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ABSTRACT With the development of Internet of Things (IoT) technologies, environmental monitoring
systems using wireless sensor networks (WSNs) have received considerable attention. Reliable object
detection and tracking is an important research issue in various WSN applications, such as environment and
disaster monitoring, disaster propagation tracking, and intruder monitoring and tracking. Generally, because
batteries are used as energy sources for sensors in WSNs, a highly energy-efficient operation is needed to
prolong the life of the sensors and networks. To save energy, sensors usually manage multi-mode sensing
operations, in which they periodically switch between active and inactive periods. A tradeoff exists between
object detection accuracy and energy efficiency when we select a sensing schedule. Depending on the object
speed, direction, and sensor deployment topology, different sensing schedules should be dynamically applied
to individual sensors. In this paper, we propose a novel recurrent neural network (RNN)-based dynamic duty
cycle control method for sensor nodes. For RNN training, a target optimal duty cycle for a given network
condition is derived from the proposed digital twin-space analytic solution. Simulation results show that the
proposed model provides accurate object detection performance and achieves high energy efficiency.

INDEX TERMS Duty cycle control, machine learning, object tracking, recurrent neural network, wireless
sensor networks.

I. INTRODUCTION
As the Internet of Things (IoT) and wireless sensor net-
works (WSNs) are becoming a reality, their interconnections
for smart devices are increasing [1], [2]. IoT technologies will
be able to connect physical things through sensors, actuators,
and networks, and then control them. Hence, by enabling easy
access and interaction with a wide variety of devices, such
as home appliances, surveillance cameras, humidity sensors,
actuators, forest fire detection sensors, vehicle trackers, and
mobile phones, many objects surrounding us will be con-
nected to networks in one form or another. In WSNs, sensor
nodes collect data from the target environment, and deliver
the data to the sink node (e.g., a server) through an ad-hoc
sensor network and existing Internet infrastructure. Object
monitoring and tracking is one of the main functionalities that
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can be applied to many application areas. An object tracking
sensor network monitors both indoor and outdoor environ-
ments and tracks various objects, such as forest fires, polluted
air, bio-chemical materials, automobiles, and animals [3]–[6].
WSN sensor nodes can monitor combustion gases and pre-
emptive fire conditions to define alert zones. In addition to
preventive measures, early detection of fires is the only way
to minimize damage and casualties. Pollution monitoring and
display to citizens are essential to compare the impact of
measures taken by municipalities and public institutions, and
to raise public awareness. WSNs are also widely used for
wildlife monitoring and tracking of different species. For
intrusion detection, autonomous sensors equipped with video
cameras enable the development of new security, surveil-
lance, and military applications.

InWSNs, sensor nodes depend on limited battery capacity,
and it is generally unrealistic to supplement or replace sensors
in real-world applications [7], [8]. Thus, it is very important

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 133215

https://orcid.org/0000-0002-6851-4281
https://orcid.org/0000-0002-2760-5638
https://orcid.org/0000-0002-2455-3131


S.-H. Choi, S.-J. Yoo: RNN-Based Optimal Sensing Duty Cycle Control Method for WSNs

to increase the energy efficiency of the sensors needed,
in order to prolong the life of the sensors and networks.
Different methods for sensor operation in terms of
sensor-activation scheduling have been studied. The most
basic method is naïve activation, which always turns on
the sensors [9]. In this case, the energy consumption of the
sensor increases, and the lifetime of the network and sensor
is shortened. Random activation is a method of operating
sensors stochastically, which has the disadvantage that object
tracking may not be smooth. Selective activation is a method
of predicting the location of the target and activating only a
few sensors around the target in the tracking mode. It has
the advantage of saving more energy compared to other
methods. The duty-cycle operation activates sensors at a
constant time interval. The ratio of the active period to the
sensing interval is called the duty cycle [10], [11]. Many
studies are being conducted on how to activate sensors around
objects with duty-cycled activation to efficiently use energy.
There is a problem in that maximizing the inactive period
to save energy causes severe data transmission delays and
prevents the network from performing proper object detection
functions [12], [13]. In object tracking of WSNs, it is very
important to dynamically determine the optimal sensing duty
cycle. The accuracy of object tracking and energy conserva-
tion is a trade-off relationship. A higher duty cycle results
in a better object detection performance but lower energy
efficiency.

The optimal sensing schedule (i.e., duty cycle) of each
sensor node depends on the object’s moving speed and direc-
tion, movement pattern, neighbor sensor node deployment
topology, and object detection requirements. An individual
sensor node is unable to properly change its sensing duty
cycle in advance based only on its measurement because it
does not know whether the object is approaching or moving
away from itself until the object enters the sensing coverage
of the node. Furthermore, even a server cannot easily calcu-
late the optimal duty cycle for each node in real time with
measurement information from sensors.

