
(18)

Step 3:Modify the basic probability assignment according
to the weight of each evidence. The formula is as follows

m (A) =
t∑
i=1

Wmi ∗ mi (A) (19)

Step 4: Use Eq.7 to combine the new basic probability
assignment for t−1 times, where t is the number of evidence.
Example: Suppose that the sensor has generated a frame of

discernment � = {a, b, c}. The detailed calculation process
is as follows:

Step 1: Based on these evidences, we obtain some basic
probability assignments, which are

m1 (a) = 0.41, m1 (b) = 0.29, m1 (c) = 0.30,

m1 (a, c) = 0.00

m2 (a) = 0.90, m2 (b) = 0.00, m2 (c) = 0.10,

m2 (a, c) = 0.00

m3 (a) = 0.58, m3 (b) = 0.07, m3 (c) = 0.00,

m3 (a, c) = 0.35

m4 (a) = 0.55, m4 (b) = 0.10, m4 (c) = 0.00,

m4 (a, c) = 0.35

m5 (a) = 0.60, m5 (b) = 0.10, m5 (c) = 0.00,

m5 (a, c) = 0.30

Step 2.1: Calculate the uncertainty of each BPA with
model R (m).

R (m1) = 1.5664

R (m2) = 0.4690

R (m3) = 7.6280
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R (m4) = 7.7102

R (m5) = 8.1849

Step 2.2: Calculate the weight of each BPA.

Wm1 = 0.0613

Wm2 = 0.0184

Wm3 = 0.2985

Wm4 = 0.3017

Wm5 = 0.3202

Step 3:Modify all the BPAs with Eq.19 to generate a new
BPA.

m̃ (a) = 0.5729
m̃ (b) = 0.1009
m̃ (c) = 0.0202

m̃ (a, c) = 0.3061

Step 4: Use Eq.7 to combine the new BPA for 4 times. The
result is as follows.

M (a) = 0.8536
M (b) = 0.0128
M (c) = 0.0161

M (a, c) = 0.1178

In order to better reflect the advantages of our proposed
method, we compare it with several other data fusion meth-
ods, and the results are shown in Table 4. In this case, m2 is a
highly conflicting evidence. It is easy to know by analyzing
the experimental results that when the evidences are highly
conflicting, the traditional Dempster-Shafer fusion method
will produce results that violate common sense.

Yager, Zhang and Deng considered the weight of evi-
dence in their method, which overcomes the problem that
Dempster-Shafer fusion rule cannot effectively combine con-
flicting evidence. However, these three methods do not notice
the uncertainty of evidence. They combine the weighted evi-
dence into a single new evidence, which is unreasonable.

Therefore, in the process of information fusion, we use
the uncertainty of evidence to determine it’s weight. The
highly conflicting evidence has a greater weight due to its
great uncertainty, which also reflects the impact of conflicting
evidence on the fusion results. In addition, the information in
the real world is always full of uncertainty. Hence, ourmethod
is universal and reasonable.

VI. CONCLUSION
Because of the weaker restriction, Dempster-Shafer evi-
dence theory has been extensively developed in a number
of fields. Nevertheless, how to measure the uncertainty of
BPA in Dempster-Shafer evidence theory is still an open
issue. Shannon first developed Shannon entropy to measure
uncertainty. After that, many researchers proposed different
methods based on Shannon entropy to deal with uncertainty,
such as Tsallis entropy proposed by Tsallis, Dubois and

Prade’s weighted Hartley entropy, Deng entropy proposed by
Deng, and many other methods. However, not all methods
are reasonable. Renyi entropy is a new entropy proposed
by Alfred Renyi based on Shannon entropy. Renyi adds a
parameter θ to the model, which makes Renyi entropy more
flexible and can better measure the uncertainty of general
information. Because of its flexibility and generality, Renyi
entropy is widely used in image segmentation and probability
distribution.

Therefore, based on Renyi entropy, a new measurement
uncertainty method is proposed. Through strict mathematical
deduction, it can be proved that our method based on Renyi
entropy is compatible with Shannon entropy and broadens
the value boundary of Shannon entropy. Furthermore, this
method can satisfy the non-negativity and probability con-
sistency, so it will not produce abnormal results. In addition,
we also apply the proposed method to decision-making. The
example shows that the result is more reasonable after con-
sidering the uncertainty of evidence.

However, the proposed method also has some limitations.
The form of the formula is complex, and the readability
is poor. In addition, we do not consider the differences
between evidences, which may produce errors in the process
of decision-making.

