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ABSTRACT This paper proposes an adaptive integral-type terminal sliding mode tracking control approach
based on the active disturbance rejection for uncertain nonlinear systems subject to input saturation and exter-
nal disturbances. Its main objective is to achieve zero tracking error in the presence of external disturbances,
parametric uncertainties and input saturation; ubiquitous problems in most practical engineering systems.
The proposed approach combines the robustness and chattering-free dynamics of adaptive integral-type
sliding mode control with the estimation properties of a nonlinear extended state observer. It also assumes
the bounds of the input saturation to be unknown. The asymptotic stability of the closed-loop system in
the presence of disturbances, uncertainties and input saturation is proven using the Lyapunov theorem. The
effectiveness of the proposed approach is assessed using a flexible-link robotic manipulator. The obtained
results confirmed the robustness and god tracking performance of the proposed approach. Robustness,
chattering-free dynamics and good tracking performance albeit input saturation are among the main features.

INDEX TERMS Active disturbance rejection, nonlinear system, terminal sliding mode control, input
saturation, flexible-link manipulator.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
It is well known that actuator constraints, internal and external
disturbances, such as modeling errors, parameter variations,
uncertain external dynamics, widely exist in many practical
engineering systems. If not properly addressed, these issues
have the potential to adversely affect the system’s perfor-
mance and even destroy the stability of the whole system.
As a result, various control approaches have been proposed
in the literature to overcome these issues [1]–[3]. These
approaches can be classified into intelligent methods, classi-
cal approaches and combination of both. Among the classical
approaches, we can list the Proportional-Integral-Derivative
(PID) control [4]–[6], adaptive control [7], [8], backstepping
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control [9], [10] and Sliding Mode Control (SMC) [11].
Among the intelligent methods, neural networks [12]–[14]
and fuzzy-logic approaches [15]–[17] are the most popular.
In the approaches that combine the intelligent and classic
methods, we can list adaptive neural network [18] and fuzzy
sliding mode control [19]. The neural network approaches
have some disadvantages such as ahigh computational burden
and potential for overfitting [20]. The fuzzy methods, on the
other hand, rely on fuzzy rules that are determined based on
the knowledge of the experts of that field, and suffer from a
lack of analytical tools for stability analysis [21].

Sliding mode control (SMC) is among the most effective
robust control technique for nonlinear systems with uncer-
tainties and external disturbances [22]. It offers advantages
such as good tracking performance, fast response, robustness
against external disturbances and uncertainties, and suitable
transient response [23]–[25]. However, a major drawback
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of this approach are the high-frequency finite amplitude
oscillations or chattering phenomena [26]. Some solutions
have been already investigated such as use of hyperbolic
tangent and saturation instead of sign function [27], [28] or
the use of rigid body assumption. However, these methods
are not practical for all control input signals [29]. Using the
High-Order Sliding Mode Control (HOSMC) and Terminal
Sliding Mode Control (TSMC) procedure, the chattering
effects can be reduced [30]–[33]. In HOSMC, the integra-
tion approach yields a control signal with the reduced chat-
tering phenomenon [34], [35]. Second-Order Sliding Mode
Control (SOSMC) offers several advantages compared to
the standard SMC such as chattering reduction, increased
accuracy, finite time stability and extension of the rela-
tive degrees of switching variables [3], [36], [37]. In [38],
a chattering-free output-feedback finite time controller is
designed for vehicle active suspension systems with matched
disturbances. In [39], pure-feedback uncertain nonlinear sys-
temswith dead-zone actuators and stochastic failures are con-
trolled using an adaptive backstepping fault-tolerant method.
An energy-efficiency-based adaptive tracking control tech-
nique is proposed in [40] for active suspension systems
with a bioinspired nonlinearity. Recently, the Active Distur-
bance Rejection Control (ADRC) has been shown to provide
good perform in rejecting external disturbances. Additionally,
using the extended state observer (ESO) with control laws
can compensate for the external disturbances and estimate
the unknown dynamics in the ADRC method [41]. In [42],
a tidal stream turbine was successfully controlled by cas-
cading ADRC with second-order ADRC. The approach was
shown to guarantee robustness, and properly eliminate distur-
bances and overshoots. In [43], the ADRC is used to reject the
effects of harmonic disturbances with unknown frequencies
and uncertainties. Therefore, the ADRC approach enhances
the robust performance of the controlled system to exter-
nal disturbances. Hence, by combining ADRC and TSMC,
the time-derivative of the external disturbances does not
require to be bounded [44]. Additionally, the robustness of the
system against uncertainties and disturbances is increased.