In this paper, we propose a novel recurrent neural net-
work (RNN)-based optimal duty cycle control method for
WSNs, in which the optimal sensing schedule is dynam-
ically determined for each sensor node. We use an RNN
learning structure because it can capture the sequential and
temporal dynamic behavior well [14]. Based on the neigh-
bor node’s object detection results, in the proposed method,
the server determines the node that must change its duty
cycle and defines the optimal duty cycle that can meet the
detection requirements with minimum energy consumption.
We define multiple discrete duty cycle operation modes.
In our long short-termmemory (LSTM)-based RNN architec-
ture, the input is defined as the network-wise sensor deploy-
ment topology and each sensor node’s object observation
history. The output of the RNN model is the optimal duty
cycle of each sensor node. The proposed model can achieve
efficient energy consumption with high object-tracking
accuracy.

The main contributions of this paper can be summarized as
follows:
• We derive an optimal duty-cycle computing method to
obtain the target values (i.e., labels) for RNN-based
supervised learning. For the ideal condition, in which
object movements are known in advance, the optimal
duty cycle of each node that satisfies the object tracking
requirements is calculated.

• We implement a digital twin model to generate a
training dataset for the RNN model, and to obtain
the corresponding label set (i.e., for the given condi-
tion, the corresponding optimal duty cycle for each
node).

• Using the data generated from the digital twin space,
we perform learning for the proposed RNN model, and
confirm the performance in terms of object detection and
energy efficiency.

The remainder of this paper is organized as follows.
In Section II, we discuss related work. The proposed
RNN-based duty cycle control method for object tracking is
presented in Section III. In Section IV, the simulation results
are presented, and we conclude this paper in Section V.

II. RELATED WORK
Several approaches for object tracking in WSNs have been
proposed in recent years. In [15], Luo et al. proposed a coop-
erative target localization and tracking algorithm to reliably
track objects in indoor wireless sensor networks, in which
they considered and collaborated with the different charac-
teristics of multiple networks. In [16], Lui et al. proposed
a diffusion-distance-based predictive tracking algorithm for
continuous objects such as fire and gas in industrial WSNs
(IWSNs). They predicted the spread range of continuous
objects by establishing the relationship between the dif-
fusion radius and time, based on the assumption that the
motion of continuous objects follows the appropriate dif-
fusion model. Mohajerzadeh et al. proposed an algorithm
for tracking mobile targets using directional sensor networks
(DSNs) [17]. Unlike omnidirectional sensors, DSNs are net-
works consisting of directional sensors, such as image sen-
sors, video sensors, and infrared sensors. As such, object
tracking using WSNs is being studied for various environ-
ments, including indoor or outdoor, and various types of
sensor situations.

Studies on how to efficiently control the sensing
schedule of sensors have been conducted to reduce the
energy consumption of sensors. Zhang et al. [18] pro-
posed a new sleep scheduling method based on the
decentralized partially observable Markov decision pro-
cess and a sleep scheduling algorithm in online planning.
They set up compensation for sleep scheduling problems
by considering four factors: coverage, connectivity, tracking,
and energy cost. In addition, the method makes decisions
optimized for the entire cluster rather than for individual sen-
sors. Jiang et al. [19] presented a probability-based prediction
and sleep scheduling protocol to improve energy efficiency in
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TABLE 1. Symbols used in this paper.

single-object tracking. They not only predict the next position
of the object based on kinematics and probability but also
derive the probability ofmoving along all directions; based on
this, the nodes to be activated are selected, and the active time
is controlled. Medagliani et al. [20] proposed an analytical
framework that can maximize the lifetime of a network using
a duty cycle method that considers the probability of missing
object detection, detection delay, transmission delay, and
average energy consumption. All nodes in the network use the
same duty cycle. Kim et al. [21] proposed a mobility-aware
adaptive duty-cycling mechanism for tracking objects during
tunnel excavation. It tunes the duty-cycle ratio by adjusting
the sleep time depending on the changes in the received signal
strength indication (RSSI) value.

Recently, as research on machine learning has become
more active, various studies have been conducted to combine
machine learning to improve WSN performance [22], [23].
Na and Yoo [24] dynamically derived unmanned aerial
vehicle (UAV) optimal locations using a particle swarm
optimization (PSO)-based bio-inspired algorithm for
collecting sensor data from WSNs. Yun and Yoo [25] pro-
posed a Q-learning-based data-aggregation-aware energy-
efficient routing algorithm for WSNs. They showed that
it effectively reduces the amount of duplicated data and
extends the lifetime of the network. Wei et al. [26] proposed
an RNN-based delay-guaranteed monitoring framework in
underwaterWSNs considering delay, energy, and data quality
to solve the problem of longer delay times for packet retrans-
mission due to the high data loss rate during underwater
acoustic transmission. Mohanti et al. [27] proposed a deep
learning–based distributed data mining (DDM) model for
energy efficiency and optimal load balancing, which reduces
the energy consumption, signaling overhead, and average

delay, and maximizes the overall throughput compared to
other methods.

Most research on WSNs is limited to certain situations
and applications; thus, it is often difficult to apply flexibly
to other situations. Furthermore, there is a lack of machine
learning–based research on adaptively controlling the duty
cycle according to the movement of objects and sensor node
deployment topology and efficiently using use the energy of
sensors in WSNs simultaneously.

Unlike the existing object tracking methods in WSNs that
require accurate mathematical target object location estima-
tion, movement speed, direction estimation, or information
on the sensing operation statistics of sensors, the method pro-
posed in this paper requires only the sensors’ location infor-
mation and their object detection history for actual object
tracking in real environments. The optimal duty cycle of each
sensor is obtained using the proposed RNN learning archi-
tecture with digital twin logical space solutions that reflect
various object movements and sensor network topology
situations.

