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ABSTRACT Neural Style Transfer (NST) is a class of software algorithms that allows us to transform
scenes, change/edit the environment of a media with the help of a Neural Network. NST finds use in image
and video editing software allowing image stylization based on a general model, unlike traditional methods.
This made NST a trending topic in the entertainment industry as professional editors/media producers create
media faster and offer the general public recreational use. In this paper, the current progress in Neural Style
Transfer with all related aspects such as still images and videos is presented critically. The authors looked at
the different architectures used and compared their advantages and limitations. Multiple literature reviews
focus on either the Neural Style Transfer (of images) or cover Generative Adversarial Networks (GANs)
that generate video. As per the authors’ knowledge, this is the only research article that looks at image and
video style transfer, particularly mobile devices with high potential usage. This article also reviewed the
challenges faced in applyingvideo neural style transfer in real-time on mobile devices and presents research
gaps with future research directions. NST, a fascinating deep learning application, has considerable research
and application potential in the coming years.

INDEX TERMS Style transfer, video style transfer, mobile, convolutional neural networks, generative
adversarial networks.

I. INTRODUCTION
Since its conception, videos have been considered a popular
multimedia tool for various functions like Education, enter-
tainment, communication, etc. Videos have become more
and more popular as the effort needed to make them keeps
dropping thanks to advancements in Cameras and, more par-
ticularly, mobile cameras. Today, an average user uses mobile
devices to capture videos rather than expensive dedicated
setups [1]. On the other hand, entertainment producers use
dedicated hardware and editing tools to create picturesque
scenes with the help of Compute Generated Imagery (CGI)
software like [2] and [3].

There are multiple resources, approaches, improvements,
and implementations since the first Generative Adversarial
Network was presented by Goodfellow et al. [7]. As of now,
NST is extremely popular and widely used to edit images to
create a host of effects (E.g., Prisma App) (Gatys et al. [13])
(Liu et al. [18]). Recently developments have been observed
to use NST for video style transfer (Ruder et al. [31]),
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(Huang et al. [32]). This has significant applications like
entertainment to directly transform the scene or parts, usually
taking hours of manual work and supervision. It can also
be used for recreational purposes fusing with Augmented
Reality to create a virtual world modeled after the real one
(Dudzik et al. [33]).

Generative Adversarial Networks (GANs) are often
used to produce or synthesize data since conception
(Goodfellow et al. [7]). This makes GANs a potential can-
didate for generating Images/Videos given a set of inputs that
control its structure and texture. The paper focuses on Gener-
ative Adversarial Networks (GANs) developments and sum-
marizes the advancements made to date (up to April 2021).
It also describes basic techniques currently being used to
transform videos and then move onto the NST-based tech-
niques. To understand the developments and have compar-
isons, all categorized papers are reviewed into four parts,
as shown in fig. 1. Each part has differentobjectives and key
takeaways, such as advantages, limitations, research gaps,
and future scope.

The papers selected for review were found using Scopus
and Web of Science databases with the search terms such
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FIGURE 1. An overview and categorization of the papers studied in this review.

as ‘‘video neural style transfer,’’ ‘‘real-time video neural
style transfer,’’ ‘‘generative adversarial networks,’’ ‘‘video
neural style transfer onmobile devices,’’ ‘‘video style transfer
improvement.’’ Shortlisted papers with code implementations
publicly available (on GitHub or similar services) and based

on the quality of the videos they generate (as shown in their
demonstrations/Readme).

There is currently no benchmark dataset for Neural Style
Transfer. MS-COCO and Cityscape are the two datasets
most frequently utilized in the experiments within the
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TABLE 1. A short summary of review papers and key contributions.

papersreviewed. These datasets are primarily used for object
detection and recognition. Still, they may also be used as con-
tent photos for training various models since each dataset was
around 330K and 25K in size, respectively. The style dataset
was either scraped from online sources such as Danbooru,
Safebooru, and Videvo.net or was created according to the
requirements of the problem statement, which were in the
range of 1k to 2k images.