B. LITERATURE REVIEW
The SOSMC and SMC techniques were compared in [45].
It was shown that increasing the bound of the unmodeled
dynamics, resulted in an increase in the chattering ampli-
tude in both methods. Therefore, the bound of the unmod-
eled dynamics and perturbation value should be taken into
consideration in chattering control. The effect of the input
saturation was not considered in [45]. Implementation of a
TSMC approach to a robotic airship in [46], proved its ability
to ensure finite-time convergence in tracking control. The
design, however, did not consider uncertainties and input
saturation and chattering was not completely eliminated.
In [33], a novel HOSMC is designed for Single-Input-
Single-Output (SISO) and multi-variable systems with exist-
ing unmodeled dynamics and disturbances. This approach
can reduce the chattering, but it has not been extended

for Multi-Input-Multi-Output (MIMO) and saturated system.
In [47], the SOSMC approach is designed for nonlinear
affine structures with quantized uncertainties according to
the non-smooth sliding surface. In this method, the uncer-
tainties were assumed to be known, the input saturation was
not considered, and the chattering effect was not eliminated.
In [48], the effects of output constraints were controlled using
the SOSMC method, however, the uncertainty bounds were
assumed to be known. Furthermore, increasing the values of
the initial states exacerbated the chattering problem, and the
switching surface and its time-derivative could not converge
to zero. In [49], an adaptive discrete-time SOSMC scheme
is examined for the tracking control of a combustion engine.
This method was shown to decrease the inaccuracies in data
sampling and reduce system model uncertainties compared
to standard SMC. However, the effect of input saturation was
not considered in that paper. An SOSMC method based on
the combination of the time-based adaptation and switched
policy was suggested in [50]. The design was based on three
assumptions that are not general, and the state-dependent
uncertainty, state-space partitioning and upper-lower bounds
of uncertainties had to be defined. Additionally, it is necessary
to consider system constraints such as unknown unmatched
uncertainties to have a better assessment of real systems.
In [51], [52], uncertain nonlinear systems with time delays
were controlled using robust adaptive SMC approaches.
In [53], the Integral SlidingModeControl (ISMC) andADRC
were combined to control the effects of wind disturbance
on quadrotors, but the uncertainty and input saturation are
not modeled in system and the chattering effects are obvious
in the results. In [54], an adaptive HOSMC is designed for
stabilization of the nonlinear systems with unknown bounded
uncertainty, it can ensure the finite time stability, but some
other important system constrains have not been considered
in this paper. In [55], as the most related research to our work,
a Fast Terminal Sliding Mode Control (FTSMC) procedure
based on ADRC is designed to control a lower limb exoskele-
ton in swing phase, where it had good performance in com-
parison with PID and ADRC in the experimental results.
Nevertheless, input saturation has not been considered in
this method. According to the previous works, the external
disturbances, parameter uncertainties and input saturations
are some problems that the electromechanical systems are
struggling with. Many researches have been investigated to
reduce the destructive effects of these problems in the sys-
tems’ performance; however, to the best of our information,
combination of unknown uncertainty, input saturation and
external disturbance have not been considered in the literature
and a general solution has not been provided to overcome
these problems.

C. CONTRIBUTION
The main contributions of this paper are as follows:
• An approach that combines the robustness and
chattering-free dynamics of adaptive integral-type slid-
ing mode control with the estimation properties of a
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nonlinear extended state observer to not only remove the
effects of disturbances and uncertainties, but also drive
the tracking error to zero, albeit input saturation.

• A design that considers non-symmetric input saturation,
disturbances and unknown uncertainties with unknown
bounds.

• A design that reduces the chattering effect, eliminates
knowledge about uncertainties and guarantees finite
time asymptotic stability of the closed-loop system.