III. PROPOSED RNN-BASED DYNAMIC DUTY CYCLE
CONTROL METHOD FOR OBJECT TRACKING
A. SYSTEM MODEL
We propose an RNN-based system model that dynamically
controls the activation schedule of each sensor to accurately
detect objects and to use energy efficiently in situation, where
one or more objects move freely in a WSN area. The symbols
presented in Table 1 are used in the remainder of this paper.

The structure of the proposed system model is shown
in Fig. 1. The proposed system consists of a digital twin
model and a learning model. A digital twin is a virtual world
that is implemented on a computer. It enables the simulation
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FIGURE 1. The proposed system model structure.

of environments, machines, equipment, and objects in the
real world by implementing them in virtual space. A dig-
ital twin can efficiently predict the effects of product and
process development without the need to create a costly and
time-consuming physical model. In this study, a digital twin
model is used to derive the set of sensing situation data and
target labels (the optimal duty cycle modes for the corre-
sponding sensing situations) in various environments neces-
sary for learning the RNN-based model. As shown in Fig. 1,
the sensor field environment, object movement, and sensing
capability are modeled and implemented in the digital twin
space; it also considers object detection requirements, and
a predefined number of sensing duty cycle modes. Because
a large number of sensor nodes can be deployed in a large
physical space in the entire sensor field, in order to consider
only the correlated regions in object tracking for learning,
instead ofmodeling the entireWSNfield, we use a predefined
limited-size area for learning, which is defined as the training
sensor field in this study. To model object movements, exist-
ing movement models can be used, but for the limited-size
training sensor field, relatively simple mobility models can
be applied.

The optimal sensing duty cycle for each sensor node for
various sensor topologies and object movement conditions
in the digital twin space is calculated using the optimal
duty cycle derivation method proposed in this paper. The
optimal sensing duty cycle mode that satisfies the given
sensing requirements is determined by considering the time
for entering and leaving the sensing coverage of a specific
sensor in consideration of the moving direction and speed of
a moving object. At this time, the positions of the sensors and

their object detection results in accordance with the derived
optimal duty cycle modes in the training sensor field are
collected as a dataset for learning.

As shown in Fig. 1, the RNN-based learning model of the
proposed system is trained using the sequential dataset and
labels generated from the digital twin model. In a real WSN
environment, the RNN model trained in this way can dynam-
ically predict the most energy-efficient duty cycle mode that
can meet the object detection requirements.

B. PROPOSED OPTIMAL DUTY CYCLE DERIVATION
METHOD FOR SUPERVISED LEARNING
In this section, we derive the optimal duty cyclemode for each
sensor under the given condition, in which each sensor should
satisfy object detection requirements in accordance with the
movement of the object. The duty cycle is the ratio of the
active sensing time to the active sleep cycle time (i.e., sensing
interval) [28]. We assume that the sensors use a discrete
number of duty cycles. In this paper, we define K sensor duty
cycle operation modes from 0 to (K − 1) . The time duration
for which a sensor is active is defined as Twake, and it is
assumed that it is the same for all modes; T ksleep is the sleep
time duration of mode k when a sensor is not active. The
sensing interval (i.e., the cycle time) for mode k is defined
as Tmode k , which is the sum of the times Twake and T ksleep.
Therefore, when the sensor is in mode k , the duty cycle and
Tmode k are defined as follows:

Duty_cyclek =
Twake

T ksleep + Twake
× 100 (1)

Tmode k = T ksleep + Twake (2)
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When the mode number k is closer to zero, it has a higher
duty cycle. In contrast, if the mode number is closer to
(K − 1), it has a lower duty cycle. When the mode is zero,
the sensor is always active. From mode 1 to mode (K − 1) ,
the sensor activation time Twake is fixed to an appropriate
value. In this study, we assume that objects can always be
detected correctly if objects enter the sensing area when the
sensor is activated.

Fig. 2(a) illustrates the definition of the duty cycle.
We adjust the duty cycle by adjusting the length of T ksleep
according to mode k . Thus, a longer T ksleep length results in a
lower duty cycle, which results in a mode closer to (K − 1) .
It should be noted that a higher duty cycle (i.e., lower mode
number) requires more energy for sensor operation, but it can
achieve higher object detection and tracking performance.
We define three different types of areas, as shown in Fig. 2(b).
The coverage where a sensor can detect objects is called
the ‘‘sensing area’’. Sensors should satisfy object detection
requirements when objects enter their sensing area. We call
the area where a sensor cannot detect objects because the
objects are located outside the sensing area of the sensor,
but are within a predefined distance d from the sensor as an
‘‘uncertain area’’. In this area, even though the objects are
outside the sensing coverage of the sensor, the sensor should
be prepared for object detection because the objects may enter
the sensing area in a short time. The outside of the uncertain
area is called the ‘‘outer area’’. In this case, the objects are not
nearby, so that the sensor can maintain the lowest duty cycle.
The relationship between Tmode k and duty cycle according to
the location of the objects is shown in Fig. 2(c).