While reviewing the literature, a few research gaps such
as platform-related, dataset-related, and architecture-related
deficiencies were identified. Hardware limitations are the
primary cause of platform-related gaps. In the absence
of a benchmark dataset and benchmark metrics, there
exist data-related research gaps. Lastly, architecture-related
gaps concern how model parameters change based on the
dataset need. These gaps are further discussed in detail in
section VIII.

As presented in table 1, there are a total of 3 review
papers available in the NST domain. Out of those 3, only
paper [4] can be considered as a comprehensive review paper.
The novelty of our paper lies in terms of the latest papers
review till Aug 2021, stating all related facets of NST. There
are four major sections to the paper. The first part of the
paper covers the basics of GANs, their types, and how they
work; the second part covers the contemporary architecture
of GANs with NST and how they work; the third part of the
paper covers the improvements that can be made to GANs
while applying NST to it, such as deep photo style transfer;
and the fourth part is about how we can use NST along with
GAN architecture on a real-time basis.

Highlights of this literature review are listed below:
• Qualitative analysis of the latest GAN architectures
models, along with their advantages and limitations,
is discussed.

• A summary and in-depth analysis of neural style trans-
fer for both images and video are given, emphasizing
mobile devices.

• Most relevant research papers on the Neural Style Trans-
fer were explicitly identified focused on real-time NST,
which narrows down the research in video style transfer.

• Research gaps and future research directions are also
discussed in a detailed study of the challenges in apply-
ing forvideo neural style transfer in real-time on mobile
devices.

Fig. 1 shows the papers reviewed in this research study and
their categorization as per paper flow.

II. GENERATIVE ADVERSARIAL NETWORKS OVERVIEW
The first part deals with papers that define the basics of most
GANs. These papers are essentially the backbone, as most
other articles follow their pathway by improving upon or
making amends to them. GANs generate data based on pre-
viously learned patterns and regularities as the model finds
these patterns. Deep learning suits generative models as they
can effectively recognize patterns in input data.

A. GENERATIVE ADVERSARIAL NETWORKS
[7] explores the framework, which was new around then
for making generative models in a loosely organized cycle,
wherein training two models: a generative model G which
gets the details, and a discriminative model D that calculates
the likelihood that an image comes from training examples
instead of G. The arrangement technique of G would be to
raise the likelihood of D creation a mistake. This arrange-
ment resembles a more modest than usual max two-player
game. Next to optional limits G and D, a response occurs,
with G recovering the arrangement of data course and D
up to 0.5 everywhere. For the situation where G and D are
represented by multilayer perceptron, they always set up the
fundamental structure with backpropagation. The technique
used here is to get the most extreme probability of doling out
the correct mark to both preparing models and tests from G
and at the same time preparing G to limit log(1-D(G(z))).

min
G
max
D

V (D,G) = Ex∼pdata(x)
[
logD (x)

]
+Ez∼pz(z)

[
log (1− D (G (z)))

]
(1)

B. STYLE BASED GENERATOR ADVERSARIAL NETWORKS
Generator improvement has seen less attention and improve-
ment compared to Discriminator. To enhance the picture
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TABLE 2. FIDS in FFHQ for networks trained for different percentages of
training examples by allowing mixing regularization. (Karras et al. [8]).

quality produced by the Generator, [8] introduced a Style
transfer literature-based generator. In this model, the Gener-
ator is trained with the Progressive GAN setup of Karras as a
baseline. The following are details of the model:
1. Traditionally the Generator is provided with a latentcode

through the input of the first layer of the feed-forward
network. At the same time, in the new approach, it is
omitted altogether and is started with a learned constant.

2. Provided a latent code z in the non-linear mapping net-
work and latent input space Z, f: Z→ W first generates
w ∈W

3. After the mapping is done, learned affine transformation
specializes w to styles : y = (ys, yb) which operates
after each convolution layer of the generative network and
controls the normalization of the generative network G.

4. The normalization technique used is adaptive instance
normalization (AdaIN), the (2) for the same is:

AdaI N (xi, y) = ys,i
xi − µ (xi)
σ (xi)

+ yb,i (2)

Over here to get the AdaIN between xi and y,firstly finding
the distance between xi and the mean of xi (µ (xi)) further
dividing it by standard deviation of xi (σ (xi)), then to
scale, the value is multipliedit by ys,i and bias it by yb,i.

