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ABSTRACT Given that biochemical circuits can process information by using analog computation,
a question is:What can biochemical circuits compute? This paper considers the problem of using biochemical
circuits to distinguish persistent signals from transient ones. We define a statistical detection problem over a
reaction pathway consisting of three species: an inducer, a transcription factor (TF) and a gene promoter,
where the inducer can activate the TF and an active TF can bind to the gene promoter. We model the
pathway using the chemical master equation so the counts of bound promoters over time is a stochastic
signal. We consider the problem of using the continuous-time stochastic signal of the counts of bound
promoters to infer whether the inducer signal is persistent or not. We use statistical detection theory to
derive the solution to this detection problem, which is to compute the log-likelihood ratio of observing a
persistent signal to a transient one. We then show, using time-scale separation and other assumptions, that
this log-likelihood ratio can be approximately computed by using the continuous-time signals of the number
of active TF molecules and the number of bound promoters when the input is persistent. Finally, we show
that the coherent feedforward gene circuits can be used to approximately compute this log-likelihood ratio
when the inducer signal is persistent.

INDEX TERMS Statistical signal processing, signal detection, molecular computing, analog computation,
biochemical circuits.

I. INTRODUCTION
The fact that living organisms use biomolecular circuits
for information processing has provided much inspiration
for engineers to design new biomolecular circuits. Firstly,
engineers have been inspired to use engineering theory to
design synthetic circuits. E.g., control theory has been used
to design circuits for homeostatic control [1], concentration
regulation [2] and to counter the effect of loading [3]; signal
processing theory has been used to design molecular circuits
that can be used for communications [4]–[6] and filtering [7].
Secondly, one can view the information processing carried
out by biomolecular circuits as analog computation [8], [9].
This view point has helped engineers to design molecular
circuits that can perform logarithmic sensing [10], parity
check [11] and integral control [12]. This paper considers the
problem of persistence detection, i.e. the problem of deciding
whether a particular chemical species has been present in
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sufficient quantity for a long enough time. In the natural
world, the bacteria Escherichia coli (E. coli) perform persis-
tence detection [13]. In the synthetic world, cell-based ther-
apy [14] canmake use of persistence detection on biomarkers.
In this paper, we will solve the persistence detection problem
by using statistical detection theory [15] and show that a gene
circuit (which is specific type of biochemical circuit) can be
used to approximately compute the solution of this detection
problem.

A gene circuit that can perform persistence detection in
E. coli is the Coherent Type-1 Feedforward Loop with an
AND logic at the output [16] or the C1-FFL for short. The
C1-FFL is a network motif and is a frequently found circuit in
both E. coli and Saccharomyces cerevisiae (yeast) [16], [17].
This means that the C1-FFL carries out important functions
in cells. The authors in [16] showed that the C1-FFL can
act as a persistence detector. They did this by modelling the
gene expression in the C1-FFL by using ordinary differential
equations (ODEs) and show that a persistent (resp. transient)
input to the C1-FFL will result in a high (zero) output.
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The paper [16] took a deterministic approach to understand
persistence detection. Given that the biochemical environ-
ment is stochastic, it is therefore necessary to understand
how cells can infer information on the environment from a
stochastic point of view [18]. This paper considers a reaction
pathway consisting of three chemical species: an inducer,
a transcription factor (TF) and a gene promoter. In this reac-
tion pathway, the inducer can activate the TF and the activated
TF can bind with the gene promoter. In order to model a
stochastic biochemical environment, we model the reaction
pathway using the chemical master equation [19]. We con-
sider a detection problem whose aim is to infer whether
the inducer signal is persistent or not by using the signal
of the number of bound promoters over time. According to
detection theory, the solution to this detection problem is
to compute a log-likelihood ratio and we derive an ODE
which describes the evolution of this log-likelihood ratio
over time. In order to connect this ODE to the C1-FFL,
we use time-scale separation and other assumptions to derive
an intermediate approximation which is an ODE that can
approximately compute the log-likelihood ratio for persistent
signals. We then show that this intermediate approximation
can be realised by using a C1-FFL. The key contribution of
this paper is to show that it is possible to find the parameters
of a C1-FFL so that its output is approximately equal to
the log-likelihood ratio of statistical detection problem when
the inducer signal is persistent. More specifically, the aim
of this statistical detection problem is to detect whether the
inducer signal is persistent in an inducer-TF-gene pathway.
In addition, the methodology in this paper can be useful for
designing synthetic molecular circuits for performing other
signal processing tasks.

This paper makes advances compared to our previous
work [20]. In comparison to [20], this paper makes two
different assumptions: (i) This paper considers an inducer-
TF-gene pathway but [20] considered only an inducer-TF
pathway; (ii) This paper assumes that the inducer signal
is stochastic while [20] assumed that the inducer signal is
deterministic. These two different assumptionsmean that new
methodologies are needed to show that the C1-FFL can be
used to approximately compute the log-likelihood ratio of a
persistence detection problem. First, we need to show how
the log-likelihood ratio can be computed exactly (Sec. III-B)
in an inducer-TF-gene pathway. Second, we need to derive
a new method to approximately compute the log-likelihood
ratio (Sec. IV). In particular, this paper needs to approximate
the solution to a Bayesian filtering problem [21] but this is
not required in [20] as it considered a deterministic inducer
signal. Third, we need to derive a method to show how the
parameters of the approximate log-likelihood ratio compu-
tation can be mapped to the C1-FFL parameters (Sec. V).
These three aspects are the new elements of this paper in
comparison to [20]. Furthermore, in comparison with our
earlier conference paper [22], this paper explains why a
C1-FFL can be used to approximately compute the approxi-
mate log-likelihood ratio (Sec. V) and provide full derivation

FIGURE 1. Network representation of C1-FFL.

FIGURE 2. Representation of C1-FFL using inducers, transcription factors
and genes.

on the computation of exact and approximate log-likelihood
ratios (Appendices A and B).

The rest of this paper is organised as follows. Sec. II
presents background information on the C1-FFL. We then
define the detection problem and present its solution in
Sec. III. After that in Sec. IV, we present a method to
approximately compute the log-likelihood ratio and use this
approximation in Sec. V to show that the C1-FFL can be used
to approximately compute the log-likelihood ratio when it is
positive. Finally, Sec. VI presents a discussion and concludes
the paper.

II. BACKGROUND ON C1-FFL
The C1-FFL can be depicted as a network where each link is
associated with a signal and each node transforms the input
signal(s) into an output signal. Fig. 1 shows the network of
the C1-FFL. The input signal is s(t) and output signal is z(t).
Both x∗(t) and y∗(t) are intermediate signals, and sy(t) is an
external signal.

The C1-FFL in Fig. 1 is an abstraction of the molecu-
lar interactions which are depicted in Fig. 2. In the figure,
both S and Sy are inducers. Both X and Y are TFs, which
are expressed by their corresponding gene. The inducer S
(resp. Sy) turns the inactive form X (Y) into its active form
X∗ (Y∗). The activation of gene Z requires the binding of both
X∗ and Y∗ to the promoter of Z, i.e. the AND gate in Fig. 1.
Note that there is a one-to-one correspondence between

the chemical species in Fig. 2 with their corresponding time
signals in Fig. 1, e.g. x∗(t) is the concentration of X∗ at time
t and so on. In this paper, we will assume that the inducer
Sy is always present and its concentration is always above
the threshold needed to activate Y. Furthermore, we assume
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the activation of Y by Sy is fast, this allows us to write
y∗(t) = y(t) and we will use y(t) for y∗(t) from now on.
By using Hill function to model the gene expression, [13]
presents an ODE model for the C1-FFL, as follows:

dx∗(t)
dt
= k+(M − x∗(t))s(t)− k−x∗(t) (1a)

dy(t)
dt
=

hxyx∗(t)nxy

K
nxy
xy + x∗(t)nxy︸ ︷︷ ︸
Hxy(x∗(t))

−dyy(t) (1b)

dz(t)
dt
=

hxzx∗(t)nxz

K nxz
xz + x∗(t)nxz︸ ︷︷ ︸
Hxz(x∗(t))

×
hyzy(t)nyz

K
nyz
yz + y(t)nyz︸ ︷︷ ︸
Hyz(y(t))

−dzz(t) (1c)

where k+, k−, dy and dz are reaction rate constants; hxy, nxy,
Kxy, hxz, nxz, Kxz, hyz, nyz and Kyz are coefficients for Hill
functions Hxy(x∗(t)), Hxz(x∗(t)) and Hyz(y(t)). Lastly, x(t) +
x∗(t) is the constantM . The multiplication of Hxz and Hyz on
the right-hand side (RHS) of (1c) implements the AND gate
in Fig. 1. With suitably chosen parameter values, the C1-FFL
in (1) acts as a persistence detector in the sense that if the input
signal s(t) is a persistent (resp. transient), then the output z(t)
has a high (low) value.

