IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 20, 2021, accepted September 13, 2021, date of publication September 16, 2021,
date of current version September 28, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3113350

QSOD: Hybrid Policy Gradient for Deep
Multi-agent Reinforcement Learning

HAFIZ MUHAMMAD RAZA UR REHMAN®1, BYUNG-WON ON"2,
DEVARANI DEVI NINGOMBAM?, SUNGWON YI3,
AND GYU SANG CHOI!, (Member, IEEE)

! Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, South Korea
2Department of Software Convergence Engineering, Kunsan National University, Gunsan 54150, South Korea
3Planning Division, Electronics and Telecommunications Research Institute, Daejeon 34129, South Korea

Corresponding authors: Gyu Sang Choi (castchoi@ynu.ac.kr), Byung-Won On (bwon@kunsan.ac.kr), and Sungwon Yi (sungyi@etri.re.kr)
This research was supported in part by ETRI grants 19YE1410 and AFOSR grants FA2386-19-1-4020, and by the National Research

Foundation of Korea (NRF) Grant by Korean Government through the Ministry of Science and ICT (MSIT) under
Grant NRF-2019R1F1A 1060752 and Grant NRF-2021R1A6A1A03039493.

ABSTRACT When individuals interact with one another to accomplish specific goals, they learn from
others’ experiences to achieve the tasks at hand. The same holds for learning in virtual environments, such
as video games. Deep multiagent reinforcement learning shows promising results in terms of completing
many challenging tasks. To demonstrate its viability, most algorithms use value decomposition for multiple
agents. To guide each agent, behavior value decomposition is utilized to decompose the combined Q-value of
the agents into individual agent Q-values. A different mixing method can be utilized, using a monotonicity
assumption based on value decomposition algorithms such as QMIX and QVMix. However, this method
selects individual agent actions through a greedy policy. The agents, which require large numbers of
training trials, are not addressed. In this paper, we propose a novel hybrid policy for the action selection
of an individual agent known as Q-value Selection using Optimization and DRL (QSOD). A grey wolf
optimizer (GWO) is used to determine the choice of individuals’ actions. As in GWO, there is proper attention
among the agents facilitated through the agents’ coordination with one another. We used the StarCraft 2
Learning Environment to compare our proposed algorithm with the state-of-the-art algorithms QMIX and
QVMix. Experimental results demonstrate that our algorithm outperforms QMIX and QVMix in all scenarios

and requires fewer training trials.

INDEX TERMS Artificial intelligence, multiagent systems, optimization.

I. INTRODUCTION

Recently, reinforcement learning (RL) has proven effective
for solving problems related to cooperative multiagent sys-
tems (MAS), and the approach has garnered increased atten-
tion. Reinforcement learning has shown particular utility for
complex tasks such as self-driving vehicles [1], [1], power
supply systems, logistics distribution in factories, productiv-
ity optimization [2], and cooperative multi-robot exploration
systems [3], [4], have commercial prospects in large-scale
applications.

Customarily, convergent learning in multiagent reinforce-
ment learning (MARL) is used to tackle the problems of
cooperative MAS by considering the MAS as a single agent.
Such centralized learning performs remarkably well in many

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu-Da Lin

129728

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

scenarios. However, when using such an approach with an
increasing number of agents, the joint action table increases
exponentially, and current RL algorithms may not converge
on a solution. However, a distributed and decentralized learn-
ing approach, where each agent learns individually accord-
ing to its policy, can handle these problems smoothly. This
learning is based on the sum of all the agents’ total rewards,
which is known as the global reward. Typically, independent
Q-learning (IQL) is used in such cases [5]. The main short-
coming of this approach is the occurrence of nonstation-
ary problems, even for only two agents, due to the global
reward [6]. To address the non-stationarity problem, it is
also possible to train a decentralized policy in a centralized
manner.

For the last three to four years in the RL community,
this amalgam technique has become very popular [7], [8].
However, even the induction of a hybrid approach cannot

VOLUME 9, 2021

https://orcid.org/0000-0003-2230-6927
https://orcid.org/0000-0001-6929-3188
https://orcid.org/0000-0002-0854-768X
https://orcid.org/0000-0001-5100-6072

H. M. Raza Ur Rehman et al.: QSOD: Hybrid Policy Gradient for Deep Multi-agent RL

IEEE Access

address many of the challenges still faced by MAS. Among
these, the most important challenges are the convergence
rate and computational power. IQL fails to address these
problems because of its non-stationarity nature. Although
counterfactual multiagent (COMA) techniques [9] are able to
address the convergence problem, they are unable to calculate
the combined Q-value from the joint state-action, which is
the main criticism leveled against COMA [10]. This short-
coming is attributable to COMA using on-policy learning.
Value decomposition networks (VDNs) address this problem,
ensuring that learning is performed in a centralized fash-
ion, but the global Q-value function is calculated through a
factored approach [11]. In training, a VDN does not utilize
the state’s additional information because it only presents a
shallow class of action values. QMIX [13] and QVMix [36]
mitigates this problem by using a neural network to convert
the centralized state into the weights of the second neural
network, in a manner reminiscent of hyper-networks [12].
However, QVMix required high computational power while
QMIX required large training episodes.

StarCraft has been used by many researchers to evaluate
deep MARL algorithms, such as in [6], [7], [9], and [13].
Both StarCraft and StarCraft IT are the registered trademarks
of Blizzard. Almost all of these methods address the conver-
gence issue, but due to their nonstationary environments and
greedy policies for action selection, they require either large
numbers of training episodes or very high computational
power.

In this study, we used the StarCraft II Learning Environ-
ment (SC2LE) [13]. We introduce a hybrid policy gradient
for deep MARL, known as Q-value Selection using Opti-
mization and DRL (QSOD), to mitigate this problem. It relies
on a grey wolf optimizer (GWO) [15], [29]. As in GWO,
one agent acts as the head of the group, whereas all other
agents act according to the lead agent’s instruction. Due to the
optimization-based policy agents learn in a faster way with a
comparatively small mixer network.

The rest of the paper includes a discussion of prior
works in Section 2. In Section 3, we discuss GWO and
multiagent systems. In Section 4, we discuss the proposed
method. Section 5 presents the experimental results. Finally,
Section 6 concludes the discussion and provides an overview
of our future directions in this domain.

Il. RELATED WORK AND BACKGROUND
The productivity of RL-based techniques over the last several
years, particularly in solving cooperative MAS problems,
cannot be overlooked. As mentioned previously, MARL
uses centralized, decentralized, and hybrid approaches to
accomplish its goals. Initiallyy, MARL used centralized
approaches [3], [16], which later shifted toward deep learning
methods capable of controlling multidimensional states and
action slots [6], [7], [17].

Q-learning is a straightforward and powerful algorithm for
creating an action sheet for an agent. However, if this action
sheet is too long (e.g., in an environment with 10,000 states

VOLUME 9, 2021

TABLE 1. Symbols used in Algorithm 1 and equation (1).