If an object is in the outer area, the lowest duty cycle
Tmode (K−1) is selected as the optimal sensor activation cycle.
If an object is in an uncertain area, in which the object
is outside of the sensing area but within a predefined con-
stant distance d , the sensor needs to change to the next
higher duty cycle, Tmode (K−2) to properly detect the object
when it enters the sensor’s coverage. Eventually, when an
object enters the sensing area, the optimal duty cycle should
be dynamically determined to satisfy the predefined object
detection and tracking requirements. The optimal duty cycle
mode of each sensor node depends on the locations of the
object and sensors, the speed and movement direction of the
object, the sensor coverage, and the detection and tracking
requirements. When an object passes through the sensing
area of a sensor node i, the exact entry and exit times to and
from the sensing area are defined as t iin and t

i
out , respectively.

Therefore, the object passing time of sensor i’s sensing area
is denoted as t ipass = t iout − t

i
in.

In this paper, we define the object detection and tracking
requirements as follows.

i) Minimal detection count requirement 1: If the object
passing time t ipass is less than tmin, then the sensor
should detect the object at least Nmin times during the
object passing time.

ii) Minimal detection count requirement 2: If the object
passing time t ipass is greater than or equal to tmin, then

FIGURE 2. (a) Duty cycle definition. (b) Area definitions. (c) Relationship
between area definitions, Tmodek , and duty cycle.

the sensor should detect the object at least Nreq times
during the object passing time.

iii) Minimal detection interval requirement: As long as the
object stays within the sensing area, the sensor should
detect the object at least at every treq time.

The terms tmin, Nmin,Nreq, and treq are predefined in accor-
dance with the object detection and tracking objectives for
different WSN application scenarios.

The maximum sensing interval when an object enters the
sensing area can be determined as Tmode (K−3) to satisfy
requirement (iii) as

Tmode (K−3) = treq (3)

If the moving speed of an object is too fast or passes close
to the boundary of the sensing area, then the object may
stay for a shorter time in the sensing area than tmin. In this
case, the sensor should detect the object at least Nmin times
to satisfy requirement (i). Otherwise, the sensor duty cycle
should be able to detect the object at leastNreq times to satisfy
requirement (ii). The minimum required number of detection
times N i for node i can be represented as in (4).

N i
=

{
Nmin, if t ipass < tmin
Nreq, if t ipass ≥ tmin

(4)
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For any node i, in which the object is in its sensing area,
the maximum sensing interval (t iSI ), to meet all requirements
is derived as

t iSI =
t iout − t

i
in

N i =
t ipass
N i (5)

Therefore, the optimal duty cycle mode k i∗ for node i
among the predefined discrete duty cycle modes can be
derived as in (6).

k i∗ =

{
0 if , t iSI < Tmode 1
m if , Tmodem ≤ t iSI < Tmode (m+1)

(6)

The derived optimal duty cycle mode k i∗ guarantees not
only satisfying the object detection and tracking requirements
but also selecting the most energy-efficient sensing mode
operation. When the mode is determined according to this
formula, the sensor satisfies the detection requirements as
follows:

t iout − t
i
in

Tmode k i∗
≥ N i (7)

Fig. 3 shows the proposed optimal sensing schedule deriva-
tion scenarios for different object speeds and directions.
Fig. 3(a) shows the case where an object passes the boundary
of the sensing area very fast, such that the derived optimal
duty cyclemode ismode 0 (always active). The object passing
time in Fig. 3(b) is shorter than that in Fig. 3(c), so that
the duty cycle in Fig. 3(b) is higher than that in Fig. 3(c).
The object moving speed in Fig. 3(d) is very slow, so that

FIGURE 3. The proposed optimal sensing schedule derivation scenarios.

the selected duty cycle is the lowest. In all cases, the derived
duty cycle modes guarantee the object detection and tracking
requirements.

Therefore, in the digital twin space, the optimal duty cycle
of each sensor is determined in various sensor arrangement
topologies and object movement situations, and these data are
used to train the proposed RNN model in the next section.
In the digital twin environment, each sensor operates in the
derived optimal duty cycle mode to save energy, and at each
unit time step (tobs, observation interval), the sensing results
(detection or non-detection) of all sensors are stored together
with the positions of the sensors. In addition, the derived
optimal modes of the sensors are stored as labels for
RNN learning.

Algorithm 1: Optimal Duty Cycle Derivation and RNN
Learning Method
A. Digital Twin Simulation
Input: sensor network virtual environment Env( ), object
movement model Move( ), sensing areas, sensing requirements
(Nreq, Nmin, tmintreq), K duty cycle operation modes,
training margin δ