III. STATISTICAL DETECTION ON A REACTION PATHWAY
Our aim is to consider a statistical detection problem to deter-
mine whether the input signal is persistent or not. However,
in this section, we will consider a more general detection
problem because it can readily be solved and we will spe-
cialise it to persistence detection in Sec. IV. This section is
divided into two parts. We define the detection problem in
Sec. III-A and present its solution in Sec. III-B.

Convention: In this paper, we use upper case letters to
denote a chemical species, e.g. S, X∗ etc. For each chemical
species, there are two corresponding continuous-time signals
based on its concentration and molecular counts. E.g. for the
chemical species X∗, we denote its concentration over time as
x∗(t) (note: lower case x) and its molecular counts over time
is X∗(t) (note: upper case X ).

A. DETECTION PROBLEM
In order that we can connect the detection problem to the
C1-FFL later on, we will define the detection problem using
a reaction pathway which is a subset of the C1-FFL species
and reactions in Fig. 2. We have depicted the reaction path-
way used in the detection problem in Fig. 3. The reaction
pathway consists of five chemical species: S, inactive X and
its corresponding active form X∗, as well as inactive Z̃ and
the complex Z̃X∗ which is formed by the binding of X∗ to Z̃.
These five species take part in the following four chemical
reactions:

S+ X
k+
−→ S+ X∗ (2a)

X∗ −→k− X (2b)
X∗ + Z̃

g+
−→ Z̃X∗ (2c)

Z̃X∗
g−
−→ X∗ + Z̃ (2d)

FIGURE 3. The reaction pathway for the detection problem.

where k+, k−, g+ and g− are reaction propensity constants.
For the time being, we will make the simplifying assumption
that the volume scaling needed to convert between propensity
and reaction rate constants is 1. This simplification allows us
to equate propensity constants with reaction rate constants.
We will explain how non-unit volume can be dealt with in
Remark 3. With this assumption, note that k+ and k− in
(2a) and (2b) are equal to those in (1a).

In terms of molecular biology, S is an inducer and X is a
TF. In Reaction (2a), the species S activates X to produce X∗.
Reaction (2b) is a deactivation reaction. The reactions (2a)
and (2b) are depicted in both Figs. 2 and 3.

The species Z̃ is a gene. In fact, Z̃ in Fig. 3 is the same as Z
in Fig. 2. Note that Fig. 2 follows the standard convention
in molecular biology where a gene and the protein that it
expresses are given the same symbol Z. However, in this
paper, we need different symbols for the gene and the protein
that the gene expresses so that we can clearly distinguish their
corresponding time signals. Therefore, we have chosen to use
Z̃ to denote the gene and use Z to denote the protein expressed
by Z̃. In Reaction (2c), an active X∗ binds with the promoter
of Z̃ to produce the complex Z̃X∗ . Lastly, Reaction (2d) is an
unbinding reaction.

Let S(t), X (t), X∗(t), Z̃ (t) and Z̃X∗ (t) denote, respectively,
the number of S, X, X∗, Z̃ and Z̃X∗ molecules at time t . Note
these signals are piecewise constant because they are molec-
ular counts. We assume that X (t)+X∗(t) (resp. Z̃ (t)+ Z̃X∗ (t))
is a constant for all t and we denote this constant by M (N ).
We will refer to S(t) as the input signal. The goal of the

detection is to use the signal Z̃X∗ (t) to determine whether the
input is persistent or not. We assume that the signal S(t) is
generated by some species and chemical reactions upstream
of (2). We will model these upstream reactions and (2) using
the chemical master equation [19] which is a specific type
of continuous-time Markov chain. We further assume that
the upstream species do not react with X, X∗, Z̃ and Z̃X∗ .
Intuitively, this means we can predict the behaviour of X, X∗,
Z̃ and Z̃X∗ from that of S.

We have now defined the reaction pathway and its model.
The next task is to specify the measured data and the hypothe-
ses for the detection problem. The measured datum at time
t is Z̃X∗ (t). However, in the formulation of the detection
problem, we will assume that at time t , the data available to
the detection problem are Z̃X∗ (τ ) for all τ ∈ [0, t]; in other
words, the data are continuous in time and are the history of
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FIGURE 4. Illustrating Z̃X∗ (t) and

[
dZ̃X∗ (t)

dt

]
+

.

the counts of Z̃X∗ up to time t inclusively. We will use Z̃X∗ (t)
to denote the continuous-time history of Z̃X∗ (t) up to time t
inclusively.

We now specify the hypotheses Hi (i = 0, 1) for the
detection problem. Later on, wewill identifyH0 andH1 with,
respectively, transient and persistent signals. However, at this
stage, we want to solve the detection problem in a general
way. We assume that H0 and H1 are two distinct subsets of
the set of all possible S(t). Intuitively, the aim of the detection
problem is to decide which signal class H0 or H1 is more
likely to have produced the observed history.

We remark that in the definition of the detection prob-
lem, the input signal S(t) is not directly observable. Since S
reacts with the molecules in the reaction pathway in Fig. 3,
the downstream signal Z̃X∗ (t) contains information on S(t).
The aim of the detection problem is to infer the information
on S(t) from this downstream signal. Given that we model
the chemical system with the chemical master equation, both
signals S(t) and Z̃X∗ (t) are noisy.

B. SOLUTION TO THE DETECTION PROBLEM
The aim of the detection problem is to decide which hypoth-
esis Hi (i = 0, 1) is more likely to have generated the
observed history Z̃X∗ (t). We assume that the two hypotheses
are equally likely, therefore the log-ratio of posteriori proba-
bilities P[H1|Z̃X∗ (t)]

P[H0|Z̃X∗ (t)]
is equal to the log-likelihood ratio L(t):

L(t) = log

(
P[Z̃X∗ (t)|H1]

P[Z̃X∗ (t)|H0]

)
(3)

where P[Z̃X∗ (t)|Hi] is the conditional probability of observ-
ing the history Z̃X∗ (t) given hypothesisHi.

In Appendix A, we show that the time evolution of L(t) is
given by the following ODE:

dL(t)
dt
=

[
dZ̃X∗ (t)
dt

]
+

log
(
J1(t−)
J0(t−)

)
− g+(N − Z̃X∗ (t))(J1(t)− J0(t)) (4)

Ji(t) = E[X∗(t)|Z̃X∗ (t),Hi] (5)

where [w]+ = max(w, 0), E[ ] denotes the expectation
and E[X∗(t)|Z̃X∗ (t),Hi] is the conditional expectation of
X∗(t) given the history and Hi. Note that in deriving (4),
we assume that the hypotheses have been properly chosen so

that Ji(t) > 0 (for t > 0 and i = 0, 1) which in turn implies
that log

(
J1(t)
J0(t)

)
is well defined.

Since Z̃X∗ (t) is a piecewise constant function counting the
number of Z̃X∗ molecules, its derivative is a sequence of Dirac
deltas at the time instants that Z̃X∗ forms or unbinds. Note that
the Dirac deltas corresponding to the formation of Z̃X∗ carries
a positive sign and the [ ]+ operator keeps only these. Fig. 4
shows an example Z̃X∗ (t) and its corresponding

[
dZ̃X∗ (t)
dt

]
+

.

At the time instant t that Z̃X∗ is formed or unbind,
the expectation Ji(t) also has a jump in value at time t . The
term Ji(t−) in (4) refers to the value of Ji(t) just before the
jump. Lastly, we assume that the two hypotheses are a priori
equally likely, so L(0) = 0.
We next present a numerical example to illustrate the prop-

erties of (4) and to explain what information is important for
persistence detection. This example will also provide some
intuition on how we will approximately compute the log-
likelihood in Sec. IV.

1) NUMERICAL EXAMPLE
The aim of this example is to show that we can use the log-
likelihood ratio computed by (4) to distinguish a persistent
signal from a transient one. In order to conduct the numerical
study, we will assume that the inducer S is produced and
degraded by the following chemical reactions:

Spre
f+
−→ Spre + S (6a)

S
f−
−→ φ (6b)

where Spre is a precursor that produces S, and f+ and f− are
reaction rate constants. The reason why we choose to use
these reactions is that they allow us to use the time profile
Spre(t), which is the number of precursor molecules a time t ,
to control the amplitude and duration of S(t). The chemical
master equation is used to model the reactions (6) and (2).