Symbols Description
M Replay memory used to store a
replay of an episode
S; Show the state of an agent, i. show
the number of states
X Current state image
[N Preprocessor
d(sq1) Preprocessed first image
€ Show the default greedy policy
a, The action was taken by the agent
at time ¢
max,Q*(¢(s,), a; 0) Basic Q-learning
T A reward after taking action at
time ¢
Xe41 Next state image
b Batch size
£L(0) Loss or squared TD error

Algorithm 1 Deep Q-learning

Require: Initialize replay memory M,
Initialize Q-value function with random weights
while (episode =1 to n) do
Initialize s1 = {x1 and preprocessed sequenced ¢ = ¢p(s1)
for (t=1to T) do
if probability < e:
select a random action ay
else:
select a; = max,Q* (¢ (s¢) , a; 6)
end if
execute a; in emulator and get rrandx; 4|
Set: 5,41 = 5z, X,41 = X¢ and preprocess ¢; 1 = P(S+1)
Store: {¢r, ar, r¢, ¢ry1} in M
Sample: random minibatch b of transitions {dbj, aj, 1, ¢j+1 }

from M .
Set: v; — rjfor terminalg;y |
et: y; = rj+ ymaxqQ* (¢j+1’ a; 0) fornon — terminalg; |

Perform a gradient descent step on [y; — Q (¢j, aj; 6)] accord-
ing to equation(1)
end for
end while

and 1000 actions per state, wherein the size of the table
reaches 10 million cells), then it becomes impossible to han-
dle the vast number of Q-values. This results in two problems:
First, the amount of memory required to save and update
that table will increase. Second, it will require too much
time to explore each state to create the necessary Q-table.
To solve these problems, we approximated these Q-values
using neural networks. This technique is known as deep
Q-learning (DQL).

All the symbols used in Algorithm 1 and the DQL section
are listed in Table 1.

In DQL, a deep neural network with weight 6 is used
to represent the action-value function. In deep Q-networks
(DQNs) [19], the Q-value function and replay memory M,
which stores the transition tuple, are first initialized. Then,
the process repeats until convergence is achieved. In this
process, first, we initialize 51 = {x; and ¢; = ¢(s1), where
s1 is the first state, x; is the first image, and ¢ is the pre-
processor. Subsequently, each step action a; is selected. The
selection depends on the probability value (if € > probability
then a, select randomly, otherwise a; is selected through

129729

IEEE Access

H. M. Raza Ur Rehman et al.: QSOD: Hybrid Policy Gradient for Deep Multi-agent RL

max,Q*(¢ (s;) , a; 0)). After selecting a;, we execute this
action in the emulator and receive a reward r; and the next
state image x;41. We then setx;+1 = x;ands;+1 = s; and store
the transition tuple {¢;, a;, r;, ¢;+1} in M. Then, we generate
arandom sample batch of transitions {¢;, a;, rj, ¢j+1} fromM
and set the value of y; according to ¢ 1. If ¢, 1 is a terminal
state, then y; = ry; otherwise y; = rj+ymax,0* (¢j41, d’; 6).
Through y; we want to minimize the squared TD error:

b

£®) =) [(y—0; a;6)] 1)

j=1

The distributed and decentralized learning approach tack-
les problems such as the non-convergence of algorithms and
the exponential growth of joint action tables that result from
an increasing number of agents in a smooth manner. Instinc-
tively, for scrutinizing policies for an MAS, direct learning of
decentralized value functions or policies is preferred. IQL [5]
educates self-directed action-value processes for individual
agents using Q-learning [18]. Later, solutions to these kinds
of task became more diverse [17], using deep neural net-
works through the induction of DQN [19]. A few other
works [7], [20] have focused on the perseverance of learning
to some extent; even then, extra state information cannot be
considered during the training of learned decentralized value
functions.

As expected, the centralized learning of collective actions
can handle coordination problems and avoid non-stationarity.
However, it is difficult to manage such centralized learn-
ing because the collective action space grows exponen-
tially with increasing agent numbers. Classical approaches
to ascendable centralized learning make use of coordination
graphs [21], which use provisional independencies among
agents by decomposing a combined reward function into a
sum of agent-local terms. The sparse cooperative Q-learning
algorithm [22] uses a tabular approach that learns to synchro-
nize a group of cooperative agents only in certain states where
such coordination is mandatory, encrypting these require-
ments in a coordination graph. These methods require the
prior provision of dependencies among agents, although
this prior knowledge is not required. Instead, it is assumed
that every individual agent contributes towards the global
reward, and at every state that agent becomes aware of its
contribution.

Recent approaches for centralized learning require even
more communication during execution, such as Comm-
Net [23], which uses a centralized network architecture to
exchange information between agents. Bic-Net [6] uses bidi-
rectional RNNSs to exchange information between agents in an
actor—critic setting. This approach requires additional effort
to estimate individual agent rewards.

Hybrid approaches exploit centralized learning with fully
decentralized execution. COMA [9] uses centralized crite-
ria to train decentralized actors, estimating a counterfactual
advantage function for each agent to address the multia-
gent credit assignment. Similarly, Gupta et al. presented a

129730

centralized actor—critic algorithm with per-agent critics [24],
which scales better than existing techniques for the same
number of agents, but mitigates some of the advantages
of centralization. In [25], the authors trained a centralized
critic for each agent and applied it to competitive games
with continuous action spaces. These approaches use on-
policy gradient learning, which can suffer from low sample
efficiency and are prone to getting stuck in suboptimal local
minima.

Sunehag et al. [11] proposed value decomposition net-
works (VDN) as a solution these problems, which allowed
centralized value-function learning to be accompanied by
decentralized execution. Their algorithm decomposed a cen-
tral state-action value function into a sum of the individual
agent terms. This corresponds to the use of a degenerated,
fully disconnected coordination graph. However, VDN does
not use additional state information during training and can
represent only a limited class of centralized action-value
functions.

QMIX [13] is a modern approach which uses a centralized
training with decentralized execution (CTDE) [35] method.
In this technique, the factorization of the joint state-action
value function for all agents is accomplished as a monotonic
function by using a mixer network, which is denoted as
O nix (81,). The mixer network is used to calculate the joint
state-action value of all agents, and by using a monotonic
function et > OVa € {ay, ..., ay, it ensures the individual-
global—maxa condition IMG [35] for each agent. The mono-
tonic condition is achieved through a hyper-network, which
predicts a strictly positive weight for the mixer network based
on the current state of each agent as an input. Moreover,
through this hyper-network, the outputs of the mixer net-
work depend on the current state. The same DQN algorithm
as in the optimization procedure is adopted and applied
to Omix(St, uy). Furthermore, the joint action-value function
class of QMIX is limited [35].

To address this limitation, QTRAN [37] introduced a novel
factorization method to express the complete value func-
tion class with the help of IGM consistency. However, this
method ensured more general factorization than QMIX but
required an inconvenient amount of computational power to
implement. Two extra soft regularizations were required for
its approximate version, but it still performs below par in
complex domains with online data collection [34].

Mahajan et al. [34] demonstrated that QMIX has limited
exploration ability in certain environments. They proposed
a model in which there is a latent space to enhance the
performance of all agents. Therefore, for supportive MARL,
achieving effective scalability remains an open challenge
that is addressed by QPLEX [35]. For both joint and indi-
vidual action-value functions, QPLEX introduced a duel-
ing structure which then deformalized the IGM principle
via advantage-based IGM. This demonstrates the ability of
QPLEX to support offline training with high stability. How-
ever, although QPLEX performs well, it still requires com-
plex networks to achieve these results. Moreover, it requires

VOLUME 9, 2021

H. M. Raza Ur Rehman et al.: QSOD: Hybrid Policy Gradient for Deep Multi-agent RL

IEEE Access

Algorithm 2 Grey Wolf Optimizer (GWO)

Require: Initialize agents G;(i = 1, 2, ..., n), number of iteration K
Initialize a, A, and C
Ensure: calculate the fitness of agents and set alpha, beta, and delta accord-
ing to fitness
while (iteration = 1 to K) do
for (agents = 1 to n) do
update position agent using equation (6)
end for
update a, A, and C
compute fitness of agents
update alpha, beta, and delta
end while
return value of alpha

numerous training episodes for a large number of agents, as it
uses a greedy policy for the action selection of an individual
agent.