5. The Generator is then given direct noise input, which
allows it to generate stochastically. The noise input is
uncorrelated noise input generated via a single channel of
images. Dedicated noise input is given into each layer of
the synthesis layer.

6. Using the learned pre-feature scaling factor, the noise
image is first transmitted on all feature maps, and then the
corresponding convolution layer output is applied.

The above changes in the Generator lead to the following
observation and improvement:
• 20% improvement in FID over traditional Generator.
• This makes it possible by modifying the styles by scale
to track image synthesis. Then the display of the map-
ping network and geometric transformation that pre-
serves content and style images to produce new images
from the trained distribution and generative network
based on a series of styles to create examples. This
resulted locally in each style effect, meaning only some
portion of the image would be influenced by changing a
small part of the Style.

The use of regularization mixing, which is a given number
of images, is generated during training using two random

TABLE 3. In FFHQ for different generator architectures, separability
scores and perceptual route lengths (lower is better).(Karras et al. [8]).

TABLE 4. The effect of a mapping network in FFHQ. Karras et al. [8]).

latent codes. Precisely, w1, w2 controls the Style of two
different codes, z1, z2 across the mapping network so that
w1 is applied before and w2 after the crossover point. This
approach prevents the network from assuming that the object
style is correlated.

• After each convolution, the architecture adds per-pixel
noise, resulting in noise only affecting the stochastic
aspects leaving intact the function and aspects at a high
level.

• Global effects such as illumination, etc., were seen to be
coherently regulated, whereas the noise was applied to
each pixel separately, ideally only suitable for stochastic
variation. When the network is monitoring, i.e., the Dis-
criminatorpenalizes the pose with the noise, leading to
inconsistency in space. This way, without clear instruc-
tions, the network can learn to use global and local
networks properly. The perceptual path length is lowered
by using the style-based Generator, as seen below in the
picture:

• It is shown that increasing the mapping network’s depth
enhances both image quality and separability.

C. DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL
NETWORKS
Unsupervised learning using Convolutional Neural networks
(CNN) has seen less attention than supervised learning and
its adoption in computer vision applications. To bridge the
gap, [9] introduced Deep Convolutional GANs (DCGANs).
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FIGURE 2. (a) CycleGAN model schematic showing the two generators and discriminators along with the image domains. (b) The transforms used to
compute forward cyclical consistency loss. (c) The transforms used to compute backward cyclical consistency loss.

In this method, discriminators are trained for the image clas-
sification task, and generators have vector calculations that
allow more control over generated images.

Following guidelines are proposed to create stable convo-
lutional GANs:

1. Use strided convolution in Discriminator and fractional-
strided convolution in Generator, enabling the model to
tune upsampling and downsampling itself.

2. Batch normalization usage is done in the generators and
the discriminators. This prevents the generators from
mode collapse.

3. Remove dense hidden layers. Connect the highest Conv.
features to input and output of both parts, which showed
promising results. For Discriminator, flatten and feed the
last Conv. Layer into sigmoid output.

4. For Generator, use ReLU activation and Tanh (only in the
final layer).

5. In the Discriminator, make use of LeakyReLU in layers.

These architectural changes result in regular training and a
model capable of handling high resolutions.

Testing on the CIFAR-10 and Street View House Numbers
dataset (SVHN) dataset confirmed the impressive perfor-
mance of DCGANS. However, it still falls short of Exemplar
CNNs [10]. Another point to improve upon is that even
with fewer feature maps in the Discriminator, it has a more
extensive feature vector size, increasing training size at higher
resolutions.