We assume that both hypotheses H0 and H1 include the
knowledge of the reactions (6) and (2) because this knowl-
edge is required for computing E[X∗(t)|Z̃X∗ (t),Hi] in (5).
In order to define the hypotheses, we first define reference
signals R0(t) and R1(t) for Spre(t). Both reference signals are
deterministic ON-OFF pulses and their time profile has the
form:

Ri(t) =

{
SON ,refpre for 0 ≤ t < di
SOFF,refpre for t ≥ di

(7)

where di is the ON-duration for Ri(t); and, SON ,refpre and
SOFF,refpre , are, respectively, the ON and OFF amplitudes.
We assume that SON ,refpre � SOFF,refpre so that one may con-
sider SOFF,refpre as a reference value for basal concentration.
Furthermore, we assume that the duration of R1(t) is longer
than R0(t), i.e. d1 > d0. We define H0 (resp. H1) as the
set of all S(t) that are generated by using R0(t) (R1(t)) as
the time profile for Spre(t). Since d1 > d0, we will identify
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FIGURE 5. (a) Sample persistent S(t) (top plot) and transient S(t) (bottom plot). (b) The log-likelihood ratio for a long signal (or

persistent signal) and a short signal. (c) The top and bottom plots show log
(

J1(t)
J0(t)

)
and J1(t)− J0(t) in (4).

H0 (resp.H1) as, respectively, the set of transient (persistent)
signals.

For this example, the kinetic parameters for the reaction
pathway (2) are: k+ = 0.02, k− = 0.5, g+ = 0.002 and
g− = 0.05. The total number of TFsM is 100 and the number
of genes N is 1. Furthermore, for reactions (6), f+ = 0.37
and f− = 0.1. For the reference signals, we choose SON ,refpre

and SOFF,refpre to be, respectively, 100 and 3 molecules; and
d1 = 600 and d0 = 100.

We will now use the above set-up to detect a persistent
signal. For simplicity, we assume that the actual Spre(t) is the
reference signal R1(t) which results in a persistent input S(t);
see the top plot of Fig. 5a for a sample of persistent S(t).
We first use the chosen Spre(t) and the Stochastic Simulation
Algorithm (SSA) [23] to produce a realisation of Z̃X∗ (t).
The simulation assumes that there are zero S, X∗ and Z̃X∗
molecules initially. We then use optimal Bayesian filter-
ing [21] to numerically compute E[X∗(t)|Z̃X∗ (t),Hi] for both
i = 0, 1. The numerical solution to this optimal Bayesian
filtering problem requires us to solve a master equation given
the hypothesis. In order to solve this master equation exactly,
we have purposely chosen the problem parameter values so
that the number of S and X molecules are limited. After solv-
ing the Bayesian filtering problem, we numerically integrate
(4) to obtain the log-likelihood ratio L(t), which is plotted as
the solid blue line in Fig. 5b. We see that the log-likelihood
ratio is zero for t ≤ 100, ramps up in the time interval
[100, 600] and plateaus after t ≥ 600. The log-likelihood
ratio reaches a positive value at the end, which means correct
detection because it says the Z̃X∗ (t) signal is more likely to
have been generated by a persistent signal.

Next, we use a transient input. We assume that the actual
Spre(t) is the reference signal R0(t); see the bottom plot of
Fig. 5a for a sample of transient S(t). We perform the same
steps as before, namely SSA simulation, optimal Bayesian fil-
tering and numerical integration to obtain the log-likelihood
ratio for this transient input. The resulting log-likelihood
ratio L(t) is plotted as red dashed lines in Fig. 5b. This L(t)
becomes negative which means correct detection.

Fig. 5c shows the weighting factors log
(
J1(t)
J0(t)

)
and

J1(t) − J0(t) in (4) for the case when the S(t) is persistent.

(The curves are similar when S(t) is transient.) It shows
that these two weighting factors are mostly positive in the
time interval [100,600] but are zero outside. This means the
contribution to the log-likelihood ratio comes from the signal
within [100, 600]. This can also be seen from Fig. 5b where
the log-likelihood ratio does not change outside of [100,600]
but increases (resp. decreases) for persistent (transient) signal
within [100,600]. This makes intuitive sense because the
persistent input is different from the transient input within this
time interval, so the signal in this time interval is useful for
discriminating persistent signals from transient ones.

If a persistent signal can give a large positive log-likelihood
ratio, then the probability of correctly detecting the persistent
signal is higher. For this example, the positive contribution
to log-likelihood ratio comes from the first term on the RHS
of (4) because the weighting factors are non-negative, see
Fig. 5c. In fact, each time when a X∗ binds to a Z̃ in the time
interval [100,600], it creates a positive jump in the magnitude
of the log-likelihood ratio, which can be seen in Fig. 5b.
This means that a persistent signal becomes easier to detect
if X∗ binds to Z̃ many times when the signal is ON. This
can be achieved if the ON duration of the persistent signal
has a longer time-scale compared to those of the binding and
unbinding reactions of Z̃X∗ (i.e. reactions (2c) and (2d)) so
that these reactions occur many times when the input is ON.

Although this example shows that the solution (4) can dis-
tinguish a persistent signal from a transient one by computing
the log-likelihood ratio, the solution is hard to implement
in a biochemical environment because Bayesian filtering
requires extensive computation and a model of the pathway.
In the next section, we will explore how we can compute the
log-likelihood ratio approximately without using Bayesian
filtering.

IV. COMPUTING THE LOG-LIKELIHOOD RATIO
APPROXIMATELY
Our ultimate goal is to show that the computation of the log-
likelihood ratio L(t) in (4) can be carried out by a C1-FFL in
(1), i.e. there exists a set of parameters for the C1-FFL such
that z(t) in (1) is approximately equal to L(t) in (4). It is not
obvious from the expression of (4) that this can be done. The
aim of this section is to derive an ODE, which will be referred
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to as the intermediate approximation, such that the output
of this ODE is approximately equal to L(t) when the input is
persistent. We will then use this intermediate approximation
in Sec. V to relate to the C1-FFL.

A. ASSUMPTIONS
The detection problem and its solution in Sec. III are general
in the sense that they apply to any reaction pathways of the
form (2) and hypothesesHi. In order to connect the detection
problem to the C1-FFL model in (1), we will need to make
specific assumptions to derive the intermediate approxima-
tion. We will specify these assumptions in this subsection.

We make the following two assumptions on the reaction
pathway (2):
• The time-scale of the inducer-TF reactions (2a) and (2b)
is faster than that of the TF-gene promoter reactions (2c)
and (2d). This translates to small g+ and g−.

• The number of TF moleculesM is much higher than the
number of genes N .

We believe these are realistic assumptions. First, according
to [24, Table 2.2], for E. coli, the time-scale for equilibrium
binding of small molecules to protein is of the order of 1 ms
and the time-scale for TF binding to gene promoter is of
the order of 1s. Second, the copy number of most genes is
either 1 or 2.

In order to make the derivation of the intermediate approx-
imation analytically tractable, we assume that hypothesesHi
are defined in the same way as in the numerical example
in Sec. III-B1. This is so that we can approximate some
signal, e.g. the weighting functions in Fig. 5c, by a piecewise
constant function.

For analytical tractability, we further assume that the actual
Spre(t) is a deterministic ON-OFF pulse of the form:

Spre(t) =


f−
f+
α for 0 ≤ t < di

SOFF,refpre for t ≥ di

(8)

where d is the pulse duration and the ON-amplitude f−
f+
α will

result in a steady state E[S(t)] of amplitude α when the pulse
is ON.

We assume that the input signal S(t) is produced by using
Spre(t) with the reactions (6), and the reaction rate constants
f+ and f− have been chosen such that the signal S(t) is slowly
time varying compared to the time-scale of the inducer-TF
reactions (2a) and (2b). This makes intuitive sense because
a persistent or long S(t) needs to be ‘‘measured’’ by faster
reactions.

We assume that if a persistent input is applied to the
reaction pathway (2), the pathway is almost at steady state
by d0 where d0 is the duration of the reference signal R0(t)
in (7). This requirement can be met if the duration d0 is long
enough. It may be instructive to recall from the discussion in
the numerical example in Sec. III-B1 that there is a time inter-
val which is informative for persistence detection. For the
assumptions in this section, the informative time interval can

be shown to be [d0,min(d, d1)]. Intuitively, this assumption
allow us to use the steady state statistics in the time interval
[d0,min(d, d1)] to replace

[
dZ̃X∗ (t)
dt

]
+

and g+(N − Z̃X∗ (t)) in

(4) by, respectively, g−Z̃X∗ (t) and g−
Z̃X∗ (t)
X∗(t)

.