In addition, researchers have introduced two new Deep
Quality-Value (DQV)-based MARL algorithms known as
QVMix and QVMix-Max [36]. These algorithms are estab-
lished using centralized training with decentralized execu-
tion. The results from these algorithms show that overall,
QVMix performed better than the other algorithms because
it is less susceptible to an overestimation bias of the Q func-
tion [36]. However, QVMix also requires high computational
power and large amounts of training time because it also uses
a greedy policy for the action selection of each individual
agent.

Therefore, in this paper, we propose a novel, nature-
inspired optimization-based hybrid policy to address these
limitations. In this policy, we used GWO along with a greedy
policy for the action selection of each individual agent. Opti-
mization algorithms, such as GWO (normally used for find-
ing the prey) or Ant Colony Optimizer (normally used for
finding the shortest path), require environmental information,
but they perform better than the greedy policy. In GWO,
agents trained in a centralized manner, wherein the leader
agent helps the other agents [29]. More detail on this topic is
provided in Section III (A). Moreover, to gather information
about the environment, in the beginning, action-selection is
performed through greedy policy. A policy is then selected
with the help of maximum reward and the learning rate alpha.

Ill. GREY WOLF OPTIMIZATION (GWO)

A. INTRODUCTION AND WORKING PARADIGM

The fundamental component of the GWO that makes it more
successful than other well-known swarm intelligence algo-
rithms is its hierarchical chain. The governance chain of
importance is framed by a specific objective function known
as the goal. Thus, the objective function is arranged into cost
capacity, estimated cost, and the fitness function, which are
utilized to assess the precision of the outcome, as compared
with the prearranged structure arrangement [28], [29].

The wolf pack is partitioned into four prevailing positions,
as shown in Figure 1. Alpha, beta, and delta wolves compose
the main groups. The omega wolves do not reserve any
options to settle on choices in a swarm, even though their

VOLUME 9, 2021

FIGURE 1. Social Hierarchy of GWO.

TABLE 2. Symbols and abbreviations used in Algorithm 2 and GWO.

Symbol Description
D Encircling the Pray
¢ coefficients vectors help to encircling and hunting the
prey
X—>P The position vector of prey, show the position of prey
f(t) The position vector of a wolf shows the current
position of a wolf
X(t+1) The position vector of a wolf shows the updated
position of a wolf
Y| coefficients vectors , through its value wolf attack on
prey
Xo,Xp,Xs Position vector for an alpha, beta, and delta wolves

presence decides the swarm intelligence. The main purpose
of the social chain of command is to lead wolves to the prey’s
location, and they manage omegas to play out the pursuit.
Different operators, such as social hierarchy, encircling the
prey, hunting, attacking the prey (exploitation), and pursuing
the prey (exploration) mimic the association of cumulative
behaviors in a wolf pack.

Table 2 presents the symbols used in the equations.
A detailed description of GWO is provided in the subsequent
sections.

Encircling Prey

In GWO, grey wolves encircle the prey to examine two
points in space and amend the location of one of them to
correspond to the other. The following formulas represent the
grey wolf encircling methodology:

> > = —
D=|C-Xp@)— X)),
- — - =
X@t+1)=Xp(t)— A -D, (2)

Where ¢ indicates the curren_t) iteration, 7() indicates the
position oi a grey wolf, and Xp is the position vector of
the prey. A and C are coefficient vectors, which can be
calculated as

129731

IEEE Access

H. M. Raza Ur Rehman et al.: QSOD: Hybrid Policy Gradient for Deep Multi-agent RL

¢ =27, 3)

Where the components of @ are reduced from 2 to 0 across
iterations, and 71) and 72) are randomly created vectors
in [0, 1].
Hunting

The hunting scheme of the grey wolves can be mathemat-
ically modeled as them approaching the location of the prey
with the assistance of alpha, beta, and delta wolf information.
Figure 2 shows the estimated updated position of agents in
the GWO based on this information. The positions held by
the alpha, beta, and delta wolves X, Xg, X; are calculated as
in the following equations: Omegas take action according to
Equation (6):

— - - -

Daz‘Cl-Xa—X ,

— - = -

Dy =G X - X

— > > -

Dy = |G- % - X|.)

e —

Xl = Xa —Al . (Da),

.

Xy = Xpg — Az - (Dp),

> - - —

X3 = X5 — A3z - (Dy), (5)
N X (1) + X5 (1) + X5 (1)
X@t+1) =2 2 : (6)

3

Attacking Prey

Advancing toward the prey requires the wolf to minimize
the value of @ . The variation scope of A is also reduced by
a. X is a random value in the range of [—a, a], where a
is reduced from 2 to O across the iterations. If |A| < 1, then
the wolves are forced to attack the prey; otherwise, they shift
toward exploration. The changeover between exploration and
exploitation is created by the changing values of @ and X
Algorithm 2 describes the grey wolf optimization pseudo-
code.

GWO first initializes the number of agents/wolves and
the values of a, A, and C (where “a” is a vector and its
value declines from 2 to 0. “A” and “C” are coefficients,
and the agent’s exploration or exploitation behavior depends
on the value of A. Subsequently, we calculate the fitness of
agents, and according to the fitness level, we select alpha,
beta, and delta wolves. Then, the position of all agents is
updated according to Equation (6). We repeat all steps until
the episode ends. Generally, after completing one execution,
we are able to attain the value of alpha.

B. OPERATIONAL EXAMPLE

A multiagent system (MAS) is a sub-discipline of distributed
artificial intelligence (DAI). It is a combination of compara-
tively independent parts, known as agents. In an environment,
these agents are designed to act as experts, and they have
their own actions and behaviors in that specific area. The
focus of research in MAS has been to make agents which
work without human interaction. According to [33], the most
suitable example of MAS is the Internet, wherein millions of

129732

computers run independently but can communicate with each
other.

In real-life scenarios, humans often work with each
other towards a single goal. They achieve their goals more
quickly through communication and shared attention. Simi-
larly, agents can achieve a goal with fewer iterations through
communication in the MAS. For scenarios involving fewer
agents, this is not a significant issue.

To understand the advantages of the proposed algorithm
(policy), let us consider a straightforward example of an
MAS. In this scenario, there are several robots. These robots
are used to explore the entire area of a building or other
environment. Investigation of an unknown region starts with
no prior information about the obstacles and the design of the
territory. In this example, we can compare the performance
of GWO with that of a distributed RL. As distributed RL
is the backbone of QMIX/QVMix; however, in the case of
the proposed policy, GWO plays a vital role. In addition,
this example shows how GWO leverages the advantages of
centralized learning without the communication constraints
and propensity for stuck agents.

In Figure 3, the red color represents the current position
of the agents. Yellow represents cells which have not been
visited by any agent but for which some agents know the
reward values of those cells. White represents the explored
cells, and grey represents the unvisited, unknown cells.

Figure 3(a) shows the multiagent exploration using a sim-
ple decentralized epsilon e-greedy policy. Agent-1 and agent-
3 are near the unexplored area, whereas the other two agents
are far from the unexplored area. Agent-2 and agent-4 are
stuck because the reward will be the same for all possible next
states. After a specific time period, the total explored area will
be very low because the maximum exploration is performed
using two agents. Although agent-1 and agent-3 are closer
to the unexplored area, they cannot help the other agents
because of the decentralization constraints. Similarly, in the
case of a centralized e-greedy policy, as the number of agents
increases, the length of the centralized Q-table increases
exponentially; hence, these large table values require very
high computational power.