D. PAPER ORGANIZATION
This remainder of the paper is organized as follows. The
problem formulation along with some preliminaries are pre-
sented in section II. Section III details the designs of the
extended state observer and control approaches. The perfor-
mance of the proposed approach is assessed in section IV
using a flexible-link manipulator. Some concluding remarks
are finally provided in section VI.

II. PROBLEM FORMULATION AND PRELIMINARIES
Consider the uncertain nonlinear system described by the
following equation:{

ẋk = xk+1 for k = 1, 2, . . . , n− 1
ẋn = h(x)+ g(x)sat(u)+ d(x, u, t)

(1)

where x = [x1, x2, . . . , xn] is the system state, h(x) ∈ R is
a known nonlinear function, g(x) ∈ R − {0}, sat(u) ∈ R
is the saturated controller input vector, d(x, u, t) denotes the
unmatched uncertainty, un-modeled dynamics and external
disturbances. Equation (1) is the state-space representation
of dynamical models of physical (mechanical, electrical, ther-
mal, hydraulic) systemswith a set of state variables, nonlinear
functions, saturated control input and external disturbances.
The input saturation is defined as

sat(u) =


umax if u > umax
u if umin < u < umax
umin if u < umin

(2)

Therefore, the input saturation is considered as sat(u) =
u+1u, where 1u is an unknown constant.
The main control objective is to obtain an appropriate

controller law u, to force the output trajectory to follow the
reference signal r ∈ R in the presence of external dis-
turbances, input constraint and unmatched uncertainty. The
overall schematic of the proposed approach is illustrated
in Figure 1. The tracking error is defined as

ek = xk − rk (3)

where the reference signal rk is differentiable function of
time. To solve the control problem at hand, the following
assumptions and propositions are considered.
Assumption 1: The reference signal and its derivative are

bounded, with:

supt≥t0

{∣∣∣r (k)k (t)
∣∣∣} ≤ εd 0 ≤ k ≤ n+ 1 (4)

where εd is a positive constant.
Assumption 2:The disturbances d(x,u, t) and ḋ(x,u, t) are

continuously differentiable.
Remark 1: In this paper, the main idea is to combine a Non-

linear Extended State Observer (NESO) with a TSMC-based
control approach. TheNESO estimates the internal uncertain-
ties and external perturbations, whereas the NESO compen-
sates for system uncertainties. Hence, an accurate dynamic
model is not essential for this method. Thus, the system
dynamics can be simplified [53].
Proposition 1 [56]: Consider the differential system

defined by:

ẋ(t) = h(x)+ d(x, t), (5)

where h(x) : χ → <n is a nonlinear function defined on χ ,
i.e., an open neighborhood of equilibrium point. If there exists
a Lyapunov function on χ which can prove the asymptotic
stability of the nominal system, then there exist positive
constants ξ0, δ,ℵ, 8 and an open neighborhood of equilib-
rium, such that for every continuous d : <+ × χ → <n,

FIGURE 1. Overall schematic of the proposed approach.
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the following inequality is satisfied:

ξ = sup
<+×χ

‖d(x, u, t)‖ < ξ0, (6)

Then, any right maximally solution x of (5) satisfies x(t) ∈
8 for all t ∈ <+ and

‖x(t)‖ ≤ δξγ , t > ℵ, (7)

where γ = 1−ε
ε
> 1.

Proposition 2 [57]: If x ∈ χ⊂ Rn, ẋ = h(x), h : Rn→Rn

is a locally Lipschitz and continuous nonlinear functional
on an open neighborhood D of origin, and V : χ → R
is Lyapunov function on χ\{0} satisfying V̇ + αV ε ≤ 0
on N\{0}, therefore, the finite-time stable equilibrium of the
system ẋ = h(x) is the origin.

The Lyapunov functional V converges to zero in finite time
and the settling time is

ts =
V (t0)1−ε

α(1− ε)
(8)

where α and 0 < ε < 1 are positive scalars and t0 is the initial
time.