B. INTERMEDIATE APPROXIMATION
An ideal persistence detector has the properties that a tran-
sient input will result in a zero output and a persistent input
will result in a positive output [24]. The C1-FFL, when acting
as a persistence detector, can be considered to be an approxi-
mation of this ideal behaviour [24]. However, it is not possible
to map the log-likelihood ratio detector in (4) to the C1-FFL
because the log-likelihood ratio becomes negative for tran-
sient signals but the concentration in the C1-FFL can only
be non-negative. We will use the intermediate approximation
as a bridge to connect (4) to the C1-FFL. The intermediate
approximation has two key properties. First, if the input is
transient, then the output of the intermediate approximation
is zero. Second, if the input is persistent, then the output
of the intermediate approximation is approximately equal to
the log-likelihood ratio given by (4). Another purpose of the
intermediate approximation is to replace the complex com-
putation in (4), e.g. derivative and optimal Bayesian filtering,
by simpler computation that can be implemented by chemical
reactions.

The derivation of the intermediate approximation is given
in Appendix B, using the assumptions stated in Sec. IV-A.
The derivation shows that the time evolution of the interme-
diate approximation L̂(t) is given by the following ODE:

dL̂(t)
dt
= Z̃X∗ (t) g− π (t) [φ(X∗(t))]+ (9)

where

φ(X∗(t)) = log
(
X1
X0

)
−
X1 − X0
X∗(t)

, (10)

Xi =
Mk+ai

k+ai + k−
for i = 0, 1 (11)

a0 =
f+
f−
SOFF,refpre (12)

a1 =
f+
f−
SON ,refpre (13)

π (t) =

{
1 for d0 ≤ t < d1
0 otherwise

(14)

L̂(0) = 0 (15)

Furthermore, it can be shown that time evolution of E[L̂(t)]
obeys the following ODE:

dE[L̂(t)]
dt

= E[Z̃X∗ (t)] g− π (t) [φ(E[X∗(t)])]+ (16)

The behaviour of the intermediate approximation L̂(t)
depends on two parameters of the input signal S(t): its mean
ON-amplitude α and duration d (see (8)). Three important
properties for L̂(t) are:
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1) If d < d0, then for all t , we have L̂(t) and E[L̂(t)] are
zero or small. This is due to π (t), which is zero outside
of [d0, d1), and the fact that X∗(t) is likely to be small
for t ≥ d0.

2) If the amplitude α is lower than a threshold, then for
all t , we have L̂(t) is zero or small and E[L̂(t)] is zero.
We will explain this for E[L̂(t)]. Since E[X∗(t)] is an
increasing function of α, this means a small α will give
a small E[X∗(t)]. If E[X∗(t)] is less than

X1−X0
log
(
X1
X0

) for all

t , then [φ(E[X∗(t)])]+ on the RHS of (16) is zero and
this implies E[L̂(t)] is zero for all t . The explanation for
L̂(t) is similar.

3) If d is longer than d0 and α is sufficiently large, then
for 0 ≤ t < min{d, d1} we have L̂(t) ≈ L(t) where
L(t) is given in (4).

The first two properties are concerned with transient sig-
nals, which are those input signals whose duration is no
longer than d0 or whose amplitude α is small. The intermedi-
ate approximation says that transient signals give a small L̂(t).
On the other hand, persistence signals have a duration longer
than d0 and have a sufficiently large amplitude α. For persis-
tent signals, the intermediate approximation L̂(t) is approx-
imately equal to the log-likelihood ratio L(t) in the time
interval 0 ≤ t < min{d, d1}. Note in particular that this
approximation holds for a range of d and α values. From now
on, we will choose d1 to be∞ so that L̂(t) ≈ L(t) holds for
0 ≤ t < d , i.e. when the persistent signal is ON. Note that an
infinite d1 means π (t) in (14) becomes a step function which
changes from 0 to 1 at time d0.

1) NUMERICAL EXAMPLES
The numerical examples in this section use the following
kinetic parameters for the reaction pathway (2): k+ = 0.02,
k− = 0.5, g+ = 0.002 and g− = 0.0125. These parameters
have been chosen such that the time-scale of the inducer-TF
reactions are faster than those of the TF-gene promoter. The
number of TF M is 100 and the number of genes N is 1,
which means M � N . The values of f+, f−, S

ON ,ref
pre and

SOFF,refpre are the same as those in Sec. III-B1. The duration
parameters for the reference signals are: d0 = 100, d1 = ∞.
The signal duration d = 3000. All the above parameters are
fixed. We will vary the values of amplitude α.
For the first numerical experiment, we use α = 37, which

means Spre(t) has an amplitude of SON ,refpre when it is ON. This
excitation means there is a mean probability of 0.6 that X is
active. We use SSA simulation to generate 100 realisations
of X∗(t) and Z̃X∗ (t), and use them to compute the true log-
likelihood ratio L(t) (which requires only Z̃X∗ (t)) and the
intermediate approximation L̂(t) (which requires both X∗(t)
and Z̃X∗ (t)). Fig. 6a compares one realisation of L(t) (blue
line) and L̂(t) (red line) for a persistent input. It can be seen
that the intermediate approximation is fairly accurate.

We then use all 100 realisations to compute the mean of
L(t), the mean of L̂(t), and the root-mean-square (RMS)
error of L(t) − L̂(t). The results are plotted in Fig. 6b.

FIGURE 6. Numerical results for Sec. IV-B1. (a) Comparing one realisation
of L(t) and L̂(t) for a persistent signal. Also shows a realisation of L̂(t) for
a transient signal. (b) Comparing the mean of L(t) from SSA, mean of L̂(t)
from SSA, mean of L̂(t) by (16). Also shows RMS error between L(t) and
L̂(t) from SSA. (c) Same type of comparison as (b) but for different values
of α and d .

This shows that L̂(t) is a good approximation of L(t) for
many realisations. Next, we check the accuracy of using (16)
to compute E[L̂(t)]. The black dashed lines in Fig. 6b plot
E[L̂(t)] computed from (16), which is almost the same as the
mean obtained via SSA. This shows that (16) is an accurate
method to compute E[L̂(t)].
The discussion so far focused on persistent signals. The

black line in Fig. 6a shows the intermediate approximation
for a transient input with d = 100. It can be seen that the
output is small. This agrees with our earlier prediction.

For a given set of hypotheses, the intermediate approxi-
mation holds for a range of α and d . We now change α to
99.9 (which means Spre(t) has an amplitude of 1.33SON ,refpre
when it is ON). By using 100 rounds of SSA simulations,
we compute the means of both L(t) and L̂(t), as well as
the RMS error between them. The results are in Fig. 6c and
they show that the intermediate approximation is accurate for
different values of α. Fig. 6c also shows E[L̂(t)] computed
from (16) and we can see that the accuracy is good.
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FIGURE 7. The impact of the decision threshold on the TP rates.

Remark 1: The reader may wonder why we do not define
the hypotheses of the detection problem as: H0 (resp. H1)
means the duration of the input signal is shorter (longer) than
a given threshold. The reason is that these are composite
hypotheses and the solution to the resulting detection problem
is much harder, see [20, Remark 5.1] for a more in-depth dis-
cussion. We also want to point out that, even with our simpler
formulation, the resulting detector gives a small output for
any signal whose duration is shorter than d0.

2) TRUE POSITIVE (TP) AND FALSE POSITIVE (FP) RATES
In this section, we want to study the performance of using the
approximate log-likelihood ratio L̂(t) for decision making.
Since our interest is to detect persistent signals, we can do
that by testing whether the log-likelihood ratio is greater
than or equal to a positive threshold ρ. We use a numeri-
cal example to illustrate the impact of the positive decision
threshold ρ on the TP and FP rates. For the TP rate, we assume
the input is a long pulse of duration d = 3000 and generate
100 realisations of X∗(t) and Z̃X∗ (t). We use the data to
compute 100 values of L(d) and L̂(d) where L(d) and L̂(d)
are, respectively, the log-likelihood ratio (4) and approximate
log-likelihood ratio (9) at time t = d . We then compare these
values against the threshold to obtain the TP rates. We vary
the threshold between 10 and 80. The blue and red lines
in Fig. 7 show the TP rates for L(t) and L̂(t) respectively.
It shows that there is a wider range of thresholds that can be
used to obtain a high TP rate for L̂(t). This is because L̂(t) has
a lower variance in comparison. We will discuss the magenta
curve in Fig. 7 in Sec. V-B.

For the FP rate, we generate 100 realisations using a short
pulse of duration d = 100(= d0) and use the data to compute
L(d) and L̂(d). For all the 100 realisations, the L(d)’s are
negative and L̂(t) ≈ 0. Therefore for all the thresholds in
10 − 80, the FP rates are zero for both L̂(t) and L(t). This
shows that we are able to find thresholds that give a large TF
while keeping FP low.