Figure 3(b) and 3(c) show the exploration performed using
the GWO. In Figure 3(b), agent-2 has a maximum number
of unvisited neighbors; therefore, it becomes the alpha. Sim-
ilarly, agent-1 has three unvisited neighbors, meaning it acts
as a beta. Agent -3 is the delta, and agent-4 is the omega. The
next action will be taken with the help of the current combined
alpha, beta, and delta information. As the omega (agent-4) has
no unvisited neighbor, it has the same reward for all the next
possible states. This agent can become stuck, but other agents
will help the omega to take the correct next step in the case
of GWO. In Figure 3 (c), Agent-1 has a maximum number
of unvisited neighbors, and it becomes the alpha at that stage.
Similarly, agent-2 and agent-4 become beta, whereas agent-
3 becomes delta. Meanwhile, no omega is available at this
stage. All the agents take actions according to either the alpha
(agent-1) order or the best possible reward.

VOLUME 9, 2021

H. M. Raza Ur Rehman et al.: QSOD: Hybrid Policy Gradient for Deep Multi-agent RL

IEEE Access

WoVve

Ddelta

FIGURE 2. Updating the position of agents in GWO.

Current position of alpha
Current position of beta

Current position of omega

@
@
O Current position of delta
@
®

Estimated position of the prey

&

(a)

P

m |
(c)

FIGURE 3. (a) multiagent exploration using ¢ — greedy decentralized policy after n iterations, (b) multiagent exploration using GWO from the beginning,

(c) multiagent exploration using GWO after n iterations.

It is evident from Figure 3(a) and 3(c) that if some agents
are stuck, then after the same number of episodes, GWO
performs significantly better than the e-greedy policy. The
reason behind this is that in the case of e-greedy policy,
it is difficult to return a stuck agent to an operational state.
However, in the case of GWO, a stuck agent returns to the
operational state very quickly with the help of other agents,
especially the alpha. Moreover, we used GWO along with
e-greedy policy to boost up the training process. Although, in
some scenarios, GWO performs better than the decentralized
e-greedy policy, when the environment changes the perfor-
mance of GWO decreases gradually. Therefore, we used
the GWO policy along with decentralized e-greedy in our
proposed algorithm.

IV. Q-VALUE SELECTION USING OPTIMIZATION AND DRL
(QsoD)

In most MADRL algorithms, the focus is on upgrading the
joint action-value function using different weights [7], [13].
For individual action selection, agents usually use simple
Q-learning [30], [31], and attention between agents cannot

VOLUME 9, 2021

be developed appropriately. They require a large num-
ber of training sessions to deeply learn the environment.
Furthermore, in most scenarios, many algorithms fail to
address nonstationary problems, such as IQL [5], [16].
Hence, there is no guarantee of system convergence. Simi-
larly, in the case of optimizers, there are many limitations,
such as the failure of the algorithm due to environmental
change.

We propose a novel technique for the optimization of
a deep reinforcement-learning multiagent based on action-
value selection using optimization and DRL (QSOD). In the
proposed technique, learning takes place both ways either
communicatively or non-communicatively, according to the
situation using optimization and a greedy policy. There-
fore, the benefits of centralized learning can be leveraged
without experiencing communication constraints through
optimization. Consequently, this technique saves computa-
tional power and offers extraordinary performance improve-
ments, even in cases involving numerous agents. This ensures
that convergence occurs faster, unlike in traditional DRL
algorithms.

129733

IEEE Access

H. M. Raza Ur Rehman et al.: QSOD: Hybrid Policy Gradient for Deep Multi-agent RL

A group of recurrent neural networks (RNNs) for calculat-
ing the Q action values for the next state is present in QSOD
(as shown in Figure 4(c)). Individual agents use individual
RNNs [13]. In typical scenarios, the next action selection
is performed using the € — greedy policy [30], [31]. How-
ever, in the proposed algorithm, we selected actions using
two different policies. The first policy uses the traditional
€ — greedy policy for the action selection of agents. In the sec-
ond policy, action selection takes place according to the
GWO. As a result, within the first policy learning takes
place in a decentralized or distributed fashion [5], [31], [32],
wherein each agent selects action independently. The second
policy is based on the last episode reward, wherein we select
an agent as leader of the group to be the same as the alpha
wolf in GWO [15]. This agent performs the € — greedy
policy for action selection. All other agents then select actions
according to the Q-value of the leader agent (like GWO) [15].
The key to this policy is that if some agent moves far away
from the other agents based on the leader agent’s Q-value, that
agent will easily return and join the team again to achieve the
goal. If all agents perform in a centralized manner, then the
agents’ combined power increases. Consequently, the agents
achieve a higher reward. In this case, learning is performed
in a centralized manner, and attention is properly developed
between agents, such as in GWO [5].

Changes in the environment result in optimization fail-
ures because for different environments, optimizers need
human input. To address this problem, we used both policies
and set two conditions to select a policy in each episode.
According to the first condition, optimization-based selection
started when the agents’ accumulative reward in the previous
episode was greater than or equal to the threshold for reward
(R;—1> Ry,) [28]. The value of the threshold reward Ry is
calculated using Equation (7).

ARy
2

where Ry, is the threshold reward, « is the learning rate, and
Ry14x 1s the maximum reward or target reward.

A maximum or targeted reward can only be achieved if
all goals are achieved, and at least one agent is still alive
because the learning rate « affects the convergence time. For
comparatively lower values of «, the training requires a long
duration. Therefore, for the proposed algorithm, when a low-
value « is used, the optimization policy starts with a lower
threshold reward value, and in the case of a high value «, it
starts with a high threshold reward value. As a result, in all
scenarios, the optimization policy starts after almost the same
number of episodes in both cases.

The second condition is that if the current episode’s reward
is equal to the reward of the previous episode, then the
traditional action selection policy (e — greedy) will be used
in the next episode. The main reason for this is that the
agents explore the entire area while using the optimization
policy. After achieving the maximum reward (optimal path),
agents always follow the same path, and thus learning stops.

Ry = N

129734

However, the likelihood that the environment will change in
some subsequent episodes is significant, but the agents will
continue follow the same previously optimal path and thereby
perform poorly. Furthermore, in some scenarios, the agent
can take the selected action because of some unrealistic
reward or next state. Thus, in all such cases the optimization
policy either becomes stuck or chooses some suboptimal
action, which causes the game to stop and execution to be
interrupted. This second condition helps to address these
challenges. Moreover, this problem is a major limitation for
the optimizer.

In addition, using optimization-based action selection for
all agents creates a problem in that the learning may be ceased
during that episode. During each time step, agents select the
action according to the optimization value. The optimizer is
used for the maximization function.

They do not use the hit and trial method, as in the case
of optimizers. The concept of punishment is not used, which
is the basis for reinforcement learning (RL). Therefore,
an RL-based optimizer policy for action selection is not pos-
sible. We use the € —greedy policy to select actions for the
leader agent. The leader agent’s Q-value will help the other
agents to select actions [28]. All the agents choose action in
the optimizer policy according to the GWO, except the leader
agent.

There is a mixer network which functions after calculating
the individual Q, values of all agents. A feed-forward neural
network is used as a mixer network. It is used to calculate
the combined Q value of agents Q;,;. It takes agent network
outputs as input, and by mixing that input monotonically,
produces values of Qy,. This is the sum of the individual
value function Q, of the agents, as shown in Figure 4(a).
The monotonicity in the network is enforced in Equation (8),
which shows the relationship between Q;,; and Q;

QI ot

a

>0, VYae{l,2,...,N} ®)

Separate hyper-networks are used to provide weights for
the mixer network, as shown in Figure 4(b). They produce
weights by using the current state as an input. These networks
are based on single-layer networks, followed by an absolute
activation function, ensuring that the weights are positive.
A vector-type output is produced by these networks and
reshaped later in the matrix. A two-layer hyper-network is
used to produce final the bias.