III. MAIN RESULTS
A. NONLINEAR EXTENDED STATE OBSERVER DESIGN
In this section, the external disturbances and uncertain-
ties are considered as an extended state. By considering
Assumption 2, Eq. (1) can be re-written as:

ẋk = xk+1 for k = 1, 2, . . . , n− 1

ẋn = xn+1 + g (x) sat (u)

ẋn+1 = �(t) (9)

where �(t) = h(x) + d(x, u, t). The nonlinear extended
state observer (NESO) is designed based on the first state
estimation error as follows:

ẽ1 = x̂1 − x1
˙̂xk = x̂k+1 − δn−1ωk (

ẽ1
δn

) for k = 1, 2, . . . , n− 1

˙̂xn = x̂n+1 − ωn(
ẽ1
δn

)+ g
(
x̂
)
sat (u)

˙̂xn+1 = δ−1ωn+1(
ẽ1
δn

)

(10)

where ωk (ẽ) , . . . , ωn+1(ẽ) can be linear or nonlinear func-
tions and δ is a positive small constant. The dynamics of the
NESO error is given by:

˙̃ek
δn+1−k

=
ẽk+1
δn−k

− δn−1ωk (
ẽ1
δn

) for k = 1, 2, . . . , n−1

˙̃en = ẽn+1 − ωn(
ẽ1
δn

)

˙̃en+1 = �− δ−1ωn+1(
ẽ1
δn

)

(11)

To obtain the ADRC law based on the Adaptive
TSMC (ATSMC) and reach the finite time stability in
tracking, the following proposition is considered.

Assumption 3: The following conditions should be
satisfied:

3-a |d(x, t)| + |xk(t)| < ρ where ρ is a positive constant.
3-b There exist continuous and positive-definite functions
ν and µ such that:

- `1 ‖x‖2 < ν(x) < `2 ‖x‖2 , `3 ‖x‖2 < µ(x) < `4 ‖x‖2

-
∑n

k=1
∂ν
∂xk

(xk+1 − ωk(x1))− ∂ν
∂xn+1

ωn+1(x1) ≤ −µ(x)

-
∣∣∣ ∂ν
∂xn+1

∣∣∣ ≤ =‖x‖
where x = (x1, . . . , xn+1), k = 1, . . . , n, and = is a positive
constant.

3-c For unknown differentiable function h, d, positive con-
stant c0, j and positive integer k, the following inequality is

satisfied: |u| + |h| +
∣∣ḋ∣∣+ ∣∣∣ ∂h∂t ∣∣∣+ ∣∣∣ ∂h∂xi ∣∣∣ ≤ c0 +

∑n
j=1 cj

∣∣xj∣∣k
Proposition 3 [58]: Consider the NESO (10). The

estimation errors converge to zero while δ goes to the origin
Proof: Considering an extra state variable xn+1 = h+d ,

system (1) is rewritten as

ẋ1 = x2
ẋ2 = x3
...

ẋn = xn+1 + g (x) sat (u)
ẋn+1 = �(t)

where � = h(x)+ d(x, u, t).
From Assumption 3-a and 3-b, for all t ≥ 0, there is a

constant M > 0 such that

d
ds
h (s, x1 (s) , . . . xn (s)) |s=δt + ḋ (δt)

=
∂

∂t
h (δt, x1 (δt) , . . . xn (δt))

+

n∑
i=1

xi+1 (δt)
∂

∂xi
h (δt, x1 (δt) , . . . xn (δt))

+ u(δt)
∂

∂xn
h (δt, x1 (δt) , . . . xn (δt))+ ḋ (δt) ≤ M

By considering ψi (t) =
ei(δt)
δn+1−i

,
ψ̇i (t) = ψ2 (t)− ω1(ψ1 (t))

...

ψ̇n (t) = ψn+1 (t)− ωn (ψ1 (t))
ψ̇n+1 (t) = −ωn+1 (ψ1 (t))+ δ1(t)

and Assumption 3-c, finding the derivative of ν(ψ (t)) along
the ψ (t), it yields |e(t)| → 0.

B. CONTROL LAW DESIGN
The main objective of the ATSMC designed is to ensure
robustness against uncertainties and disturbances, compen-
sate for the effects of saturation and unknown uncertainties,
eliminate chattering and attain finite time stability. First of all,
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the sliding manifold is considered as

s = λen(t)+
∫ t

0
(βn |en(τ )|

qn
pn sgnen(τ )

+ . . .+ β1 |e1(τ )|
q1
p1 sgne1(τ ))dτ (12)

where λ, βn, . . . , β1 are positive constants, q1, . . . , qn and
p1, . . . , pn are odd positive integers with q < p and
e is tracking error. If the trajectory of tracking error
reaches the switching surface (12), error converges to zero
asymptotically.