The above numerical experiment on computing the FP rate
also shows that it is not a problem to ‘‘round’’ the negative
log-likelihood ratio in L(d) to a near zero approximation
L̂(d). This is because, if the test is to check whether the log-
likelihood ratio is above a sufficiently positive threshold, then
a negative L(d) or an almost zero L̂(d) will lead to the same
decision.

FIGURE 8. Relating the computation of the mean approximate
log-likelihood ratio E[L̂(t)] in (16) to the C1-FFL.

V. USING THE C1-FFL TO APPROXIMATELY COMPUTE
LOG-LIKELIHOOD RATIO
We have shown in the previous section that the mean of the
intermediate approximation E[L̂(t)] is an accurate approx-
imation of the mean log-likelihood ratio E[L(t)] when the
input is persistent. The aim of this section is to show that
we can use the C1-FFL in (1) to approximately compute
E[L̂(t)] in (16).

A. RELATING E[L̂(t)] TO THE C1-FFL
For the time being, we will assume dz in (1c) is zero and
show that it is possible to find C1-FFL parameters such that
z(t) in (1) is approximately equal to E[L̂(t)] in (16). We will
explain in Remark 2 how a non-zero dz can be handled.

We depict the calculations of (16) in Fig. 8. We split the
computation on the RHS of (16) as the product of E[Z̃X∗ (t)]
and g− π (t) [φ(E[X∗(t)])]+ where the multiplication oper-
ation is depicted as an and gate in the figure. Note that the
two-branch structure of the computation in Fig. 8 has a direct
resemblance with that of the C1-FFL in Fig. 2. We first
consider the computation of the two branches separately.

We first consider the computation of E[Z̃X∗ (t)] from
E[X∗(t)], which is the branch on the left in Fig. 8. By using the
volume scaling assumption (Sec. III), we equate molecular
count Z̃X∗ (t) with concentration z̃X∗ (t), and similarly, X∗(t)
with x∗(t). We propose to compute z̃X∗ (t) from x∗(t) by using:

z̃X∗ (t) = computed by
Ng+x∗(t)

g+x∗(t)+ g−
(17)

Note that the above approximation is obtained from assum-
ing that the TF-gene reactions (2c) and (2d) are close to steady
state. By using the parameters in the numerical example in
Section IV-B1, we have plotted the two sides of (17) in Fig. 9a
when the input is persistent with a duration d of 200. Note
that there are two transients of z̃X∗ (t) in the figure, one after
time 0 when the input turns ON and the other at time d when
the input turns OFF. We can see that, other than these two
transients, the two sides of (17) are almost equal. We will
show later on these two transients have little effect on the
accuracy of the overall computation. Note that the RHS of
(17) has the form of a Hill function and we can identify it
with Hxz(x∗(t)) in (1c).
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We next consider the computation of g−π (t)[φ(E
[X∗(t)])]+ from E[X∗(t)], which is depicted by a cloud
in Fig. 8. We first argue that, for most of the admissible
choices of d0, there must be a time delay element in the cloud.
This implies that theremust be some chemical reactions in the
cloud in order to create this time delay. To understand which
d0 is admissible, we recall that we assume in Section IV-A
that the pathway (2) is almost at steady state by the time d0.
As an illustration of this assumption, consider Fig. 9a which
shows the time profile of z̃X∗ (t), the vertical dashed line shows
the time (which we will denote as tss) by which z̃X∗ (t) is
sufficiently close to steady state, the assumption means an
admissible d0 must be greater than or equal to tss.

In our technical report [25, Appendix D], we show that
there must be a delay in the cloud if d0 is strictly greater than
tss. Intuitively, a delay is needed becauseπ (t) is zero in [0, d0)
but X∗ almost reaches steady state before d0. Given that there
must be a delay element in the cloud in Fig. 8, we can achieve
that by inserting a transcription node (e.g. Node Y in Fig. 2)
in the cloud. With this insertion, we can identify the branch
on the right in Fig. 8 with the indirect branch in the C1-FFL
in Fig. 2.

The next step is to show that we can find Hill functions
Hxy() and Hyz() in (1) which will enable us to compute
g− π (t) [φ(x∗(t))]+. Since the inducer-TF pathway is fast,
we can approximate x∗(t) by its steady state value x∗,ss for
t < d . We can use (1b) to show that

y(t) =
Hxy(x∗,ss)

dy
(1− exp(−dyt)) (18)

Our aim is to achieve the approximation:

Hyz(y(t)) ≈ g− π (t) [φ(x∗,ss)]+. (19)

We will turn this into two requirements. First, in order
to imitate π (t), we require Hyz(y(t)) to have a sharp transi-
tion from a low value to a high value around d0. Note that
this requirement implies that y(t) should not have reached
steady state by d0 and can be achieved by suitable choice
of dy. Second, when Hyz(y(t)) reaches steady state, which
happens some time after time d0, its amplitude is determined
by g−[φ(x∗)]+. We can consider these two requirements
separately because the first requirement is concerned with a
time event around time d0 while the second requirement is
concerned with the steady state amplitude which is reached
at a time later than d0.
We first consider how Hyz(y(t)) can be used to realised a

transition around time d0. Let us recall that Hyz(y(t)) has the
form hyzy(t)nyz

K
nyz
yz +y(t)

nyz
. Given that y(t) is an increasing function of t ,

if we choose Kyz to be y(d0), then we have y(t) < Kyz for
t < d0 and y(t) > Kyz for t > d0. Hence, if nyz is sufficiently
large, then Hyz(y(t)) will have a sharp transition around d0.
The argument in the last paragraph works for a particular

choice of x∗,ss, which corresponds to a particular choice of
input signal amplitude. We will now explain how Hyz(y(t))
can be used to realised a transition at time d0 for a range of

input amplitudes. Since Hxy(x∗,ss) is a Hill function, then for
sufficiently large x∗,ss, the value ofHxy(x∗,ss) does not change
much becauseHxy(x∗,ss) saturates. As a result, there is a range
of x∗,ss such that y(t) does not change a lot. This means if we
choose Kyz to be the y(d0) corresponding to a particular x∗,ss
which saturates Hxy(x∗,ss), we can a achieve sharp transition
around time d0 for a range x∗,ss.

We will now give an illustration on the first requirement.
Fig. 9b plots the two sides of (19) for a particular input
amplitude. We see that we can use Hyz to approximate
g− π (t) [φ(x∗,ss)]+ well except near the falling edge of
g− π (t) [φ(x∗,ss)]+. We can now consider the two branches
in Fig. 8 together. We now compare the whole RHS of (16),
which is E[Z̃X∗ (t)] times g− π (t) [φ(E[X∗(t)])]+, and the
RHS of (1c), which is Hxz(x∗(t)) times Hyz(y(t)). Fig. 9c
compares these two expressions. An interesting observation
is that the mismatch in some time intervals in Fig. 9a and 9b
are cancelled out when the multiplication is made.

We now consider the second requirement which requires
the steady state value of Hyz(y(t)) to be g−[φ(x∗)]+. Accord-
ing to (18), the steady state amplitude of y(t) is Hxy(x∗,ss)

dy
,

therefore the requirement is equivalent to findingHxy andHyz
such that:

Hyz

(
Hxy(x∗,ss)

dy

)
≈ g−[φ(x∗,ss)]+ (20)

holds for a large range of x∗,ss. Let χ = 1
x∗,ss

. By using the
expressions of Hxy() and Hyz() in (1) as well as φ() in (10),
we can rewrite (20) in terms of χ as:

hyz
η(1+K

nxy
xy χ

nxy )nyz + 1
≈g−

[
log

(
X1
X0

)
− (X1 − X0) χ

]
+

(21)

where η =
(
Kyzdy
hxy

)nyz
. If we consider the expression on the

RHS of (21) as a function of χ , it has a linearly decreasing
segment followed by a constant segment at zero. Recall that
we have chosen nyz to be large earlier, and if we furthermore
choose nxy is to be 1, then the LHS may be approximated by
three segments: a constant for small χ , linearly decreasing
for intermediate χ and zero for large χ . This shows that
it is possible to find Hill functions Hxy and Hyz such that
the second requirement holds. We will demonstrate this with
a numerical example.

B. NUMERICAL EXAMPLE
This numerical example uses the first set of parameter values
as in Sec. IV-B1. Our aim is to show that we can choose a set
of C1-FFL parameters so that z(t) ≈ L̂(t) for a range of input
amplitude α. We do this by fixing Hxz() as

Ng+x∗(t)
g+x∗(t)+g−

, and

by fitting the C1-FFL parameters in Hxy() and Hyz() in (1) by
nonlinear optimisation. The data for fitting is obtained from
varying α from 3.125 to 62.5. For each α, we compute E[L̂(t)]
using (16) and use them to fit the parameters of the C1-FFL.
The fitted values of the C1-FFL parameters are: kxy = 9.66,
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FIGURE 9. (a) Comparing z̃X∗ (t) and Ng+x∗(t)
g+x∗(t)+g−

. (b) Comparing g− π(t) [φ(x∗)]+ and Hyz (y (t)). (c) Comparing

z̃X∗ (t)g− π(t) [φ(x∗)]+ and Hxz (x∗(t))Hyz (y (t)).