D. CYCLE CONSISTENT ADVERSARIAL NETWORKS
Unlike the Deep Convolution GANs, CycleGANs allow
image translation on unpaired data. [11] achieve this the
concept of ‘‘Cyclical Consistency’’ meaning that if two Gen-
erators, ‘‘G’’ and ‘‘F,’’ are trained to be inverses of each
other than virtually, F(G(X)) ≈ X. [11] introduce a second
generator that takes the outputs of the first one to and tries to
produce the actual input image. By training twoGANswhose,
generators perform inverses of each other, [11] decouples the
translation’s style and structural aspects (one model handles
the style transfer while the other enforces structure). A key
takeaway is that these models do not need paired data to train

due to this structure. The loss function is thus modified to:

L (G,DY) = Ey∼p(y)
[
(DY(y)− 1)2

]
+Ex∼p(x)

[
DY(G(x))2

]
(3)

L (F,DX) = Ex∼p(x)

[
(DX(x)− 1)2

]
+Ey∼p(y)

[
DX(F(Y))2

]
(4)

Lcyc (G,F) = Ex∼p(x) [‖ F (G (x))− x ‖]

+Ey∼p(y)
[
‖ G (F (y))− y ‖

]
(5)

L = L (G,DY)+ L (F,DX)+ λ ∗ Lcyc (G,F)

(6)

where X and Y are two image domains, G is a generator
transforming an image from domain X to Y. F is a generatori
transforming an image from domain Y to X. DY is the dis-
criminator concerning G (identifies real/generated images in
Y domain). DX is the discriminator concerning F (identifies
real/generated images in X domain). G(x) is the image gen-
erated by G on an input image x such that x ∈ X and F(y)
is the image generated by F on an input image y such that
y ∈ Y. Thus, Equations (3) and (4) compute the Adversarial
losses for the two GANs. In contrast, Equation (5) computes
the cyclical consistency loss by comparing input images x
and y to their remapped/generated versions, F(G(x)) and
G(F(x)), respectively. Equation (6) describes the total loss
of CycleGAN combining the adversarial and cyclical losses.
The transformations are diagrammed by [11] in Figure 2.

The generators use a Resnet based architecture and a few
encoder-decoder layers, while the discriminators use a Patch-
GAN architecture to focus on local structural details. The
results show that CycleGANs perform exceptionally well
on all test metrics barring the Pix2Pix model. The model’s
limitation is that it fails whenever an image sampled from a
different distribution is input.

1) OBSERVATIONS
In summary, [7] defines a basic GAN with its objective func-
tion and training procedure. However, unconditional (which
cannot get precise results) and uncontrollable (controlling
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FIGURE 3. Output of CycleGANs. Left-most images are inputs, middle
images are corresponding style transfer from the first Generator G.
Right-most images are the reconstruction of inputs by second generator F.
(Zhu et al. [11]).

the individual features used for generation). [8] builds upon
this by modifying the Generator to allow control over disen-
tangled features. [9] improves the architecture by introduc-
ing a Deep Convolutional Neural Network. [11] focuses on
Unpaired Image Style Transfer presented with the help of
‘‘cyclical consistency.’’

III. GENERATIVE ADVERSARIAL NETWORKS IN NEURAL
STYLE TRANSFER
Now architectures prevalent and in use concerning Neural
Style Transfer (NST) are discussed. These papers look at
proposing a new architecture and employing new methods.
NST first appeared in Gatys et al. [13]. The approach takes a
content image and applies the textures of the Style given. NST
then gained momentum as many works followed, increasing
the quality of images generated or generating them faster than
Gatys et al. [13]. These efficiencies and/or effect improve-
ments paved the way for faster image editing (E.g., Adobe
Image stylization) or recreational use (E.g., Prisma App).

A. CONDITIONAL ADVERSARIAL NETWORKS FOR STYLE
TRANSFER
Conditional GANs (cGANs) introduce image-to-image trans-
lation and a loss function to allow the models’ training.
It removes the usage of hand-engineered loss functions or
mapping functions. [12] aims to create a common framework
that predicts a particular set of pixels based on another given
set of pixels. Instead of treating the output space as ‘‘uncon-
ditional’’ from the input image, cGANs use a structured
loss function, considering the structural differences between
input and generated images. Optimizing this loss function
allows the generated images to be structurally related or
‘‘conditioned’’ as per the input image. The Generator has an

FIGURE 4. Encoder-decoder vs U-Net architecture. (Isola et al. [12].