Output: Set of object detection traces as a form of (sensor
location, binary detection result, optimal duty cycle mode for
training)

for different (topology, number_of_objects) do
generate traces ∼ Env( ), Move( )
for each unit_step t of a trace do

for each sensor i do
if object is in the sensing area then

compute the maximum sensing interval t i_TSI in
(9)

derive the optimal duty cycle mode k i_Tt in (10)
else if object is in the uncertain area then

k i_Tt = (K − 2)
else object is in the outer area then

k i_Tt = (K − 1)
end if
operate the sensor with mode k i_Tt
obtain the binary object detection result r it
store (x ity

i
t , r

i
t , k

i_T
t ) in replay memory M

end for
end for

end for
B. LSTM-based RNN Learning
Input: Replay memoryM, RNN sequence length l
Output: LSTM-based RNN weight parameter θ
Initialize the RNN weight parameter θ
while not at end of training do

sample random (x ity
i
t , r

i
t , k

i_T
t ) from replay memory M

if exit (t − l + 1) ∼ t data trace then
make an RNN input data in (11) using all sensor’s
stored data in replay memoryM from (t − l + 1) to t
make an RNN output target data in (12) using all sensor’s
optimal duty cycle modes for training at time t

end if
obtain the output k̂ it (i = 1, · · · ns) of RNN
update RNN weight parameter θ to minimize cross
entropy loss function L (θ)

end while
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C. RNN LEARNING MODEL
The proposed optimal duty-cycle decision method described
in Section 3(B) is computed under the assumption that we
know the exact time when an object enters and exits the
sensing area. However, in a real environment, it is difficult
to calculate the optimal duty cycle by predicting the exact
moving trajectory and time because only the object detection
results observed by each sensor can be known. Therefore,
in this study, we use deep learning to predict the optimal
duty cycle using sequential data containing object detection
results. RNN is a class of artificial neural networks in which
connections between nodes form a directed graph along a
temporal sequence; this allows it to exhibit temporal dynamic
behavior. Vanilla RNNs suffer from the problem of vanishing
gradients when it has long data sequences, which results in
poor learning [29], [30]. The LSTMwas designed to alleviate
this vanishing gradient problem. In this study, we predict the
optimal duty cycle using an LSTM-based RNN architecture.

Because LSTM-based RNN uses supervised learning,
it requires a true label for the input. In ourWSN environment,
the label is the optimal duty cycle of each sensor for the
given condition. In the digital twin space, the object detection
results of sensors, in which sensors operate with their optimal
modes, implicitly reflect the object movements in the WSN.
In RNN-based training, we use the location information of
the sensors and object detection results for predefined time
steps (RNN sequence length) as input data. The output label
of the proposed RNN model corresponds to the optimal duty
cycle of the sensors for the given input data.

One time step in an RNN corresponds to the observation
interval (tobs) for reporting the sensing result at a sensor
to the server, and for updating the overall detection status
at the server. To generate the RNN training dataset, in the
digital twin space, at every time tobs, sensor node i’s position(
x i, yi

)
and its object detection result r i are stored, as shown

in Fig. 4(a). The object detection result is represented as
binary information (i.e., 0 is for ‘‘undetected,’’ and 1 is for
‘‘detected’’). In this study, we assume a simple binary sen-
sor network [31]. Moreover, if we use more complex sen-
sors that can obtain different resolutions of object detection
(e.g., different detection values, such as the distance between
the sensor and the object within the sensor coverage), then it
results in a more accurate optimal duty cycle prediction in the
RNN structure.

At each time step t , the input time step vector is defined as

dt =
[(
x1t , y

1
t , r

1
t

)
,
(
x2t , y

2
t , r

2
t

)
, · · · ,

(
xnst , y

ns
t , r

ns
t
)]

(8)

where x it , y
i
t , r

i
t represent the x coordinate, y coordinate and

object detection results of node i at time step t , respectively;
and ns is the number of sensors in the training field.
In this study, as the input of the RNN model, we only

use the information that can be obtained with minimum
constraints in real sensor network environments, sensor
locations, and binary object detection results. This simple
RNN input data type has the advantage of being generally

applicable to any scenario without complex calculations,
additional functional modules, or any cooperative protocols
with adjacent nodes in the real environment. However, it
may be difficult to accurately predict the maximum sensing
interval of (5), which is derived analytically with t iin and t

i
out

estimation in a digital twin space. In this paper, although it
may cause little additional energy consumption, the sensing
interval margin δ is introduced as in (9) to conservatively

set the maximum sensing period of node i for training, t i_TSI .
This allows the use of the actual sensing interval that is
conservatively reduced by δ(0 ≤ δ ≤ 1) from the ideal
optimal maximum sensing interval that satisfies the object
detection requirements. When an object enters the sensing
area of node i at time step t , the target label k i_Tt for RNN
model training considering the sensing interval margin δ is
derived as in (10).

t i_TSI = t iSI (1− δ) (9)

k i_Tt =

{
0 if , t i_TSI < Tmode 1
m if , Tmodem ≤ t

i_T
SI < Tmode (m+1)

(10)

As we mentioned, at time step t , if the object is in the outer
area, then k i_Tt = (K − 1) is selected; if the object is in an
uncertain area, then k i_Tt = (K−2) is determined as the target
label.

As shown in Fig. 4(b), the input dataset D for the
LSTM-based model with sequence length l and the corre-
sponding target label T are defined as in (11) and (12), as
shown at the bottom of the next page, respectively.

The target T vector indicates the optimal duty cycles at
time step t for all sensor nodes based on the last l input
data conditions from (t − l + 1) to t . For training, nd number
of datasets is used. Fig. 4(c) shows the LSTM-based RNN
structure for learning the duty cycle derivation; k̂ it is the
output of the RNN for node i at time t .