Using the state in hyper-network instead of a mixer net-
work ensures the monotonicity of the system. QSOD is
trained in an end-to-end fashion to minimize the overall loss
L (0) as shown in Equation (9):

£®) = i [= Cuntzws:0))] @

J=1

where b is the batch size, and 6~ and y'°' are the target net-
work parameters, as in DQN. If the next state is a nonterminal
state yJ’.(” = rj + ymaxqQio (r/, u',s 9_).

VOLUME 9, 2021

IEEE Access

H. M. Raza Ur Rehman et al.: QSOD: Hybrid Policy Gradient for Deep Multi-agent RL

Mixing Network
Output

Qror (T,)

Qe (TFul) Qn (U

|

O VR 2

o Y,

(b)

FIGURE 4. (a) Mixer network architecture. (b) Hypernetworks providing weights to the mixer network. (c) Agent network demonstrating how to select the
policy according to the environmental conditions. Green represents the optimization policy and purple represents the € —greedy policy.

including the number of agents, the reward for each action,
replay memory to store the current preprocessed sequence,
values of alpha and gamma, reward for a win, number of
episodes, and number of steps in each episode. After that

All symbols used in Algorithm 3 and Equation (9) are listed

in Table 3.
Algorithm 3 presents the steps of the proposed method.

First, in Lines 1 and 2, the required parameters are initialized,

129735

VOLUME 9, 2021

IEEE Access

H. M. Raza Ur Rehman et al.: QSOD: Hybrid Policy Gradient for Deep Multi-agent RL

TABLE 3. Symbols used in Algorithm 3 and equation (9).

Symbols Description

Qtot Combined Q-value function

Qq Q-value function for each agent a

M Replay memory to store batch

a Learning rate

y Discounted rate

Roax Maximum reward that can be achieved in a single
episode

S¢ Current state

X¢ Current state image

T Current preprocessed sequenced

R; The reward for the current episode

Ri_1 Last episode reward

€ € —greedy policy

a; The action taken at the current state

T Next preprocessed sequence

L(6) squared TD error
batch

yfot parameters of a target network

0 Weight of target network

in Line 3, the two main conditions are imposed. The first
condition is related to the threshold reward, through which
the optimization policy is activated. The second condition
is related to monotonicity. In Line 4, a repeated process is
started, through which we run our algorithm to a required
number of times/episodes. In Line 5, before starting each
episode, the first state and the first preprocessed sequence
are initialized. The first state refers to the initial position of
the agents. In Lines 6 and 23, a condition is imposed for
activating either policy (GWO or Greedy). For Greedy, this
policy is selected if the previous episode’s reward is less
than the threshold reward or if the previous two consecutive
episodes had identical rewards; otherwise the optimization
policy is selected. In Lines 7 and 24, a loop is initialized
for the number of steps for each episode. In Line 7, a loop
is used for the greedy policy, whereas in Line 24 a loop is
used for the optimization policy. The Line 8 loop is used to
compute the Q-values of all agents. From Lines 9 to 14, sim-
ple Q-learning is performed. From Lines 16 to 21, the steps
for simple deep Q-learning are performed, except Line 17,
in which the accumulative Q-value is computed through the
mixer network. On Line 23, if the previous episode’s reward
was greater than or equal to the threshold reward and the
previous two consecutive episodes had different rewards, then
the optimization policy is triggered. In Line 25, the fitness
level of the agents is calculated, and an alpha or leader agent
is selected. From Lines 26 to 29, a loop is used to compute
the Q-value for each agent through optimization policy. In the
loop from line 8 to 15 an action is selected from the available
actions list through IQL. In the loop from Lines 26 to 29,
an action is selected from the available actions list through
GWO.

After calculating the individual Q,, the combined Q-value
function Q,,, is calculated. Then, a random batch b of tran-
sitions {7, gj, 1}, 7’} is sampled from M and the value of

y/t.‘” is set according to /. If 7/ is a terminal state, then

y]tf” = rj; otherwise y; = rj + ymax,Qyor ('L'/, ', s : 9_).

129736

Algorithm 3 Attention-based hybrid policy for deep MARL
(QSOD)

1 Require: Initialize agent, reward R, Replay memory M, Qyor, e, ¥,
2 Target reward R4y, episode, number of step in each episodes t

3 Ensure: Ry, = % and Lot >0

4 while (episode = 1 to n) do

5 Initialize s; = {x1 and preprocessed sequenced t1 = t(s])

6 if (Ry, < R,_jorR;_» = R;_1) then

7 for(t=1 to T)do

8 for (agents = 1 to n) do

9 if probability < € then

10 select a random action a;

11 else

12 select ay = maxq,Q*(t (s¢) , a; 0)
13 end if

14 Compute Q, according to the ar

15 end for

16 Set:s; | = s¢, x,41 = X and preprocess T/ = T(s;41)
17 compute Qy,; using a mixer network
18 Store: {7,a;,r;, 7'} inM
19 Sample: random batch b of trz}nsitions {7, aj, rj, 7’} from M
. tot _ | rjfor terminal
20 Set: i = { rj+ymaxqQror (v, 4/, s : 67) for non — terminal ¢/
21 Perform a gradient descent step on yj’-”’ — Qo (T, u, 5: 0)) accord-
ing to Equation(9)
22 end for
23 else
24 for(t=1to T)do
25 Calculate the fitness of agents and set leader agent according to
fitness
26 for (agent = 1 to n) do

27 Compute a; for all agents using Equation (6) except leader agent
28 Compute Q, according to a;
29 end for

30 Set:s;1| = s, X1 = x; and preprocess T/ = T(s;41)
31 compute Oy, using a mixer network
32 Store: {t,a;,r;,T'}inM
33 Sample: random batch b of transitions {z, aj, 1, 7'} from M
r; for terminal t’/
34 Set:y" ={"J _ .
et rj + ymaxaQror (t/,u/,s' : 67) for non — terminal 7’

35 Perform a gradient descent step on (vj’f” — Qror (T, u, s 0)) accord-

ing to Equation(9)
36 end for

37 endif

38 end while

Algorithm 3-A Attention-based hybrid policy for deep
MARL

1 Require: Initialize agent, reward R, Replay memory M, Qyot, o, ¥,
2 Target reward Ry, episode, number of step in each episodes t

3 Ensure: Ry, = “R% and Zet >0

4 while (episode = 1 to n) do

5 Initialize s; = {x1} and preprocessed sequenced 1 = 7(s1)

6 if (Ry, < R;_10rR;_» = R;_1) then

7 for each agent select action by using greedy policy

8 else

9 for each agent select action by using optimization policy
10 perform steps of MARL

11 endif

12 end while

Through y]’."t we aim to minimize the squared TD error,
as shown in Equation (9).

Here, Algorithm 3-A provides a summary of proposed
Algorithm 3 (QSOD). It includes only the most impor-
tant steps of the proposed algorithms because the proposed
algorithm (Algorithm 3) has too many steps to be concise.

VOLUME 9, 2021

H. M. Raza Ur Rehman et al.: QSOD: Hybrid Policy Gradient for Deep Multi-agent RL

IEEE Access

FIGURE 5. StarCraft Il Environment.