This paper develops a novel approach to measure uncer-
tainty based on Renyi entropy. Renyi proposed Renyi entropy
on the basis of Shannon entropy. Due to the introduction
of order parameter θ , Renyi entropy has very elastic prop-
erties. In addition, Renyi also proposed Renyi divergence
based on Kullback–Leibler Divergence. It can represent the
difference between probability distributions. At present, there
is little work to apply Renyi entropy and Renyi divergence to
Dempster-Shafer evidence theory. In addition, Pythagorean
fuzzy set is also an effective way to deal with uncertainty
and an extension of the intuitionistic fuzzy set. Pythagorean
fuzzy set can be well applied to the field of decision-making.
However, it lacks tools to express randomness and probability
information. Therefore, in future work, the combination of
Renyi entropy and Pythagorean fuzzy set is also a project
worthy of research. Moreover, we will continue to explore
the properties of these models, combine their advantages with
Dempster-Shafer evidence theory, and make more contribu-
tions to the field of information fusion.

ACKNOWLEDGMENT

The authors declare that there is no conflict of interests
regarding the publication of this article.

REFERENCES
[1] W. Linden, V. Dose, and U. V. Toussaint, ‘‘Bayesian probability the-

ory,’’ Bayesian Probability Theory, W. von der Linden, V. Dose, and
U. von Toussaint, Eds. Cambridge, U.K.: Cambridge Univ. Press, 2014.

[2] R. R. Yager, J. Kacprzyk, and M. Fedrizzi, Advances in the
Dempster-Shafer Theory of Evidence. Hoboken, NJ, USA: Wiley,
1994.

[3] P. Dutta, ‘‘An uncertainty measure and fusion rule for conflict evidences of
big data via Dempster–Shafer theory,’’ Int. J. Image Data Fusion, vol. 9,
no. 2, pp. 152–169, 2017.

130040 VOLUME 9, 2021



Z. Chen, X. Luo: Uncertainty Measure of BPA Based on Renyi Entropy and Its Application in Decision-Making

[4] F. Innal, A. Rauzy, and Y. Dutuit, ‘‘Handling epistemic uncertainty in fault
trees: New proposal based on evidence theory and Kleene ternary decision
diagrams,’’ in Proc. 2nd Int. Conf. Syst. Rel. Saf. (ICSRS), Dec. 2017,
pp. 354–359.

[5] Y. Deng, ‘‘Generalized evidence theory,’’ Appl. Intell., vol. 43, no. 3,
pp. 530–543, Oct. 2015.

[6] L. Zhou and F. Xiao, ‘‘A new matrix game with payoffs of general-
ized Dempster-Shafer structures,’’ Int. J. Intell. Syst., vol. 34, no. 9,
pp. 2253–2268, Sep. 2019.

[7] O. Dalkłç, ‘‘A novel approach to soft set theory in decision-making
under uncertainty,’’ Int. J. Comput. Math., vol. 98, no. 10, pp. 1935–1945,
Oct. 2021.

[8] B. K. Tripathy and D. P. Acharjya, ‘‘Approximation of classification and
measures of uncertainty in rough set on two universal sets,’’ Comput. Sci.,
vol. 40, no. 40, pp. 77–90, 2013.

[9] Q. Zhang, S. Yang, and G. Wang, ‘‘Measuring uncertainty of probabilistic
rough set model from its three regions,’’ IEEE Trans. Syst., Man, Cybern.
Syst., vol. 47, no. 12, pp. 3299–3309, Dec. 2017.

[10] X. Deng and W. Jiang, ‘‘A total uncertainty measure for d numbers based
on belief intervals,’’ Int. J. Intell. Syst., vol. 34, no. 12, pp. 3302–3316,
Dec. 2019.

[11] Y. Li, H. Garg, and Y. Deng, ‘‘A new uncertainty measure of discrete
Z-numbers,’’ Int. J. Fuzzy Syst., vol. 22, no. 3, pp. 760–776, Apr. 2020.

[12] B. Kang, Y. Deng, K. Hewage, and R. Sadiq, ‘‘A method of measur-
ing uncertainty for Z-number,’’ IEEE Trans. Fuzzy Syst., vol. 27, no. 4,
pp. 731–738, Apr. 2018.

[13] L. Wang and H. Garg, ‘‘Algorithm for multiple attribute decision-making
with interactive Archimedean norm operations under Pythagorean fuzzy
uncertainty,’’ Int. J. Comput. Intell. Syst., vol. 14, no. 1, pp. 503–527, 2020.

[14] X. Deng, ‘‘Analyzing the monotonicity of belief interval based uncer-
tainty measures in belief function theory,’’ Int. J. Intell. Syst., vol. 33,
pp. 1869–1879, Sep. 2018.

[15] W. Jiang, B. Wei, X. Liu, X. Li, and H. Zheng, ‘‘Intuitionistic fuzzy
power aggregation operator based on entropy and its application in decision
making,’’ Int. J. Intell. Syst., vol. 33, no. 1, pp. 49–67, 2018.