The optimal duty cycle mode derivation and RNN learn-
ing algorithm proposed in this paper are presented in
Algorithm 1. In the digital twin simulation, we obtained sim-
ulation traces to train the RNN model using different WSN
sensor topologies and object movements. In LSTM-based
RNN learning, we randomly sample data with sequence
length l from the replay memory and update the RNN weight
parameter θ to minimize the cross-entropy loss function L(θ ).

In real WSN environments, we apply the trained RNN
model to dynamically determine the optimal duty cyclemodel
for each sensor. The RNN input, sensor location information,
and past object detection sequence are used. According to the
RNN output, each sensor dynamically changes its duty cycle
mode. If the server knows that the pre-arranged sensor topol-
ogy or sensors do not move, then the initial sensor location
information can be used as the RNN input information.

IV. SIMULATION RESULTS
In this section, we evaluate and analyze the performance
of the proposed RNN-based optimal duty cycle con-
trol method in terms of mode decision accuracy, energy
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FIGURE 4. Dataset configuration. (a) Extracted information from digital twin. (b) LSTM dataset form. (c) Proposed LSTM-based RNN
model.

efficiency, and object detection accuracy. We implemented
the digital twin WSN sensing environment using MATLAB,
and the LSTM-based RNN learning model using Python and
Keras (an open-source neural network library).

The digital twin simulation parameters and values used in
this study are listed in Table 2, in which the unit time and unit
distance are used. We used a random-type grid topology for
the WSN, in which sensor nodes were deployed in the form
of a grid.

An example topology case is shown in Fig. 5, where 40 sen-
sors are placed in a 20 × 20 WSN training sensor field.

The sensing area radius and uncertain area radius are set to
5 and 10, respectively. The number of objects is 1 for single-
object scenarios, and 2 for multi-object scenarios. To model
the object movement, we implemented a modified random
waypoint model in which mobile objects move randomly and
freely without restrictions [32]. Unlike the original random
waypoint model, in which objects begin by pausing for a fixed
number of seconds, in the modified model, objects pause
for a random time between 0 and 5 units. Then, the objects
select a random destination within the simulation range and
choose a random speed in a predefined range [Vmin, Vmax].

D =


dt−l+1
dt−l+2
...

dt



=


(
x1t−l+1, y

1
t−1+1, r

1
t−l+1

)
, · · · ,

(
xnst−l+1, y

ns
t−1+1, r

ns
t−1+1

)(
x1t−l+2, y

1
t−1+2, r

1
t−l+2

)
, · · · ,
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xnst−l+2, y
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t−1+2, r
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t−l+2

)
...(

x1t , y
1
t , r

1
t
)
, · · · ,

(
xnst , y

ns
t , r

ns
t
)

 (11)

T =
{
k1_Tt , k2_Tt , · · · , kns_Tt

}
(12)
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TABLE 2. Simulation parameters for digital twin.

FIGURE 5. Simulation environment: sensor deployment example.

Each object moves in the direction of the destination, and if
it reaches the destination, it pauses for a random time and
repeats the process. Objects move within a 30× 30 range that
is slightly larger than the 20× 20 training area to capture the
different mode selection scenarios for the boundary sensors.
The observation interval to report the sensing results to the
server was set to 0.25. The number of duty cycle modes (K )
were six and nine. In the lowest mode (mode 0), sensors are
always active, so that they can detect objects all the time;
however, they require the highest energy consumption. In the
sensing area, the optimal mode between mode 0 and mode
(K − 3) was selected. In the uncertain area and outer area,
modes (K−2) and (K−1) were selected. The sensing interval
margin δ used for the LSTM model training was set to 0.1.
This reduces the actual sensing interval by 10% from the ideal
maximum sensing interval that satisfies the object detection
requirements.

Table 3 lists the sensing intervals for different duty cycle
modes when K = 6 and 9. The hyperparameter values
used in the LSTM implementation are listed in Table 4.
Table 5 shows the distribution of datasets corresponding to
the optimal duty cycle modes for 500000 datasets when the
sequence length l was 10. Although 500000 datasets have
been generated for learning in digital twin space, it is rare

TABLE 3. Sensing duty cycle modes (K = 6 and 9).

TABLE 4. LSTM parameters.

for objects to move very fast and/or pass through the bound-
aries of sensing coverage. Moreover, most of the datasets
are for scenarios where the objects are in the outer area of
the sensors. There is a problem with unbalanced training
data. Data imbalance refers to the situation where the classes
in a dataset are not equally distributed, which can lead to
potential risks in training a model. Therefore, it is necessary
to adjust the balance between the datasets of different duty
cycle modes. If the dataset is balanced based on the mode
with the smallest number of datasets, then the RNN learning
model may suffer from insufficient data for training. In this
simulation study, to create balanced datasets, we used the
under- and over-sampling method. However, the datasets for
modes 0 and 1 were still smaller than others, even after
balancing preprocessing. For the validation and test datasets,
we did not perform any preprocessing for balancing. For
performance evaluation, among the datasets created by the
digital twin, the test datasets corresponding to 20%of the total
datasets were used.