Further, it includes a detailed overview of the QSOD, whereas
Algorithm 3-A includes a brief overview of the proposed
methodology.

V. PERFORMANCE EVALUATION

A. STARCRAFT II

StarCraft II is the sequel to the first StarCraft game. Both
StarCraft and StarCraft II are the registered trademark of
Blizzard. Both are real-time strategy (RTS) games. During
the last six to seven years, RTS games have becomes popular
in the DRL field because many researchers have tested their
work on RTSs. StarCraft in particular provides a powerful
platform to address competitive and collaborative multiagent
problems. Many complicated micro-action sets are available
in StarCraft. Through these sets, StarCraft allows for the
learning of complex collaboration among cooperative agents.
[2], [4], [16] performed their experiments using StarCraft.
In the present study, we used the StarCraft I Learning Envi-
ronment (SC2LE) [11], as in QMIX and QVMix. SC2LE is
based on the second edition of StarCraft. It provides many
different scenarios, and it has better support from developers
than the original StarCraft. Figure 5 shows the environment
of StarCraft II.

Like QMIX, we chose the decentralized micromanagement
problem in StarCraft II. In fighting scenarios, there are two
groups of agents available on the map. The first group con-
sists of allied agents. These agents are controlled through
the proposed method. The second group consists of enemy
agents. These agents are controlled by the built-in Al of the
game. The initial position of both groups’ agents changes
with each episode. All the other setting are similar to that of
QMIX [18].

B. EXPERIMENTAL RESULTS

We used the SC2LE and StarCraft Multi-agent Challenge
(SMAC) environment to evaluate the performance of our
proposed method. The difficulty level of the game was set
to medium. We used different scenarios to compare our

VOLUME 9, 2021

TABLE 4. Agent details.

Name Shooting range Shield point Hit Points
@A) ©

Marines (m) 6 N/A 45

Stalkers (s) 6 80 80

Zealots (z) 6 50 100

Colossi (¢) 6 150 200

algorithm with the state-of-the-art algorithms QVMix and
QMIX. These scenarios included 3m, 8m, 2s_3z, MMM, and
1c_3s_z. The letters ¢, m, s, and z are described in Table 4.
A vector consisting of the features of the agents is known as
the global state. It contains the health, shield, cool-down, and
last taken action information. The following different actions
were available in each agent’s action space: Move (performed
in the East, West, South, or North direction), Attack (only
performed if the enemy was within range), Stop (performed
when the episode ended), and Noop (performed if the next
state reward was unrealistic). After every time step, agents
received a combined reward. It was calculated through the
total damage of the enemies, similar to [18].

To compare the performance of QVMix, QMIX, and the
proposed algorithm, we adopted fewer episodes than [13]
and [QVMix]. For each simulation of both methods,
we suspended training after every 100 episodes and ran
20 independent episodes, with each agent performing greedy
decentralized action selection in the case of QMIX and
QVMix or hybrid optimization action selection in the case
of the proposed algorithm. We ran a total of 10,000 episodes
for training and used a 500 replay buffer size. After every
200 episodes, the target network was updated. For QMIX
and our proposed algorithms, we used the normal computa-
tional power system for performing the experiments: (GPU =
GTX1050, CPU = i7-8750H, RAM = 16GB). For QVMix
we used a system with higher computational power (GPU =
RTX2080, CPU = i7-8700K, RAM = 32GB).

To highlight the significance of our algorithm, we calcu-
lated two different types of results: win rate and average loss.
The win rate was calculated as the percentage of episodes
in which agents killed all enemies within a given time. The
average loss was calculated as the percentage loss across the
100 episodes. All results were calculated for an average of
five runs for each algorithm.

Figure 6 shows the rolling average of the win rates of
QSOD, QVMix, and QMIX for five different scenarios
(8-marines, 3-marines, MMM, 2-stalkers with 3 zealots, and
1-stalker with 2-colossi and 3-zealots). Initially, almost all
algorithms performed similarly. However, over time, the pro-
posed QSOD algorithm performed better than QVMix and
QMIX, particularly after 4,000 episodes. Moreover, in sce-
narios with high-power agents, such as MMM, the pro-
posed algorithm showed better performance than QVMix and
QMIX. Moreover, in QVMix and QMIX, action selection was
conducted through the greedy policy for each agent. There-
fore, these algorithms required a higher number of episodes
in training for these challenging scenarios.

129737

IEEE Access

H. M. Raza Ur Rehman et al.: QSOD:

Hybrid Policy Gradient for Deep Multi-agent RL

8m 3m MMM
100 — 100 — -—100 —
« (509) - « (=50
+«— ([@¥Mix L
- 80 — T @m| 80 - 80 — .
4
© 60 60 — 60 - - @R
=
= 40 - 40 — 40 —
20 — 20 — 20
0 T T T T T o T T | T 1 a T | T 1 |
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
training episodes training episodes training episcdes
2532 1s2c3z
100 — 100 —
« [@=99)
o 3=
80 — - @mx gg - [OMiX]
W -« @
+
© 60 — 60 —
=
= a0 o 40 =
20 - 20 —
0 | T 1 T T o - T | T T T

o 2000 4000 6000 8000 10000

training episodes

o 2000 4000 6000 8000 10000

training episodes

FIGURE 6. Win rates during training for the proposed algorithm, QVMix, and QMIX across five different scenarios.

TABLE 5. Win rate final values.

Scenario Proposed QVMix QMIX
8m 88 83 78
3m 98 93 89
MMM 88 74 64
253z 88 82 75
1s2c3z 90 84 82

However, in the case of the proposed algorithm, a hybrid
optimization policy was used, which required much fewer
training episodes.

Table 5 shows the maximum win rate value for all three
algorithms across five scenarios after 10,000 episodes. There-
fore, in all scenarios, our proposed algorithm performed bet-
ter than the state-of-the-art algorithms QMIX and QVMix.
Particularly, in the MMM scenario, our proposed algorithm
achieved at least a 12% higher win rate than both of the other
techniques. Similarly, in the case of 8m and 3m, our algorithm
achieved a 5% greater win rate than QMIX and QVMix.

Furthermore, in the 1-colossi, 3-stalkers, and 5-zealots sce-
narios, throughout almost all of the training episodes, QSOD
performed better than both QVMix and QMIX.

The average training loss is shown in Figure 7. Across
all scenarios, the proposed QSOD had the lowest train-
ing loss compared to QMIX and QVMix. Notably, in

129738

TABLE 6. Time required by QMIX, QVMix, and the proposed QSOD for
different scenarios.

agemsvap (P S b
3m 9190 8920 8690
S8m 12334 13834 11734
2s 3z 12402 13962 11142
MMM 17943 17400 16432
Ic 3s 5z 29153 31193 26993
3m (50000 29491 N/A 27797
episodes)

high-level-agent scenarios, QSOD outperformed QMIX and
QVMix. This is because the greedy policy wastes time
searching the environment repeatedly with multiple agents.
However, in the proposed optimization policy, if a leader
searched a point in the environment, it shared its experi-
ence with the other agents. As a result, fewer episodes were
required for training. Moreover, the lowest value of training
loss was achieved.