By using the output of NESO, the control law, considering
the input saturation, is defined as:

u = −(λg(x))−1
{
λ
(
�̂− ṙn

)
+ βn |en(t)|

qn
pn sgnen(t)

+ . . .+ β1 |e1(t)|
q1
p1 sgne1(t)+ θsgn s+ K |s|

z sgns

+

∫
ηsgns dt

}
(13)

The reaching phase of the control law is obtained from the
following equation:

ueq = −(λg(x))−1
{
λ(�̂− ṙn)+ βn |en(t)|

qn
pn sgnen(t)

+ . . .+ β1 |e1(t)|
q1
p1 sgne1(t)

}
(14)

and the sliding phase input is designed as

us = −(λg(x))−1
{
θ sgn s+ K |s|z sgns+

∫
η sgn s dt

}
(15)

where K denotes a positive constant and θ > |λg(x)1u|.
Finding the unknown bounds of the uncertainty and input
saturation is practically difficult; therefore, to compensate
for the unknown bounds, θ is estimated by an estimation
parameter θ̂ which is designed by the adaptive approach
defined by the following equation:

˙̂
θ = ζ |s| , (16)

with 0 < ζ < 1, the reachability criterion of switching sur-
face is satisfied and the term s converges to zero. Therefore,
the control law is updated to

u = −(λg(x))−1
{
λ(�̂− ṙn)+ βn |en (t)|

qn
pn sgn en(t)

+ . . .+ β1 |e1 (t)|
q1
p1 sgn e1(t)+ θ̂sgn s+ K |s|

z sgn s

+

∫
ηsgn s dt

}
(17)

Theorem 1:Assume the uncertain nonlinear system (1) and
integral-type terminal switching surface (12). The parametric
uncertainties are considered bounded and Assumptions 1-2
are satisfied. Then, using TABLE 1, TABLE 2 and applying
controller (17) to nonlinear system (1), all the signals of the
closed-loop system are bounded and asymptotically stable.

Proof: The Lyapunov candidate function is considered
as

V = 0.5
(
s2 + (�̂−�)2 + ζ−1θ̃2

)
, (18)

where the estimation error variable is

θ̃ = θ̂ − θ, (19)

By differentiating θ̃ and using (16), one has

˙̃
θ = ζ |s| . (20)

Calculating time-derivative of (18) and substituting (20)
into it, gives

V̇ = sṡ+ (�̂−�)( ˙̂�− �̇)+ (θ̂ − θ ) |s| , (21)

The time derivative of sliding manifold (12) is substituted
into (21), then the following equation is obtained:

V̇ = s(λėn(t)+ βn |en (t)|
qn
pn sgnen(t)

+ · · · + β1 |e1 (t)|
q1
p1 sgne1(t))

+ (�̂−�)( ˙̂�− �̇)+ (θ̂ − θ ) |s| . (22)

The differentiation of the tracking error of n-th state is
obtained by substituting (9) into (3) as

ėn(t) = ẋn − ṙn = xn+1 + g(x) sat(u)− ṙn, (23)

where rn is reference signal of n-th state. Considering the
input saturation of equation (2) and substituting (23) in (22)
yields:

V̇ = s(λ(xn+1 + g(x)(u+1u)− ṙn)+ βn |en (t)|
qn
pn sgnen(t)

+ · · · + β1 |e1 (t)|
q1
p1 sgne1(t))

+ (�̂−�)( ˙̂�− �̇)+ (θ̂ − θ ) |s| . (24)

Substituting the adaptive nonsingular terminal sliding
mode tracker (17) into (24), yields:

V̇ ≤ −s(θ̂sgn s+ K |s|z sgns+
∫
ηsgn s dt)

−

∣∣∣∣�− δ−1ωn+1( ẽ1δn )
∣∣∣∣∣∣∣∣( ˙̂�− �̇)∣∣∣∣+ (θ̂ − θ ) |s| . (25)