FIGURE 10. Numerical results for Sec. V. (a) Comparing the C1-FFL output against E[L̂(t)] for
three different values of α. (b) Compare z(t) (C1-FFL) and L̂(t) at time t = 800 for
a ∈ [12.5,100]. (c) Comparing g− [φ(x∗,ss)]+ and Hyz (

Hxy (x∗,ss)
dy

). Note the horizontal axis is

χ = 1
x∗,ss (d) Comparing the mean C1-FFL output from tau-leaping against mean L(t)

from SSA.

nxy = 1.65,Kxy = 4.36, dy = 0.037, hyz = 0.135, nyz = 50.0
and Kyz = 255.4.

Fig. 10a compares E[L(t)] and the C1-FFL output z(t) for
three different values of α: 7.5, 30 and 75. It can be seen that
they match very well. Next, we compare the value of z(t) and
L̂(t) at time t = 800 for α ∈ [1.9, 112]. Fig. 10b shows that
the match is good for a large range of α.
Although we use optimisation to obtain the parameters of

the Hill functions Hxy() and Hyz(). We find that their values
are compatible to our intuitive argument in Sec. V-A. First,
we say that Kyz should be chosen close to the value of y(d0)
for a range of input amplitudes. For input amplitudes of 5,
15 and 480 (which correspond to a mean probability of 0.4,
0.6 and 0.8 that the promoter Z̃X∗ is bound), the values of y(d0)

are respectively, 229.2, 247.3 and 252.9. These values are
pretty close toKyz = 255.4 obtained from using optimization.
Second, the steady state value of y(t) is around 259 for a range
of input amplitudes and y(d0) has not yet reached the steady
state. Third, we argue that Hyz(

Hxy(x∗,ss)
dy

) and g− [φ(x∗,ss)]+
should be approximately equal, i.e. (20) or (21). Fig. 10c plots
the two sides of (21) and shows that they match well except
near the turning point. Fourth, the optimised value of nxy is
1.65 which is similar to the predicted value of 1.

We next study the behaviour of the fitted C1-FFLwhen s(t)
in (1) is the stochastic persistent input used in Sec. IV-B1.
We apply the tau-leaping simulation algorithm in [26] to
simulate the stochastic behaviour of the C1-FFL from its
ODE model. We perform 100 rounds of simulation to obtain
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the mean of the C1-FFL output z(t). We compare the mean of
z(t) against the mean log-likelihood computed in Sec. IV-B1
in Fig. 10d and we can see that they match fairly well.
Next, we use z(t) to study the TP (true positive) and FP
(false positive) rates in the same way as in Sec. IV-B2. Both
persistent and transient inputs are used in this study, and
100 simulation runs are performed for each type of input. The
magenta line in Fig. 7 (Page 129003) shows how the TP rates
vary with the decision threshold. It can be seen that the TP
curve for the C1-FFL is in between those for L(t) and L̂(t).
We find that we can again find a range of positive thresholds
such that the TP rate is high and FP rate is zero.
Remark 2: We have shown that on the condition that dz in

(1c) is zero, then we can find parameters of the C1-FFL such
that z(t) in (1) is approximately equal to E[L̂(t)] in (16). Let
us now assume dz is non-zero andwe add the term−dzE[L̂(t)]
to the RHS of (16), then we can use the same C1-FFL
parameters as before to make z(t) in (1) to be approximately
equal the new E[L̂(t)].
Remark 3: The derivations in Secs.III-V assume that the

reactions take place in a volume V of 1. If the volume is not 1,
(16) remains the same. Note that both g− and the term inside
[ ]− in (16) are independent of V . If we divide both sides of
(16) by V , we have d(E[L̂(t)]/V )

dt = E[̃zX∗ (t)] g− π (t) [. . .]−.
Thus, the argument in Sec. V-A is still valid if we interpret
the output of the C1-FFL as log-likelihood ratio per volume.
Remark 4: Our interpretation of the C1-FFL as a statistical

persistence detector shows an interesting signal processing
architecture involving parallel processing. The C1-FFL has
two arms. The short arm produces the signalsX∗(t) and Z̃X∗ (t)
which contain information on whether the inducer signal is
persistent or not. The longer arm thenmakes use of the signals
X∗(t) and Z̃X∗ (t) to approximately compute, in a parallel man-
ner, the approximate log-likelihood ratio. It is also interesting
to see that the gene Z̃, with its two promoter sites, has the
dual roles of generating the signal to be processed as well as
processing the signal.

C. DISCUSSION
Biochemical circuits are known to be impacted by both intrin-
sic and extrinsic noise [27]. An open problem is to design
a C1-FFL, which is based on the mass-reaction kinetics,
for persistence detection using the probabilistic framework
studied in this paper. In particular, we envisage using this
design problem to study the impact intrinsic noise (which
comes from reaction kinetics) and extrinsic noise (which
comes from input signal properties such as how the signal
is generated, amplitude, duration etc.) on the detection and
false alarm rates.

Another open problem is to study how our work can be
used in conjunction with the sequential probability ratio test
(SPRT) [28]. The SPRT uses the log-likelihood ratio L(t),
such as that defined in (4) which uses data up till time t ,
with two thresholds θ1 and θ0 where θ1 > θ0. At any point
in time, if L(t) > θ1 or L(t) < θ0 is true, then a decision
is reached (deciding for, respectively, H1 or H1); otherwise

a decision has not been reached and data collection will
continue. It is suggested in [29] that the SPRT is useful for
biological detection because theoretically SPRT has a shorter
decision time. We can use our approximate log-like ratio L̂(t)
in the spirit of SPRT. In our case, only one threshold θ1(> 0)
will be used. At any point in time, if L̂(t) > θ1 then a decision
is reached forH1; otherwise a decision has not been reached.
(Note the similarity to the study in Sec. IV-B2.) This set up
will be useful for practical applications where an action is
needed if H1 is true but otherwise no actions are required.
We envisage that this set up will have a shorter decision time
as in SPRT. It will be interesting to study how the design
parameters mentioned in the last paragraph will influence
the decision time and accuracy. This study is important for
practical implementation.

VI. CONCLUSION
This paper shows that the C1-FFL gene circuits can be
used to approximately compute the log-likelihood ratio for
statistical detection of persistent signals. In order to derive
this result, we use new methods to show how log-likelihood
ratio can be approximately computed and to show how this
approximation can be mapped to the parameters of a C1-FFL.
An open problem is to study the impact of intrinsic and
extrinsic noise on the performance of the C1-FFL based
statistical detector. Another open problem is to consider using
the approximate log-likelihood ratio computation together
with sequential probability ratio test to realise fast persistent
detection. Finally, note that the methodology in this paper
can be used to derive biochemical circuits that can be used
to solve other statistical signal processing problems.

APPENDIX A
DERIVING THE ODE FOR THE EXACT
LOG-LIKELIHOOD RATIO
Recalling that Z̃X∗ (t) is the history of Z̃X∗ (t) in the time
interval [0, t]. In order to derive (4), we consider the history
Z̃X∗ (t + 1t) as a concatenation of Z̃X∗ (t) and Z̃X∗ (t) in the
time interval (t, t +1t]. We assume that 1t is chosen small
enough so that no more than one reaction can take place in
(t, t + 1t]. Given this assumption and right continuity of
continuous-time Markov Chains, we can use Z̃X∗ (t + 1t) to
denote the history of Z̃X∗ (t) in (t, t +1t].

Consider the likelihood of observing the history Z̃X∗ (t +
1t) given hypothesisHi:

P[Z̃X∗ (t +1t)|Hi] (22)
= P[Z̃X∗ (t) and Z̃X∗ (t +1t)|Hi] (23)
= P[Z̃X∗ (t)|Hi] P[Z̃X∗ (t +1t)|Hi, Z̃X∗ (t)] (24)

where we have expanded Z̃X∗ (t + 1t) in (22) using
concatenation.