FIGURE 5. Introducing U-Net allows higher quality of generated images.
(Isola et al. [12].

architecture based on U-Net, whereasthe Discriminator has a
PatchGAN based architecture. The PatchGAN architecture is
shown to be useful as it penalizes local structural differences.
The effect of locality or ‘‘patch size’’ is also studied. The loss
function is given as:

LcGAN = Ex,y (log (D (x, y)))

+Ex,z (log (1− D (x,G (x, z)))) (7)

whereG andD are theGenerator andDiscriminator networks,
x and y are content and style images, respectively, and z is a
random noise vector that gets learned to produce the mapping
G: {x, z}→ y. The Discriminator is now fed ‘‘x’’ or input
image as an input. In addition, an L1 distance term is added
tomake the generated images closer to ground truth and avoid
blurred images:

LL1(G) = Ex,y,z[||y− G(x, z)||] (8)

Thus, the final objective is given as:

Lt = LcGAN (G,D)+ λ.LL1(G) (9)

whereG andD are theGenerator andDiscriminator networks,
LcGAN is the conditional loss given in (7) and LL1(G) is the
L1 loss of the generator as given in (8). The total loss is Lt
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FIGURE 6. Style transfer algorithm. (Gatys et al. [13]).

and λ is a weight used to alter the importance of L1 loss in
the total loss.

Noise is provided in dropouts and not as inputs as the
models ignored the latter. In addition, the U-Net architecture
introduces skip connections, which allow low-level details to
be transferred easily between the input and output images.
Meanwhile, PatchGANs, as discriminators, focuses on local-
ized information more. Another significant advantage is that
PatchGANs canworkwith a smaller subset of pixels at a time,
decreasing the number of parameters, computation, and time
required for discriminator predictions.

It is seen that having a small patch size causes loss of spa-
tial features (structure of image) with useful spectral features
(colorful images). As the transition towards a larger patch
size, a balance of spatial and spectral features producing a
crisp image. However, Increasing the patch size beyond this
‘‘balance point’’ causes a lower quality image to be generated.

Another plus for PatchGAN is that the Discriminator can
be applied to large images. The places where the model fails
to be good at are:
1. Sparse input images (Images with shallow structural

details)
2. Unusual Inputs (Input which is not like training data).

B. IMAGE STYLE TRANSFER USING CNN
It is difficult to render an image’s semantic content differently
since it lacks representations that explicitly provide semantic
information. To solve the limitation of using only low-level
image characteristics of the target image, [11] presents an
Artistic Style neural algorithm that can isolate and recombine
the content of images (style texture) and generate the images
using those Styles. The image representations used here are

derived from the optimized Convolution Neural Network
for object recognition, explicitly providing high-level image
details. Overall, the approach combines CNN-based paramet-
ric texture models to invert their representations of the image.

The method used is:
• The standardized version of the 19-layer VGG network
includes 16 convolutional and five pooling layers.

• By scaling weights, the network was normalized such
that the mean activation of each convolutional filter over
images and positions was equivalent to one.

• Image synthesis was done by using average pooling as
it was seen that it provided a better result.

• For Content representation:
◦ One can perform gradient descent to display image

data on several levels of a white noise picture to
locate another image that fits the feature responses
of the content image.
Let Ep- original image,
Ex- generated image,
P l- feature representation of Ep in layer l,
F l- feature representation of Ep in layer l.

The squared-error loss between the two feature representa-
tions is defined as:

Lcontent (Ep, Ex, l) =
1
2

∑
i,j

(
F lij − P

l
ij

)2
(10)

The derivative of this loss w.r.t activations in layer l equals
∂L content

∂Lcontent

∂F lij
=


(
F l − Pl

)
ij

if F lij > 0

0 if F lij < 0
(11)
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• Style representation:

◦ To acquire a style portrayal of an input picture,
feature space was utilized to capture textural data.
The feature space can be based on top of the fil-
ter response of the model layer, which comprises
of connection between various reactions, where
exceptional cases are taken over the spatial degree
of feature maps.