Now, using Proposition 3, the estimation error of NESO
converges to zero and one achieves

V̇ ≤ −(K |s|z+1 + ηs
∫
sgn s dt + θ̂ |s|) (26)

Hence, the Lyapunov function’stime-derivative is negative.
This completes the proof.
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C. CHATTERING-FREE ATSMC LAW
To further eliminate chattering, we derive in this section
a control approach using the time-derivative of the slid-
ing surface, thereby removing chattering using the integra-
tion of the sign function. The sliding manifold is designed
as

s = kpe1(t)+ ki

∫ t

0
e1(τ )q/pdτ + kd ė1, (27)

where kp, ki, kd are positive constants, q and p denote two
positive odd integers with q < p. The control law is obtained
from the following equation:

u̇ = −(kdg(x))−1{kp(�̂+ g(x)ueq − ṙ1)− bṡ+ kieq/p

+ kd (
˙̂
�+ ġ(x)ueq − r̈1)+ (kpg(x)+ kd ġ(x))uS

+m1 |ṡ| sgn(ṡ)+ m2 |ṡ|α sgn(ṡ)+ θ̂sgn(ṡ)} (28)

where θ ≥ |s|+
∣∣kpwu + kd ẇu∣∣, the estimation of θ is obtained

from ˙̂θ = ζ |ṡ|, b indicates a positive coefficient which leads
to descending s, m1,m2 > 0 and 0 < α < 1. The reaching
and switching control laws are defined as

u̇eq = (kdg(x))−1
(
bṡ− kp(�̂+ g(x)ueq − ṙ1)

− kieq/p − kd (
˙̂
�+ ġ(x)ueq − r̈1)

)
(29)

u̇S = −(kdg(x))−1
(
(kpg(x)+ kd ġ(x))uS

+m1 |ṡ| sgn(ṡ)+ θsgn(ṡ)+ m2 |ṡ|α sgn(ṡ)
)
(30)

Theorem 2: The uncertain nonlinear system (1) and the
integral-type terminal sliding surface (27) are considered.
Assume that the uncertainties d(x, u, t) and ḋ(x, u, t) are
bounded, with unknown bounds. Then, the terminal sliding
tracking control law (28) satisfies the asymptotical stability
of the system (1).

Proof: Consider the estimation error as (19).
Differentiating θ̃ and using ˙̂θ = ζ |ṡ|, one has

˙̃
θ = `−1 |ṡ| . (31)

The following equation should be considered:

s̈+ bṡ = kp(�̂+ g(x)u+ d(x, u, t)− ṙn)+ kieq/p

+ kd (
˙̂
�+ ġ(x)u+ ḋ(x, u, t)− r̈n)+ kdg(x)u̇. (32)

Replacing the adaptive terminal sliding tracker (28) into
(32), we achieve

s̈ = kpd(x, u, t)+ kd ḋ(x, u, t)− θ̂sgn(ṡ)

−m1 |ṡ| sgn(ṡ)− m2 |ṡ|α sgn(ṡ). (33)

The Lyapunov function is considered as

V̇2 = 0.5
(
s2 + ṡ2 + `θ̃2

)
, (34)

where taking the time-derivative of (34) gives

V̇2 = sṡ+ ṡs̈+ `θ̃ ˙̂θ = (s+ s̈)ṡ+ (θ̂ − θ ) |ṡ| (35)

Now, using (33) and (35), one achieves

V̇2 = (kp d(x, u, t)+ kd ḋ(x, u, t)− θ̂sgn(ṡ)−m1 |ṡ| sgn(ṡ)

−m2 |ṡ|α sgn(ṡ)+ s)ṡ+ (θ̂ − θ ) |ṡ|

=
(
kp d (x, u, t)+ kd ḋ (x, u, t)

)
ṡ− θ̂ |ṡ| − m1 |ṡ|2

−m2 |ṡ|α+1 + sṡ+ (θ̂ − θ ) |ṡ| (36)

Since s ≤ |s| and (kpd(x, u, t) + kd ḋ(x, u, t))ṡ ≤∣∣kpd(x, u, t) + kd ḋ(x, u, t)
∣∣ |ṡ|, Eq. (36) is written as