By using (24) in the definition of log-likelihood ratio,
we can show that:

L(t +1t) = L(t)+ log

(
P[Z̃X∗ (t +1t)|H1, Z̃X∗ (t)]

P[Z̃X∗ (t +1t)|H0, Z̃X∗ (t)]

)
(25)
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The condition probability P[Z̃X∗ (t +1t)|Hi, Z̃X∗ (t)] is the
prediction of the number of Z̃X∗ molecules at time t + 1t
based on its history up till time t . This conditional probability
can be obtained by solving a Bayesian filtering problem
over a continuous-time Markov chain which describes the
dynamics of the chemical reactions in (2) and those that pro-
duce S [21]. We considered how this conditional probability
could be evaluated in our earlier work [30]. The key result
in [30] says that P[Z̃X∗ (t +1t)|Hi, Z̃X∗ (t)] can be expressed
in terms of the predicted rate of the chemical reactions that
Z̃X∗ are involved in. By using [21], [30], we have:

P[Z̃X∗ (t +1t)|Hi, Z̃X∗ (t)]

= δZ̃X∗ (t+1t),Z̃X∗ (t)+1
g+(N − Z̃X∗ (t)) Ji(t−) 1t

+ δZ̃X∗ (t+1t),Z̃X∗ (t)−1
g−Z̃X∗ (t) 1t

+ δZ̃X∗ (t+1t),Z̃X∗ (t)

× (1− g+(N − Z̃X∗ (t))Ji(t) 1t − g−Z̃X∗ (t) 1t) (26)

where δa,b is the Kronecker delta which is 1 when a equals to
b and zero otherwise, and Ji(t) = E[X∗(t)|Hi, Z̃X∗ (t)] is the
expected number of X∗ molecules at time t given Hypothesis
i and the history Z̃X∗ (t).

Note that P[Z̃X∗ (t+1t)|Hi, Z̃X∗ (t)] in (26) is a sum of three
terms with multipliers δZ̃X∗ (t+1t),Z̃X∗ (t)+1, δZ̃X∗ (t+1t),Z̃X∗ (t)−1
and δZ̃X∗ (t+1t),Z̃X∗ (t). Since these multipliers are mutually
exclusive, we have:

log
(
P[Z̃X∗ (t +1t)|H1, Z̃X∗ (t)]

P[Z̃X∗ (t +1t)|H0, Z̃X∗ (t)]

)
= δZ̃X∗ (t+1t),Z̃X∗ (t)+1

log
(
g+(N − Z̃X∗ (t)) J1(t−) 1t

g+(N − Z̃X∗ (t)) J0(t−) 1t

)
+ δZ̃X∗ (t+1t),Z̃X∗ (t)−1

log
(
g−Z̃X∗ (t) 1t

g−Z̃X∗ (t) 1t

)
+ δZ̃X∗ (t+1t),Z̃X∗ (t)

× log
(
1− g+(N − Z̃X∗ (t))J1(t) 1t − g−Z̃X∗ (t) 1t

1− g+(N − Z̃X∗ (t))J0(t) 1t − g−Z̃X∗ (t) 1t

)
≈ δZ̃X∗ (t+1t),Z̃X∗ (t)+1

log
(
J1(t−)
J0(t−)

)
− δZ̃X∗ (t+1t),Z̃X∗ (t)

g+(N − Z̃X∗ (t)) (J1(t)− J0(t)) 1t

(27)

where we have used the approximation log(1 + f 1t) ≈
f 1t and have ignored terms of order (1t)2 or higher to
obtain (27). Note also that the above derivation assumes that
J1(t)
J0(t)

is strictly positive so its logarithm is well defined; this
can be achieved by proper choice of the hypotheses.

By substituting (27) into (25), we have after some manip-
ulations and after taking the limit 1t → 0:

dL(t)
dt
= lim

1t→0

δZ̃X∗ (t+1t),Z̃X∗ (t)+1

1t
log

(
J1(t−)
J0(t−)

)
− δZ̃X∗ (t+1t),Z̃X∗ (t)

g+(N − Z̃X∗ (t)) (J1(t)− J0(t))

(28)

FIGURE 11. Typical temporal behaviour of a p̂t (s, x∗).

In order to obtain (4), we use the following reasonings.

First, the term lim1t→0
δZ̃X∗ (t+1t),Z̃X∗ (t)+1

1t is a Dirac delta at
the time instant that an X∗ molecule binds with Z̃ to form
a Z̃X∗ . Since the binding instants are also the times at which
Z̃X∗ (t) jumps by+1, we can identify this termwith

[
dZ̃X∗ (t)
dt

]
+

where [w]+ = max(w, 0). Second, the term δZ̃X∗ (t+1t),Z̃X∗ (t)
is only zero when the number of Z̃X∗ molecule changes but
the number of such changes is countable. In other words,
δZ̃X∗ (t+1t),Z̃X∗ (t)

= 1 with probability one. This allows us
to drop δZ̃X∗ (t+1t),Z̃X∗ (t). Hence (4). We remark that a more
general framework of deriving log-likelihood ratio and log-
posteriori probability in the reaction-diffusion master equa-
tion framework can be found in [30]–[32].

APPENDIX B
DERIVATION OF THE INTERMEDIATE APPROXIMATION
The aim of this section is to show that the log-likelihood ratio
computation in (4) can be approximated by the intermediate
approximation in (9) for persistent signals in the time interval
[0,min(d, d1)]. The derivation is based on the assumptions
stated in Sec. IV-A. We have divided the derivation into three
steps.

(Step 1) The aim of this step is to approximate
E[X∗(t)|Z̃X∗ (t),Hi] in (4). The computation of this expec-
tation requires the solution of a Bayesian filtering problem
which is computationally intensive. We will argue that if g+
and g− are small, then we can use the approximation:

E[X∗(t)|Z̃X∗ (t),Hi] ≈

{
X1 for 0 ≤ t < di
X0 otherwise.

(29)

where i = 0, 1, and X0 and X1 are defined in (11). In other
words, we approximate E[X∗(t)|Z̃X∗ (t),Hi] by a rectangular
pulse.

In order to argue for (29), we start by deriving the solu-
tion of the Bayesian filtering problem of using the history
Z̃X∗ (t) to determine the posteriori probability distribution
p̂t (s, x∗) , P[S(t) = x,X∗(t) = x∗|Z̃X∗ (t),Hi]. The typical
temporal behaviour of p̂t (s, x∗) is depicted in Fig. 11. We can
see that at the time instants where Z̃ binds or Z̃X∗ unbinds,
the probability p̂t (s, x∗) has a discrete jump; at other times,
i.e. between two consecutive jumps, the probability p̂t (s, x∗)
varies continuously. By using [21, Eq. (21)], we can show that
the time evolution of the continuously varying part of p̂t (s, x∗)
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FIGURE 12. (a) Demonstrating the accuracy of (29). Top plot: H0; Bottom plot: H1. (b) and (c) Comparing exact log-likelihood ratio L(t) (4)
and the approximation L̃(t) (33). For (b), SON,ref

ref = 101, and for (c), SON,ref
ref = 270.

is governed by the following ODE:

dp̂t (s, x∗)
dt

= [Lip̂t ](s, x∗)

− g+(x∗ − E[X∗(t)|Z̃X∗ (t),Hi]) (N − Z̃X∗ (t))

(30)

where

[Lip̂t ](s, x∗)
= f+ Ri(t) p̂(s− 1, x∗)− f+ Ri(t) p̂t (s, x∗)

+ f− (s+ 1) p̂(s+ 1, x∗)− f− s p̂t (s, x∗)

+ k+ s (M − x∗ + 1) p̂(s, x∗ − 1)

− k+ s (M − x∗) p̂t (s, x∗)

+ k− (x∗ + 1) p̂(s, x∗ + 1)− k− x∗ p̂t (s, x∗) (31)

If g+ is small, then the last term in (30) can be viewed as a
perturbation to the ODE:

dpt (s, x∗)
dt

= [Lipt ](s, x∗) (32)

This ODE is in fact the chemical master equation which
governs the reactions (6), (2) with g+ = g− = 0. For small
g+, we have p̂t (s, x∗) ≈ pt (s, x∗). In addition, if both g+ and
g− are small, then the time between two jumps in p̂t (s, x∗) is
long; this further implies that p̂t (s, x∗) is mostly around steady
state, e.g. see Fig. 11 in the time interval [320,386]. Overall,
this means that we can approximate E[X∗(t)|Z̃X∗ (t),Hi] by
using the steady state mean number of X∗ molecules assum-
ing g+ = g− = 0. When g+ = g− = 0, the steady state
mean number of X∗ molecules is approximately given by the
expression in (11). Hence (29).