◦ Feature correlation, given by: Gram matrix Gl ∈
RNl×Ni , where Glij is the inner product between the
vectorized feature maps i and j in layer l:

Glij =
∑

k
F likF

l
jk (12)

◦ The total loss function seen was:

El =
1

4N 2
l M

2
l

∑
i,j

(
Glij − A

l
ij

)2
(13)

◦ Total style loss:

Lstyle (Ea, Ex) =
∑L

l=0
wlEl (14)

◦ The derivative of E w.r.t. the activation functions in
layers l can be computed analytically:

∂El
∂F lij
=



1

N 2
t M

2
i

((
F l
)T (

Gl − Al
))

ji

if F lij > 0

0
if F ′ij < 0

(15)

• Style transfer:
◦ the loss function jointly minimized distance

between feature representations of the white noise
of two images (content and Style):

Ltotal (Ep, Ea, Ex) = αLcontent (Ep, Ex)+ βLstyle (Ea, Ex) (16)

The content image was resized to style image always
before computing its feature representations to keep them for
comparable sizes.

Results seen for the suggested image style transfer are:

• Both the content and the image style type are easily
separable in CNN, and to produce new meaningful visu-
als;then the changes can be represented individually.

• Due to the many layers in the image synthesis, which
layers fit the content and style representations were
shown.

• The picture is cleaner if thematching is done up to higher
layers initializing noise before initialization of gradient
descent leads to the generation of arbitrary numbers of
new images.

• The algorithm provides photo-realistic style transfer; an
example can be seen in Fig. 7.

FIGURE 7. Photorealistic style transfer. (Gatys et al. [13]).

C. TOWARDS THE AUTOMATIC ANIME CHARACTERS
CREATION
The most common problem in generating faces is that they
get distorted on some features and get blurred. [14] addresses
this problem in both data and model aspects. [14] provides
three contributions for generating anime faces:

1. GAN model based on DRAGAN architecture.
2. A suitable clean anime facial dataset comprising of

high-quality images which are collected from Getchu
(Japanese game selling website)

3. An approach to train GAN from untagged images.

Tags are assigned to the dataset using Illustration2Vec
(a CNN-based Tag estimation tool). This tool can detect
and tag 512 different types of attributes. After tags are
set, 34 tags are selected, which are suitable for the task
at hand. In this way, any untagged dataset can be pro-
cessed and prepared, which vastly opens data collection
sources.

Model architecture is based on DRAGAN proposed by
Kodaliet al. [15]. DRAGAN has the least computation cost
than other GAN variants and is much faster to train. Gen-
erator architecture is shown in Fig. 8, which is based on a
modified version of SRResNet [16]. It consists of 16 Residual
Blocks and three feature upscaling blocks. The discriminator
architecture is depicted in Fig. 9. It has 11 Residual Blocks
and a dense layer that acts as an attribute classifier. The
proposed model was compared with a standard DRAGAN
model with DCGAN Generator based on Fréchet inception
Distance (FID) scores. Table 5 shows, the proposed model
has lower average FID scores identifying it as a better model.

Figure 10 shows the samples generated from the model.
These samples are transparent, have sharp images, and have
good diversity.

The only drawback of this model is that it cannot han-
dle super-resolution. It is observed that the high-resolution
images generated using this model have undesirable artifacts,
which made the results messy.
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FIGURE 8. Generator architecture. (Jin et al. [14]).

FIGURE 9. Discriminator architecture. (Jin et al. [14]).

FIGURE 10. Generated samples. (Jin et al. [14]).

D. CartoonGAN: GENERATIVE ADVERSARIAL NETWORKS
FOR PHOTO CARTOONIZATION
[17] proposes a solution to convert real-world scenery
images into cartoon-style images. The unique characteris-
tic, smooth shading, and textures of cartoon-style images
prove significant challenges to existing methods based on

TABLE 5. FID of proposed model and baseline model. (Jin et al. [14]).

texture-based loss functions. [17] proposes CartoonGAN,
a new GAN framework that can take unpaired images for
training to tackle this problem. CartoonGAN architecture is
shown in Fig. 11Generator G, which comprises one flat Conv.
Block proceeded by two down-Conv. Blocks are meant to
perform compression as well as encoding of an input image.
The content and manifold part are made up of eight residual
blocks. Finally, two up-convolution blocks and a convolution
layer create the cartoon-style output images. Discriminator D
consists of flat layers preceded by two strided Conv. blocks
to reduce resolution and encodefeatures. The final layers are
made up of a feature construction block with convolution
layers to obtain a classification.