To evaluate the performance of the proposed LSTM-based
RNN dynamic duty cycle mode decision method, two
methods using fixed duty cycles were compared. The
‘‘compared_model_1’’ is a method in which the sensors use
mode 1, in a fixed manner. Because mode 0 always maintains
an active state, mode 1 is the mode with the highest duty
cycle (i.e., the shortest sensing interval) among themodes that
repeat the awake and sleep states. The ‘‘compared_model_2’’
is a method in which sensors always maintain duty cycle
mode (K − 3). Mode (K − 3) has the lowest duty cycle
(i.e., the longest sensing interval) among the duty cycles used
when the object is in the sensing area.

First, we evaluated the performance of ‘‘mode accuracy’’
for the cases of K = 6 and K = 9 with different
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TABLE 5. Distribution of mode datasets (%).

RNN sequence lengths. In this paper, the mode accuracy was
defined as a measure to evaluate how precisely the RNN
outputs for the test datasets match the true optimal modes
derived by (10). We define two mode-accuracy measures.
First, ‘‘mode_accuracy_1’’ (MA1) is derived as in (13), and
is the probability that the RNN output mode is the same with
the true label.

MA1=
(

1
|TD|×ns

∑|TD|

t=1

∑ns

i=1
I
(
outputk̂ it , k

i_T
t

))
×100

(13)

where |TD| is the number of test datasets; I (a, b) is the
identity operator that returns 1 when a and b are identical;
otherwise, it returns 0. Next, ‘‘mode_accuracy_2’’ (MA2) is
defined as in (14), and shows how close the RNNoutputmode
is derived to the true label.

MA2=

 1
|TD|×ns

∑|TD|

t=1

∑ns

i=1

1−
∣∣∣k̂ it − k i_Tt ∣∣∣

K

×100
(14)

Fig. 6 shows the mode accuracy performance of the pro-
posedmethod for two accuracymeasures at different numbers
of modes (K ), RNN sequence lengths (l), and numbers of
objects. As shown in Fig. 6(a), the proposed method achieves
81–92% mode_MA1 accuracy. Specifically, for the single
object and K = 6 cases, the proposed method shows up to
92% accuracy. As shown in Fig. 6(b), MA2 for the proposed
method is approximately 96–98%. This high performance is
due to the fact that even though the mode classification of the
RNN is not equal to the target, the misclassified mode has
only one mode distance from the true value. For both mode
accuracy measures, a smaller K (=6) results in a better accu-
racy than that of a largerK (=9). This is because the classifier
accuracy using LSTM increases when the number of classes
is small. The accuracy of the single-object tracking case was
higher than that of the multi-object tracking case. We can
also observe that as the RNN sequence length is increased,
the accuracy performance tends to increase as well, except
for some exceptional experimental results. This is because the
longer the sequence length, the better the prediction of object
movement.

The purpose of dynamic duty cycle control is to minimize
the energy consumption while satisfying the object detec-
tion requirements. Therefore, the efficient use of energy is
an important performance indicator. To evaluate the energy
efficiency, we compared the energy required for each method

FIGURE 6. Mode accuracy. (a) MA1, and (b) MA2.

with the mode (K − 1), which is the lowest duty cycle
mode (i.e., the lowest sensing energy consumption mode).
We considered only the energy required for sensing and did
not include additional energy consumption for reporting the
sensing results or exchanging control messages.

The energy consumed in a specific duty cycle mode k is
Ek =

Twake
Tmode k

Ps, where Ps is the sensing power. Therefore,
the energy efficiency of mode k compared with that of mode
(K − 1) is defined as

ek =
E(K−1)
Ek

=
Tmode k

Tmode (K−1)
(15)

133224 VOLUME 9, 2021



S.-H. Choi, S.-J. Yoo: RNN-Based Optimal Sensing Duty Cycle Control Method for WSNs

FIGURE 7. Energy efficiency. (a) Multi-object in K = 6. (b) Single object in
K = 6. (c) Multi-object in K = 9. (d) Single object in K = 9.

FIGURE 8. Energy efficiency. (a) Average in K = 6. (b) Average in K = 9.

In this paper, we define ‘‘energy_efficiency’’ (EE) for com-
pared duty cycle methods, as in (16).

EE =

(
1

|TD| × ns

∑|TD|

t=1

∑ns

i=1

(
Tmode yit

Tmode (K−1)

))
× 100

(16)

where Tmode yit is the cycle time of the derived RNN output
duty cycle mode, mode yit , for node i.

Fig. 7 shows the energy efficiency of each sensor in the
sensor field for different values of K (6 and 9), and different
numbers of objects (1 and 2 for single- and multi-object
cases). In the proposed method, the RNN sequence length
was set to 10. In the graph, the red, blue, green, and turquoise
points represent the results from the proposed model, opti-
mal model, compared_model_1, and compared_model_2,
respectively. The proposed LSTM-based RNN model
shows an energy efficiency similar to that of the optimal
model. For the multi-object cases, the energy efficiency
of the proposed model is approximately 50% higher than
that of compared_model_1 and is approximately 30–35%
higher than that of compared_model_2. For single-object
cases, the energy efficiency of the proposed method was
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FIGURE 9. Detection performance DP1. (a) K = 6, and (b) K = 9.

approximately 70% higher than that of compared_model_1,
and 50% higher than that of compared_model_2. In the
proposed method, the energy efficiency of the multi-object
case is lower than that of the single-object case, because as the
number of objects increases, more objects enter the sensing
area of the sensors and, accordingly, the sensors have to wake
up more frequently.