After using the approximation in Step 1, (4) becomes:

dL̃(t)
dt
≈

[
dZ̃X∗ (t)
dt

]
+

log
(
X1
X0

)
π (t)

− g+(N − Z̃X∗ (t))(X1 − X0) π (t) (33)

where π (t) is defined in (14).
We now demonstrate the accuracy of (29) and (33) using

numerical examples. We use the same parameter values as
in Sec. IV-B1. Fig. 12a plots the two sides of (29) for the
two hypotheses. It can seen that, other than the transients,

the approximation is fairly accurate. Next, we use Fig. 12b
to demonstrate the accuracy of (33). By using one realisation
of Z̃X∗ (t), we calculate the exact log-likelihood ratio L(t) (4)
and the approximation L̃(t) (33). The figure shows that the
approximation is accurate. In addition, the figure also shows
the RMS error between L(t) − L̃(t) for 100 realisations of
Z̃X∗ (t). It can be seem that the RMS error is small. In order
to show that the approximation holds for different parameter
settings, we use a different value SON ,refref and plot the result
in Fig. 12c.

(Step 2) The aim of this step is to replace
[
dZ̃X∗ (t)
dt

]
+

and

Z̃X∗ (t) in (33) by alternative expressions. Since π (t) in (33)
is zero for t < d0, we only have to consider input signals
whose duration d ≥ d0. Recall that we assume in Sec. IV-A
that the pathway (2) reaches steady state by d0 if the input
has a duration of at least d0. This means that the probability
distributions of X∗ and Z̃X∗ are in steady state in the time
interval [d0, d]
Note that the RHS of (33) is the sum of two terms that do

not depend on L(t). We can therefore consider the contribu-
tion of each term to L(t) separately.
First, we consider the contribution of the first term on the

RHS of (33) to L(t), which we will call L1(t):

dL1(t)
dt
=

[
dZ̃X∗ (t)
dt

]
+

log
(
X1
X0

)
π (t) (34)

By using a method similar to that in [5], which is based
on the renewal theorem [33], we can show that (34) can be
approximated by:

dL1(t)
dt
≈ g− Z̃X∗ (t) log

(
X1
X0

)
π (t) (35)

Next, we consider the contribution of the second term on
the RHS of (33) to L(t), which we will call L2(t):

dL2(t)
dt
= g+(N − Z̃X∗ (t))(X1 − X0) π (t) (36)

By integrating the above equation, we have L2(t) = 0 for
t ∈ [0, d0); for t ∈ [d0,min(d, d1)], we have:

L2(t) = (X1 − X0) g+

∫ t

d0
(N − Z̃X∗ (τ )) dτ (37)
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Since the reaction pathway is in steady state in the time
interval [d0,min(d, d1)], we can replace the time average in
(37) by its ensemble average. In this part, we will overload
the symbol Z̃X∗ to use it to refer to the random variable of
the number of Z̃X∗ molecules at steady state. This should not
cause any confusion because the meaning should be clear
from the context. In addition, we will overload the symbol
X∗ in the same way. With this overloading, the mean number
of X∗ and Z̃X∗ molecules at steady state are denoted by E[X∗]
and E[Z̃X∗ ] respectively. We can now rewrite (37) as:

L2(t) ≈ (X1 − X0) g+(N − E[Z̃X∗ ]) (t − d0) (38)

In order to be able to connect to the C1-FFL, we will
need to replace the expression (N − E[Z̃X∗ ]) by a different
expression. The derivation of this replacement expression
requires a few auxiliary results.

(Auxiliary Result 1) By considering the global balance of
the steady state of the reaction pathway (2), we have:

g+E[(N − Z̃X∗ )X∗] = g−E[Z̃X∗ ] (39)

(Auxiliary Result 2) If the amplitude of the input is suffi-
ciently high, then the number of X∗ molecules can be approx-
imately modelled as a binomial distribution withM trials and
a success probability of k+α

k+α+k−
.

Consider a binomial distribution B(Q;m, f ) with parame-
ters m (number of trials) and f (success probability), then for
sufficiently large m and f , we have

1
E[Q]

≈ E[I (
1
Q
)] (40)

where

I (
1
q
) =

 0 for q = 0
1
q

for q ≥ 1
(41)

This result essentially says that the mean of the recip-
rocal of a binomial random variable (with 1

0 excluded) is
approximately equal to the reciprocal of the mean of the
binomial random variable. If f = 1 and m ≥ 1, the binomial
distribution has a single outcome with a non-zero probability
so (40) is exact. Intuitively, if a probability has a single
modal distribution with a narrow spread, then (40) holds
approximately. For f = 0.1, the relative error of using (40)
is 3.21% for m = 300 and drops to 1.87% for m = 500.
In general, the approximation is better for large m and f .
(Auxiliary Result 3) Since the inducer-TF reactions are

faster than the TF-gene reactions and M � N , we can show
that:

E[(N − Z̃X∗ )X∗] ≈ E[(N − Z̃X∗ )] E[X∗] (42)

We will argue that the above approximation holds by using
time average to compute E[(N − Z̃X∗ )X∗]. Let t0, t1, . . . be
a sequence of time instants at which Z̃X∗ changes its value.
Since the continuous-time Markov chain associated with the

chemical system is ergodic, we have:

E[(N − Z̃X∗ )X∗] =
∞∑
i=0

(N − Z̃X∗ (ti))
∫ ti+1

ti
X∗(t) dt (43)

Since the TF-gene reactions are slow in comparison, Z̃X∗ is
a slow species while X∗ is a fast species. This means the time
interval [ti, ti+1) (during which the count of Z̃X∗ is a constant)
is likely to be long compared to the time-scale of the fast
species X∗. This allows us to approximate the integral on the
RHS of (43) by E[X∗](ti+1 − ti). Hence (42). Note that the
above argument is identical to the one used in [34] to derive
the slow-scale tau-leaping simulation algorithm.

(Auxiliary Result 4) By using the same argument as in
Auxiliary Result 3, we can show that:

E[(N − Z̃X∗ )I (
1
X∗

)] ≈ E[(N − Z̃X∗ )] E[I (
1
X∗

)] (44)

We will now use the above auxiliary results and (38)
to derive the replacement expression. By using Auxiliary
Results 1 and 3, we have:

g+E[(N − Z̃X∗ )] ≈ g−E[Z̃X∗ ]
1

E[X∗]
(45)

We then apply Auxiliary Result 2 to the RHS of (45) to
obtain:

g+E[(N − Z̃X∗ )] ≈ g−E[Z̃X∗ ]E[I (
1
X∗

)] (46)

By applying Auxiliary Result 4 to the RHS of (46),
we have:

g+E[(N − Z̃X∗ )] ≈ g−E[Z̃X∗ I (
1
X∗

)] (47)

By substituting (47) into (38), we have:

L2(t) ≈ (X1 − X0) g−E[Z̃X∗ I (
1
X∗

)](t − d0) (48)

By turning the above equation into the differential form,
we have:

dL2(t)
dt
≈ (X1 − X0)g−Z̃X∗ (t)I (

1
X∗(t)

) π (t) (49)

Next, by combining (35) and (49), we have:

dL(t)
dt
≈ g− Z̃X∗ (t) π (t)

{
log

(
X1
X0

)
− (X1 − X0)I (

1
X∗(t)

)
}

(50)

(Step 3) Since a set of chemical reactions can be modelled
by a set of ODEs, we want to turn the ODE in (50) into a
form that can be implemented by a set of chemical reactions.
However, (50) cannot be directly implemented by chemical
reactions because log-likelihood ratio can take both positive
and negative values but chemical concentration is always non-
negative. Although [35] has derived a chemical computation
system that can have both positive and negative numbers,
it requires double the number of species and reactions. As in
our previous work [5], [20], we choose to compute only

VOLUME 9, 2021 129009



C. T. Chou: Using Biochemical Circuits to Approximately Compute Log-Likelihood Ratio

the log-likelihood ratio when it is positive. We do that by
applying [ ]+ to the RHS of (50); we have:

dL(t)
dt
≈ g− Z̃X∗ (t) π (t)

×

[
log

(
X1
X0

)
− (X1 − X0)I (

1
X∗(t)

)
]
+

(51)

We now replace I ( 1
X∗(t)

) in (51) by 1
X∗(t)

to obtain:

dL(t)
dt
≈ g− Z̃X∗ (t) π (t)

×

[
log

(
X1
X0

)
− (X1 − X0)

1
X∗(t)

]
+

(52)

The removal of I ( ) will not make much difference because
the probability of having X∗(t) equals to 0 is small when the
input signal is persistent. Note that (52) is the same as (9).
This completes the derivation for (9).

In order to derive (16), we start from (52) and take expec-
tation on both sides. If the amplitude α is sufficiently high,
then there is a high probability that X∗(t) is large. This means
we can take the expectation operator to the inside of the [ ]+
operator. After that we apply Auxiliary Results 2, 3 and 4 to
obtain (16).
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