[16] Z. Deng and J. Wang, ‘‘Measuring total uncertainty in evidence theory,’’
Int. J. Intell. Syst., vol. 36, no. 4, pp. 1721–1745, Apr. 2021.

[17] R. Jirouáek and P. P. Shenoy, ‘‘A new definition of entropy of belief func-
tions in the Dempster–Shafer theory,’’ Int. J. Approx. Reasoning, vol. 92,
pp. 49–65, Jan. 2018.

[18] Y. Yang and D. Han, ‘‘A new distance-based total uncertainty measure in
the theory of belief functions,’’ Knowl.-Based Syst., vol. 94, pp. 114–123,
Feb. 2016.

[19] S. Zhang, D. Han, and Y. Yang, ‘‘Active learning based on belief func-
tions,’’ Sci. China Inf. Sci., vol. 63, no. 11, Nov. 2020, Art. no. 210205.

[20] X. Deng and W. Jiang, ‘‘On the negation of a Dempster–Shafer belief
structure based on maximum uncertainty allocation,’’ Inf. Sci., vol. 516,
pp. 346–352, Apr. 2020.

[21] L. Fei, Y. Deng, and Y. Hu, ‘‘DS-VIKOR: A new multi-criteria decision-
making method for supplier selection,’’ Int. J. Fuzzy Syst., vol. 21, no. 1,
pp. 157–175, 2019.

[22] L. Fei, J. Xia, Y. Feng, and L. Liu, ‘‘An ELECTRE-based multiple criteria
decision making method for supplier selection using Dempster-Shafer
theory,’’ IEEE Access, vol. 7, pp. 84701–84716, 2019.

[23] L. Fei and Y. Deng, ‘‘A new divergence measure for basic probability
assignment and its applications in extremely uncertain environments,’’ Int.
J. Intell. Syst., vol. 34, no. 4, pp. 584–600, 2018.

[24] F. Xiao, ‘‘Multi-sensor data fusion based on the belief divergence measure
of evidences and the belief entropy,’’ Inf. Fusion, vol. 46, pp. 23–32,
Mar. 2019.

[25] P. Liu and X. Zhang, ‘‘Approach to multi-attributes decision making with
intuitionistic linguistic information based on dempster-shafer evidence
theory,’’ IEEE Access, vol. 6, pp. 52969–52981, 2018.

[26] V. Baccetti and M. Visser, ‘‘Clausius entropy for arbitrary bifurcate
null surfaces,’’ Classical Quantum Gravity, vol. 31, no. 3, Feb. 2014,
Art. no. 035009.

[27] C. E. Shannon, ‘‘A mathematical theory of communication,’’ Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, Jul./Oct. 1948.

[28] Y. Deng, ‘‘Deng entropy,’’ Chaos, Solitons Fractals, vol. 91, pp. 549–553,
Oct. 2016.

[29] X. Deng and Y. Deng, ‘‘Transformation of basic probability assignments
to probabilities based on a new entropy measure,’’ Comput. Sci., vol. 2014,
pp. 1–14, Feb. 2015.

[30] Y. Zhao, D. Ji, X. Yang, L. Fei, and C. Zhai, ‘‘An improved belief entropy
to measure uncertainty of basic probability assignments based on Deng
entropy and belief interval,’’ Entropy, vol. 21, no. 11, p. 1122, Nov. 2019.

[31] X. Gao, F. Liu, L. Pan, Y. Deng, and S. Tsai, ‘‘Uncertainty measure based
on Tsallis entropy in evidence theory,’’ Int. J. Intell. Syst., vol. 34, no. 11,
pp. 3105–3120, Nov. 2019.

[32] Y. Chen, Y. Tang, and Y. Lei, ‘‘An improved data fusion method based
on weighted belief entropy considering the negation of basic probability
assignment,’’ J. Math., vol. 2020, Nov. 2020, Art. no. 1594967.

[33] D. Dubois and H. Prade, ‘‘A note onmeasures of specificity for fuzzy sets,’’
Int. J. Gen. Syst., vol. 10, no. 4, pp. 279–283, 1985.

[34] R. R. Yager, ‘‘Entropy and specificity in a mathematical theory of evi-
dence,’’ Int. J. Gen. Syst., vol. 9, no. 4, pp. 291–310, 2008.

[35] G. J. Klir, ‘‘Measures of uncertainty and information,’’ in Fundamentals of
Fuzzy Sets (The Handbooks of Fuzzy Sets Series), vol. 7, D. Dubois and H.
Prade, Eds. Boston, MA, USA: Springer, 2000, doi: 10.1007/978-1-4615-
4429-6_9.

[36] G. J. Klir and M. J. Wierman, Uncertainty-Based Information: Elements
of Generalized Information Theory. Springer, 1999.