V̇2 ≤
(∣∣kpd (x, u, t)+ kd ḋ (x, u, t)∣∣+ |s| − θ̂) |ṡ|

−m1 |ṡ|2 − m2 |ṡ|α+1
(
θ̂ − θ

)
|ṡ| (37)

where by addition and subtraction of term θ |ṡ| to Eq. (37),
we obtain

V̇2 ≤
(∣∣kpd (x, u, t)+ kd ḋ (x, u, t)∣∣+ |s| − θ̂) |ṡ|
−m1 |ṡ|2 − m2 |ṡ|α+1 +

(
θ̂ − θ

)
|ṡ| + θ̂ |ṡ| − θ |ṡ|

= −
(
θ−

∣∣kpd (x, u, t)+ kd ḋ (x, u, t)∣∣−|s|) |ṡ| − m1 |ṡ|2

−m2 |ṡ|α+1 − θ̂ |ṡ| + θ̂ |ṡ| + θ |ṡ| − θ |ṡ| ≤ −m1 |ṡ|2

−m2 |ṡ|α+1 < 0 (38)

Thus, because of the parameter-tuning TSMC input (28),
it is concluded that the Lyapunov function (34) decreases
gradually and the reachability condition of the sliding surface
is guaranteed.

It is worth noting that the range of the control parameters is
determined based on the Lyapunov stability, and their values
are fine-tuned using a trial and error approach. Therefore,
using this method, the asymptotic stability of the closed-loop
system in the presence of disturbances, uncertainties and
input saturations is guaranteed, the NESO estimates the
un-modeled dynamics and the integral-type sliding surface
can remove the chattering effects.

IV. SIMULATION RESULTS
The effectiveness of the proposed approach is assessed in
this section using the flexible-link manipulator depicted
in Figure 2.

The above flexible link manipulator is a highly nonlinear,
under-actuated and non-minimum phase system represented
by: {

q̈r = −M∗
−1

r

(
C∗r + K

∗
f qf

)
+M∗

−1

r τ

q̈f = −M
−1
f [Mfr q̈r + Cf + Kf qf ]

(39)

where qr and qf are the generalized coordinate vectors asso-
ciated with base movement and flexibility, τ is the input
torque,M∗r ,C

∗
r ,K

∗
f ,Kf ,Mf ,Mfr ,Cf are dynamical matrices

and scalars [59]. The extended form of the dynamical model
can be written as

ẋ1 = x2
ẋ2 = x3 + g(x) sat(u)
ẋ3 = �̇

(40)
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FIGURE 2. The flexible link manipulator.

with x1 = qr , x2 = q̇r , g(x) = M∗
−1

r , u = τ and x3 =
� = −M∗

−1

r

(
C∗r + K

∗
f qf

)
+ d(x, t) where x1, x2, x3 are the

system states, g(x) ∈ R − {0} is the input gain, sat(u) ∈ R
is the saturated controller input vector, d(x, t) denotes the
unmatched uncertainty, un-modeled dynamics and external
disturbances.

A. EXAMPLE 1
In this part, the disturbance and uncertainty are considered as
d(x, t) = 0.1cos t + 0.3sinx1, the initial values of system
are (x1, x2, x3) = (1, 1, 1) and the input saturation is not
symmetric and is considered as

sat(u) =


10 if u > 10
u if − 10.5 < u < 10
−10.5 if u < −10.5

(41)

By considering r1 = sin(t) as reference signal, the tracking
error is e = qr − qrd . The nonlinear extended state observer
is designed as:

ẽ1 = x̂1 − x1
˙̂x1 = x̂2 − δcos3(

ẽ1
δ2

)

˙̂x2 = x̂3 − 0.2cos5(
ẽ1
δ2

)+ g
(
x̂
)
sat (u)

˙̂xn+1 = 0.4δ−1cos7(
ẽ1
δ2

)

(42)

Therefore, by using two suggested methods, the control
inputs (17) and (28) are applied to the flexible-link manipula-
tor system IV-A. For comparison purposes, we also consider
the FTSMC approach proposed in [1]. The control parame-
ters are determined according to the following conditions: b
indicates a positive coefficient which leads to descending s,
0 < α < 1, λ, β2, β1,m1,m2, η,K are positive constants,
q and p are odd positive integers with q < p. Ki, Kp,Kd
should be positive, 0 < ζ < 1, therefore ` ≥ 1. The control
parameters are provided in Table 1. The obtained results
are illustrated in Figures 3 through 7, which show the state
trajectory, error trajectory, control input, switching surface
and disturbance estimation error, respectively. Figure 3 shows
that all three methods enable the states to track the sine
function suitably, however the ATSMC achieves the track-
ing performance much faster than the other two approaches.