Figure 8 illustrates the most important result, which is the
convergence graph. In the case of RL, convergence plays
a crucial role in validating the significance of any algo-
rithm. Figure 8 shows the results of the 3-marines scenario

VOLUME 9, 2021

H. M. Raza Ur Rehman et al.: QSOD: Hybrid Policy Gradient for Deep Multi-agent RL

IEEE Access

8m

3m MMM

—)

2.0

1.5

1.0

0.5

Training Loss (%)

0.0

L @

0.20

— @

0.15

0.10

0.05

0 2000 4000 6000 2000 10000 0 2000 4000 6000 3000 10000 0 2000 4000 6000 8000 10000
training episodes training episodes training episodes
253z 1s2c3z
0.14 -

— 014
= 0.12 =
= 012 =
"]
8 0.10 =
- 010 = -
o] 0.08 —
C 0.08 =
= @
I 006 0.06 = [
- -

0.04 = - 0.04 - — &3

1 1 1 1 1 1 I 1 1 1

0 2000 4000 6000 8000 10000

training episodes

0 2000 4000 6000 8000 10000

training episodes

FIGURE 7. Average loss during training for the proposed algorithm (QSOD), QVMix, and QMIX on five different agent maps.

100

2 80

k=

®

= 60

o

=

5 40

[&]

xR

£ 20

; .

o v B

o

10000 20000 30000 40000 50000

Number of Episodes

FIGURE 8. Convergence of win rate rolling average in 3m.

for QMIX and the proposed algorithm. According to the
figure, convergence occurred after several episodes in both
cases. However, the proposed policy’s convergence started
approximately 2,500 episodes earlier than that for the default
QMIX. This was due to the hybrid optimization policy and
the conditions for the activation of either policy. Moreover,
these conditions played a vital role in controlling the abrupt
changes in the results, as shown in Figure 7, and the pro-
posed scheme’s curve is smoother than that of the default
QMIX. In Figure 8, we present a comparison of our proposed

VOLUME 9, 2021

algorithm with only QMIX to demonstrate the importance
of our proposed policy over the default greedy policy while
using the same network.

Table 6 compares the time efficiency of the proposed
scheme with both state-of-the-art algorithms (QMIX and
QVMix) for each run. In all cases, the proposed policy
required less time than the default QMIX. In particular, in the
case of difficult scenarios, the proposed QSOD saved more
than 2000 s for 10,000 episodes. Furthermore, in the case
of 3m, 50,000 episodes for the proposed algorithm saved

129739

IEEE Access

H. M. Raza Ur Rehman et al.: QSOD: Hybrid Policy Gradient for Deep Multi-agent RL

1700 s. Therefore, if either the number of episodes increased
or the number of agents increased, the proposed algorithm
outperformed the default QMIX policy. After finding the
optimal path, the optimization policy required fewer steps to
win a game, which saves time in each episode and explains
this result.

VI. CONCLUSION

This paper proposed a novel hybrid optimization pol-
icy (QSOD) for the Q-value selection of individual agents in
MARL. We selected the individual agent’s Q-values accord-
ing to GWO. Through the proposed method, proper attention
was paid between the agents, which helped the agents to learn
quickly and accurately. Moreover, we used a similar network
architecture to QMIX, which requires less computational
power than other state-of-the-art algorithms like QVMix and
QPLEX. Additionally, the experimental results using SC2LE
demonstrate that our proposed algorithm consistently outper-
formed QMIX and QVMix in all scenarios. Furthermore, our
proposed algorithm required less time for each episode than
the comparison algorithms.

Our results show the utility of the proposed algorithm.
One limitation, however, is that GWO is unable to handle a
very large number of agents, particularly when the number
of agents reaches 1 million or more. In such cases, the one
leader agent cannot control the entire group of agents. We will
address this issue in future research.

Moreover, we plan to apply our proposed algorithm to
mobile devices such as fire-fighter robots and spy drones to
improve their efficiency. For this purpose, we will reduce the
size of the agent network and try to use a centralized system
as a mixing network.

REFERENCES
(1]

Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress in the
study of distributed multi-agent coordination,” IEEE Trans. Ind. Informat.,
vol. 9, no. 1, pp. 427-438, Feb. 2013.

W. Ying and S. Dayong, ‘“Multi-agent framework for third party logis-
tics in E-commerce,” Expert Syst. Appl., vol. 29, no. 2, pp. 431-436,
Aug. 2005.

E. Yang and D. Gu, “Multiagent reinforcement learning for multirobot
systems: A survey,” Tech. Rep., 2004.

M. Huttenrauch, M. So¥¢, and G. Neumann, “Guided deep’ reinforcement
learning for swarm systems,” in Proc. AAMAS Auton. Robots Multirobot
Syst. (ARMS) Workshop, Sep. 2017, pp. 2-16.

M. Tan, “Multi-agent reinforcement learning: Independent vs. cooperative
agents,” in Proc. 10th Int. Conf. Mach. Learn., 1993, pp. 330-337.

P. Peng, Y. Wen, Y. Yang, Q. Yuan, Z. Tang, H. Long, and
J. Wang, “Multiagent bidirectionally-coordinated nets: Emergence of
human-level coordination in learning to play StarCraft combat games,”
2017, arXiv:1703.10069. [Online]. Available: http://arxiv.org/abs/1703.
10069

J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. S. Torr, P. Kohli,
and S. Whiteson, “Stabilising experience replay for deep multi-agent
reinforcement learning,” in Proc. The 34th Int. Conf. Mach. Learn., 2017,
pp. 1146-1155.

E. Jorge, M. Kagebick, and E. Gustavsson, ‘“‘Learning to play guess who?
and inventing a grounded language as a consequence,” in Proc. NIPS
Workshop Deep Reinforcement Learn., 2016, pp. 1-10.

J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, ““Coun-
terfactual multiagent policy gradients,” in Proc. 32nd AAAI Conf. Artif.
Intell., 2018, pp. 1-9.

[2]

[3]
[4]

[51

[6]

[71

[8]

[91

129740

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]
[19]

[20]

(21]

(22]

(23]

[24]

(25]

(26]

[27]

(28]

[29]
(30]

(31]

(32]

(33]

(34]

C. S. D. Witt, J. Foerster, G. Farquhar, P. Torr, W. Boehmer, and
S. Whiteson, ‘“Multi-agent common knowledge reinforcement learning,”
in Proc. Adv. Neural Inf. Process. Syst., vol. 32. Red Hook, NY, USA:
Curran Associates, 2019, pp. 9924-9935.

P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and
T. Graepel, “Value-decomposition networks for cooperative multi-agent
learning based on team reward,” in Proc. 17th Int. Conf. Auton. Agents
Multiagent Syst., 2017, pp. 1-17.

D. Ha, A. Dai, and Q. V. Le, “HyperNetworks,” in Proc. Int. Conf. Learn.
Represent. (ICLR), 2017.

T. Rashid, M. Samvelyan, C. S. de Witt, G. Farquhar, J. N. Foerster, and
S. Whiteson, “QMIX: Monotonic value function factorisation for deep
multi-agent reinforcement learning,” in Proc. 35th Int. Conf. Mach. Learn.,
2018, pp. 4292-4301.

O. Vinyals et al., ““StarCraft II: A new challenge for reinforcement learn-
ing,” 2017, arXiv:1708.04782. [Online]. Available: http://arxiv.org/abs/
1708.04782

N. Mittal, U. Singh, and B. S. Sohi, “Modified grey wolf optimizer for
global engineering optimization,” Appl. Comput. Intell. Soft Comput.,
vol. 2016, pp. 1-16, Mar. 2016, doi: 10.1155/2016/7950348.

L. Busoniu, R. Babuska, and S. B. De, “A comprehensive survey of
multiagent reinforcement learning,” IEEE Trans. Syst., Man, Cybern. C,
Appl. Rev., vol. 38, no. 2, pp. 156-172, Feb. 2008.