[37] A. Rényi, ‘‘On measures of entropy and information,’’ Virology, vol. 142,
no. 1, pp. 158–174, 1985.

[38] D. Li, Y. Deng, and H. C. Kang, ‘‘Multisource basic probability assignment
fusion based on information quality,’’ Int. J. Intell. Syst., vol. 36, no. 4,
pp. 1851–1875, 2021.

[39] A. Karci, ‘‘Fractional order entropy: New perspectives,’’ Optik, vol. 127,
no. 20, pp. 9172–9177, Oct. 2016.

[40] S. P. Zhang and T. Feng, ‘‘Uncertainty measure based on evidence theory,’’
Appl. Mech. Mater., vol. 329, pp. 344–348, Jun. 2013.

[41] D. Wu and Y. Tang, ‘‘An improved failure mode and effects analysis
method based on uncertainty measure in the evidence theory,’’ Qual. Rel.
Eng. Int., vol. 36, no. 5, pp. 1786–1807, Jul. 2020.

[42] X. Wang and Y. Song, ‘‘Uncertainty measure in evidence theory with
its applications,’’ Int. J. Speech Technol., vol. 48, no. 7, pp. 1672–1688,
Jul. 2018.

[43] G. Shafer, ‘‘A mathematical theory of evidence,’’ Technometrics, vol. 20,
p. 81, Sep. 1976.

[44] C. Tsallis, ‘‘Possible generalization of Boltzmann-Gibbs statistics,’’ J. Stat.
Phys., vol. 52, nos. 1–2, pp. 479–487, 1988.

[45] P. M. Cincotta, C. M. Giordano, R. A. Silva, and C. Beaugé, ‘‘Shannon
entropy diffusion estimates: Sensitivity on the parameters of the method,’’
Celestial Mech. Dyn. Astron., vol. 133, no. 2, pp. 1–20, Feb. 2021.

[46] G. Carcassi, C. A. Aidala, and J. Barbour, ‘‘Variability as a better char-
acterization of Shannon entropy,’’ Eur. J. Phys., vol. 42, no. 4, Jul. 2021,
Art. no. 045102.

[47] M. Pietrosanto, M. Adinolfi, A. Guarracino, F. Ferrè, G. Ausiello, I. Vitale,
and M. Helmer-Citterich, ‘‘Relative information gain: Shannon entropy-
based measure of the relative structural conservation in RNA alignments,’’
NAR Genomics Bioinf., vol. 3, no. 1, Feb. 2021, Art. no. lqab007.

[48] L. Saunoriene, M. Ragulskis, J. Cao, and M. Sanjuán, ‘‘Wada index based
on theweighted and truncated Shannon entropy,’’NonlinearDyn., vol. 104,
pp. 739–751, Mar. 2021.

[49] S. Gáner, H. Ä. Cebeci, J. J. M. Antunes, and P. F. Wanke, ‘‘Sustain-
able efficiency drivers in Eurasian airports: Fuzzy NDEA approach based
on Shannon’s entropy,’’ J. Air Transp. Manage., vol. 92, May 2021,
Art. no. 102039.

[50] K. Zkan, ‘‘Comparing Shannon entropy with Deng entropy and improved
Deng entropy for measuring biodiversity when a priori data is not clear,’’
Forestist, vol. 68, no. 2, pp. 136–140, 2018.

[51] G. J. Klir and A. Ramer, ‘‘Uncertainty in the dempster-shafer theory:
A critical re-examination,’’ Int. J. Gen. Syst., vol. 18, no. 2, pp. 155–166,
Dec. 1990.

[52] G. J. Klir and B. Parviz, ‘‘A note on themeasure of discord,’’ inUncertainty
Artificial Intelligence. Burlington, MA, USA: Morgan Kaufmann, 1992,
pp. 138–141.

[53] P. Smets, ‘‘Information content of an evidence,’’ Int. J. Man-Machine Stud.,
vol. 19, no. 1, pp. 33–43, 1983.

[54] R. R. Yager, ‘‘On the Dempster-Shafer framework and new combination
rules,’’ Inf. Sci., vol. 41, no. 2, pp. 93–137, Mar. 1987.

[55] Z. Zhang, T. Liu, D. Chen, andW. Zhang, ‘‘Novel algorithm for identifying
and fusing conflicting data in wireless sensor networks,’’ Sensors, vol. 14,
no. 6, pp. 9562–9581, May 2014.

[56] D. Yong, S. WenKang, Z. ZhenFu, and L. Qi, ‘‘Combining belief functions
based on distance of evidence,’’ Decis. Support Syst., vol. 38, no. 3,
pp. 489–493, Dec. 2004.

VOLUME 9, 2021 130041

http://dx.doi.org/10.1007/978-1-4615-4429-6_9
http://dx.doi.org/10.1007/978-1-4615-4429-6_9