Fig. 8 shows the average energy efficiencies of the com-
paredmodels. The proposed LSTM-based RNNmodel shows
an energy efficiency similar to that of the ideal optimal
model that satisfies the detection requirements and operates
in a mode that consumes the minimum sensing energy. The
compared_model_1 operating with the highest duty cycle
mode 1 in a fixed manner shows the lowest energy efficiency.
We can also see that the energy efficiency of the proposed
model is slightly higher for K = 9 than for K = 6. This
means that when the mode is more subdivided, the RNN
model can determine the required duty cycle mode with high
resolution, so that the energy can be saved slightly more
than that in the lower resolution. However, the mode decision
accuracy slightly decreases when a large K is used, as shown
in Fig. 6.

FIGURE 10. Detection performance DP2. (a) K = 6, and (b) K = 9.

An energy-efficient dynamic duty cycle mode operation
must meet the object detection requirements. The optimal
model always guarantees satisfying the object detection
requirements, in which it is assumed that we perfectly know
the object movement, so that we can compute (5) and (6).
In the proposed LSTM-based RNN model, because we only
use sequential binary sensing results from sensors, there is
little decision error compared with the true optimal modes,
as shown in Fig. 6. However, the mode decisions from the
RNN model, which are different from the optimal modes,
do not always result in an unsatisfactory object detection
requirement. If the duty cycle mode from the RNN model is
smaller than the optimal mode, then it has a shorter sensing
interval, so that the energy efficiency decreases, but the object
detection performance is better than the requirements.

In this simulation study, we defined two detection perfor-
mancemeasures. First, ‘‘detection_performance_1’’ (DP1) is
the percentage of satisfaction of the detection requirements,
as expressed by (17).

DP1 =
(

1
|TD| × ns

∑|TD|

t=1

∑ns

i=1
I
(
N i_RNN
t ,N i

t

))
× 100

(17)
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where N i_RNN
t is the number of object detection times using

the derived duty cycle mode from the proposed RNN model
for sensor i at the t-th test; and N i

t is the exactly computed
required object detection time using (4) for sensor i at the t-
th test. Next, ‘‘detection_performance_2’’ (DP2) is defined
as the average ratio of N i_RNN

t to N i
t for all test datasets,

as expressed by (18).

DP2 =

(
1

|TD|×ns

∑|TD|

t=1

∑ns

i=1
max

(
N i_RNN
t

N i
t

, 1

))
×100

(18)

We can see how close the number of detections by
the selected mode is to the required number of detections
with DP2.
Fig. 9 and Fig. 10 show DP1 and DP2, respectively,

for K = 6 and K = 9. In the proposed RNN model,
the sequence length, l, is 10. For DP1 evaluation, the pro-
posed method showed 93.55%–95.26% satisfaction with the
required detection performance. In the proposed method,
the DP1 performance for K = 6 was slightly higher than
that for K = 9. However, the difference was only approx-
imately 1%. Compared with compared_model_2, DP1 for
the proposed method is approximately 25% higher. For DP2,
the detection performance of the proposed method is approx-
imately 97%, which is very close to the optimal model per-
formance, as shown in Fig. 10.

V. CONCLUSION
In this paper, we proposed a newRNN-based learningmethod
that dynamically performs optimal duty cycle operationmode
control for individual sensor nodes to monitor and track mov-
ing objects inWSNs. Determination of the optimal duty cycle
aims to maximize energy efficiency, while satisfying the
requirements for object detection. To derive the optimal duty
cycle solution in the given environment for RNN supervised
learning, we proposed an optimal solution derivation method
based on a simulation model in the digital twin space. The
current environment was expressed in the form of the position
of the sensor nodes and the object detection result of each
sensor node in sequential time steps. We presented a struc-
ture for LSTM-based RNN learning using the training data
obtained in the digital twin space. We evaluated the perfor-
mance of the proposed RNN-basedmodel in terms of the opti-
mal mode decision accuracy, energy efficiency, and object
detection requirement satisfaction through simulations of var-
ious object movement conditions. The performance of the
proposed model was compared with that of an ideal optimal
model and two conventional models using fixed duty cycles.
In the evaluation of mode decision accuracy from two per-
spectives, the proposed method showed an accuracy of 81–
98%. In the comparison of energy efficiency, the proposed
method showed a performance improvement of 50–70% for
the single-object case, and 30–50% for the multi-object case,
compared to the methods using the existing fixed duty cycle
modes. In addition, in the evaluation of the satisfaction ratio

for the object detection requirements, the proposed method
showed 93–97% compliance performance. We demonstrated
that the dynamic duty cycle control method proposed in this
paper satisfies the object detection requirements at a high
level, with minimal information in various object movements
and sensor placement environments, while achieving energy
efficiency close to the theoretical optimal performance.
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