A. Tampuu, T. Matiisen, D. Kodelja, I. K. K. Kuzovkin, J. Aru, J. Aru, and
R. Vicente, “Multiagent cooperation and competition with deep reinforce-
ment learning,” PloS One, vol. 12, no. 4, 2017, Art. no. e0172395.

C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, Univ.
Cambridge England, Cambridge, U.K., 1989.

V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, pp. 529-533, 2015.

S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian, “Deep decen-
tralized multi-task multi-agent RL under partial observability,” in Proc.
34th Int. Conf. Mach. Learn., 2017, pp. 2681-2690.

C. Guestrin, D. Koller, and R. Parr, ““Multiagent planning with factored
MDPs,” in Advances in Neural Information Processing Systems. Cam-
bridge, MA, USA: MIT Press, 2002, pp. 1523-1530.

J.R. Kok and N. Vlassis, “Collaborative multiagent reinforcement learning
by payoff propagation,” J. Mach. Learn. Res., vol. 7, pp. 1789-1828,
Sep. 2006.

S. Sukhbaatar and R. Fergus, “Learning multiagent communication
with backpropagation,” in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 2244-2252.

J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent
control using deep reinforcement learning,” in Agents and Multiagent
Systems. Springer, 2017, pp. 66—83.

R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” in
Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 6382-6393.

N. Usunier, G. Synnaeve, Z. Lin, and S. Chintala, “Episodic exploration for
deep deterministic policies: An application to StarCraft micromanagement
tasks,” in Proc. Int. Conf. Learn. Represent. (ICLR), 201.

S. Mirjalili, “How effective is the Grey Wolf optimizer in training multi-
layer perceptrons,” Appl. Intell., vol. 43, no. 1, pp. 150-161, 2015.

E. Emary, H. M. Zawbaa, and C. Grosan, ‘“‘Experienced gray wolf opti-
mization through reinforcement learning and neural networks,” [EEE
Trans. Neural Netw. Learn. Syst., vol. 29, no. 3, pp. 681-694, Mar. 2018.
S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Adv.
Eng. Softw., vol. 69, pp. 46-61, Mar. 2014.

M. Irodova and R. H. Sloan, “Reinforcement learning and function approx-
imation,” in Proc. FLAIRS Conf., 2005, pp. 455-460.

B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-learning algorithms:
A comprehensive classification and applications,” IEEE Access, vol. 7,
pp. 133653-133667, 2019, doi: 10.1109/ACCESS.2019.2941229.

J. Z. Leibo, V. Zambaldi, M. Lanctot, J. Marecki, and T. Graepel, “Multi-
agent reinforcement learning in sequential social dilemmas,” in Proc. 16th
Conf. Auto. Agents Multiagent Syst., 2017, pp. 464—473.

S. Sawyer, “Conceptual errors and social externalism,” Phil. Quart.,
vol. 53, no. 211, pp. 265-273, Apr. 2003.

A. Mahajan, T. Rashid, M. Samvelyan, and S. Whiteson, “MAVEN: Mul-
tiAgent variational exploration,” in Proc. 32nd Int. Conf. Neural Inf. Pro-
cess. Syst. Red Hook, NY, USA: Curran Associates, 2019, pp. 7611-7622.

VOLUME 9, 2021

http://dx.doi.org/10.1155/2016/7950348
http://dx.doi.org/10.1109/ACCESS.2019.2941229

H. M. Raza Ur Rehman et al.: QSOD: Hybrid Policy Gradient for Deep Multi-agent RL

IEEE Access

[35] J. Wang, Z. Ren, T. Liu, Y. Yu, and C. Zhang, “QPLEX: Duplex dueling
multi-agent Q-learning,” 2020, arXiv:2008.01062. [Online]. Available:
http://arxiv.org/abs/2008.01062

[36] P. Leroy, D. Ernst, P. Geurts, G. Louppe, J. Pisane, and M. Sabatelli,
“QVMix and QVMix-max: Extending the deep quality-value family
of algorithms to cooperative multi-agent reinforcement learning,” 2020,
arXiv:2012.12062. [Online]. Available: http://arxiv.org/abs/2012.12062

[37] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi, “Qtran: Learning
to factorize with transformation for cooperative multi-agent reinforcement
learning,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 5887-5896.

HAFIZ MUHAMMAD RAZA UR REHMAN
received the bachelor’s degree in electronics
engineering from The Islamia University of
Bahawalpur, Pakistan, in 2012. He is currently pur-
suing the Ph.D. degree with Yeungnam University,
South Korea. His research interests include RL,
gaming, data science, and networks optimizers.

BYUNG-WON ON received the M.S. degree from
the Department of Computer Science and Engi-
neering, Korea University, Seoul, South Korea,
in 2000, and the Ph.D. degree from the Depart-
ment of Computer Science and Engineering,
Pennsylvania State University, University Park,
PA, USA, in 2007. He is currently an Associate
Professor with the Department of Software Con-
vergence Engineering, Kunsan National Univer-
sity, Gunsan-si, Jeollabuk-do, South Korea, where
he also leads the Data Intelligence Laboratory. His current research interests
include around data mining, in particular probability theory and applications,
machine learning, and artificial intelligence, mainly working on abstractive
summarization, creative computing, and multiagent reinforcement learning.
He is an Editor of journal of Korean Institute of Information Scientists and
Engineers (KIISE), Electronics and Telecommunications Research Institute
Journal (ETRI), and Quality and Quantity. Currently, he is serving as a
Committee Member for ISO/IEC JTC 1/SC 32, Korean Association of
Data Science, and SIG on Human Language Technology with the Korean
Institute of Information Scientists and Engineers (KIISE). He is a Committee
Member of the Informatization Committee and Jeonbuk Large Leap Policy
Consulation Body in Jeollabuk-do Provincial Government.

VOLUME 9, 2021

DEVARANI DEVI NINGOMBAM received the
M.Tech. degree in communication engineer-
ing from the National Institute of Technology
Karnataka (NITK), Surathkal, India, in 2015,
and the Ph.D. degree in computer engineering
from Chosun University, Gwangju, South Korea,
in 2019. Then, she joined the Planning Division,
Electronics and Telecommunications Research
Institute (ETRI), South Korea, in 2019, where she
i is currently a Postdoctoral Researcher. Her cur-
rent research interests include multiagent reinforcement learning (MARL),
the Internet of Things (IoT), device-to-device (D2D) communications, and
wireless networks.

SUNGWON YI received the M.S. and Ph.D.
degrees in computer science and engineering from
Pennsylvania State University, in 2004 and 2005,
respectively. Before joining Pennsylvania State
University, he worked at LG-CNS, as a System
Engineer. Since 2005, he has been with ETRI,
South Korea, where he is currently a Researcher
with the Future Technology Research Laboratory
and the Planning Division. His research interests
include the areas of network security, storage sys-

tems, mobile computing, and machine learning. He has been served on the
Technical Program Committee for the IEEE GLOBECOM and ICC, since
2005.

GYU SANG CHOI (Member, IEEE) received the
Ph.D. degree in computer science and engineer-
ing from Pennsylvania State University. He was a
Research Staff Member with Samsung Advanced
Institute of Technology (SAIT), Samsung Elec-
tronics, from 2006 to 2009. Since 2009, he has
been with Yeungnam University, where he is cur-
rently an Assistant Professor. His research inter-
ests include data mining, deep learning, computer
O vision, storage systems, parallel and distributed
computing, supercomputing, cluster-based web servers, and data centers.
His current focus is on text mining and reinforcement learning and deep
learning with computer vision, whereas his prior research mainly focused
on improving the performance of clusters. He is a member of the ACM.

129741