TABLE 1. Control parameters of example 1.

FIGURE 3. State trajectory of x1 in example 1.

FIGURE 4. Tracking error in example 1.

Figure 4 shows that the state error converges to zero. Figure 5
depicts the dynamics of the control input. Note that the
ATSMC displays some chattering dynamics, however the
magnitude of those high frequency oscillations is very smaller
compared to the method in [1]. The amplitude of the con-
trol input using the integral-type chattering free ATSMC is
the smallest, but it has high undershoot at the start time.
Figure 6 shows that the switching surface converges to the
origin in the ATSMC method, whereas the integral-type
chattering-free ATSMC and method of [1] display some
errors. Figure 7 shows that the disturbance observer estimates
the disturbances well in both of methods. The integral-type
chattering-free ATSMC, however, has higher overshoot than
ATSMC.
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FIGURE 5. Control signals in example 1.

FIGURE 6. Sliding surface in example 1.

FIGURE 7. Error of disturbance estimation in example 1.

Based on the above results, we can confirm that the pro-
posed design yields good tracking performance and reduced
chattering albeit the presence of input saturation are external
disturbances.

FIGURE 8. State trajectory of x1 in example 2.

TABLE 2. Control parameters of example2.

B. EXAMPLE 2
Now, the disturbance and initial values are changed to
d(x, t) = 1 cos t + 3sinx1, (x1, x2, x3) = (0.5, 0.5, 0.5) and
the input saturation is not symmetric and is considered as

sat(u) =


2 if u > 2
u if − 2.5 < u < 2
−2.5 if u < −2.5

(43)

It is clear that, in this example, the system disturbance is
increased ten-fold, the input saturation is reduced by almost
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FIGURE 9. Tracking error in example 2.

FIGURE 10. Control signals in example 2.

FIGURE 11. Error of disturbance estimationin example 2.

one-fifth and the initial values are halved. The suggested
methods are applied to dynamics equation of flexible link
manipulator (39). Other condition of problem is as same as
example 1. The control parameters are illustrated in Table 2.
The simulation results are shown in Figures 8 through 11.
As it is seen in the figures, by changing the initial condi-
tions, increasing the disturbances and further limiting the

FIGURE 12. Sliding surface in example 2.

bounds of the input saturation, the tracking performance is
faster and the oscillations are fewer than those obtained by
the method in [1]. Figure 9 shows that the tracking error
in the suggested methods converge to zero. As it is seen
in Figure 10, the amplitude of the control inputs are much
smaller than those of method [1]. High magnitude of con-
trol input may negatively impact electromechanical systems.
Additionally, the practical implementing of high magnitude
control inputs is too difficult and almost impossible in real
systems. Figure 12 shows that the sliding surface in the
suggested approach converges to zero with a much faster rate
than that of method [1].

V. CONCLUSION
This paper proposed an approach that combines the robust-
ness and chattering-free dynamics of adaptive integral-type
sliding mode control with the estimation properties of a
nonlinear extended state observers for nonlinear systems
with uncertainties, external disturbances and input satura-
tion. Two types of adaptive terminal sliding mode control
schemes based on the nonlinear extended state observer were
derived. By designing an estimation parameter in the control
law, the effects of the non-symmetric input saturation and
unknown uncertainty bounds are controlled. System stability
was proven using the Lyapunov theorem. Implementation
of the proposed design to a flexible-link manipulator con-
firmed its ability to reduce chattering, alleviate the impacts
of the external disturbances, and achieve the finite time sta-
bility. Our future work will focus on extending the proposed
integral-type ATSMC method to uncertain nonlinear systems
with input saturation and time-varying delays and exploring
the event-triggered implementations.
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