The overall loss has two parts: adversarial loss and content
loss described as

L (G,D) = Ladv (G,D)+ ωLcon (G,D) (17)
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FIGURE 11. Proposed generator discriminator architecture. (Chen et al. [17].

Here ω is the weight by which canbe limited to the content
retention amount from the input.

Adversarial loss Ladv (G, D) is an edge-promoting loss
defined as:

Ladv (G,D)
= Eci∼Sdata(c)

[
logD (ci)

]
+ Eej∼Sdata(e)

[
log

(
1− D

(
ej
))]

+Epk∼Sdata(p)
[
log (1− D (G (pk)))

]
(18)

Here, the Generator G outputs a generated image G (pk)
for each photo pk in the photo manifold p. ej is a cartoon
image without precise edges and ci is the corresponding
actual image. D (ci) ,D

(
ej
)
, D (G (pk)) are the probabilities

of the discriminator D assigning correct labels to the actual
image, cartoon image without clear edge, and generated
image, respectively.

Content Loss Lcon (G, D), which has a feature map in a
pre-trained VGG network defined by:

Lcon (G,D)=Epi∼Sdata(p) [||VGGl(Gi(pi))−VGGl(pi)||1]
(19)

Here, l refers to the feature maps of specific VGG layer.
Along with the model, an initialization phase is proposed

to improve the GAN model’s convergence. In this phase,
the Generator is trained only with semantic content loss (19)
and can reconstruct only the input images’ content. The
training data is unpaired, consisting of real-world and cartoon
images that are all resized to 256× 256. There are 5402 real-
world training images. Cartoon images comprise of Makoto
Shinkai (4,573), Mamoru (4,212), Miyazaki Hayao (3,617),
and Paprika (2,302) style images.

As Fig. 12 shows, outputs fromCartoonGANare compared
with NST [11] and CycleGAN [11] outputs trained on the
same dataset. The Figure demonstrates the inability of NST

and CycleGAN to handle cartoon style well. NST using only
style imagery cannot control theStyle thoroughly because the
local regions are styled differently. This leads to inconsistent
artifacts. Similarly, results from CycleGAN are also unable
to understand and depict the cartoon style appropriately.
The absence of Identity loss renders it unable to preserve
input image content. Even with identity loss, the results
are unsatisfactory. The results clearly show that Cartoon-
GAN effectively transforms real-world scenery images into
cartoon-style efficiency and high quality. It efficiently per-
forms much better than other top stylization methods.

E. ARTSY–GAN A STYLE TRANSFER SYSTEM
[18] introduces a novel method for GAN-based style transfer
termed Artsy-GAN. The problemwith current approaches,
such as using CycleGAN, is the slow training of these models
due to their complexity. Another disadvantage is the source of
randomness, which is limited to input images. [18] proposes
three ways to tackle these problems:

1. Using perceptual loss instead of reconstructing to improve
training speed and quality.

2. Using chroma sub-sampling to process the images
improves inference/prediction speed and makes the model
compact by reducing size.

3. Improving the diversity in generated output by appending
noise to the Generator’s input and pairing it with the loss
function would force it to develop a variety of details for
the same image.

Fig. 13 shows the model architecture of the Generator. The
inputs are a 3-channel color image (RGB) with noise added
to each channel. The Generator has three branches, each of
which receives the same input but produces different output
image channels that are converted back into RBG by a model
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FIGURE 12. Generated output comparison of CartoonGAN, CycleGAN and NST. (Chen et al. [17]).

FIGURE 13. Architecture of generator. (Liu et al. [18]).

at the end of the network. The discriminator architecture is the
same as CycleGANusing 70×70 PatchGANs [11], [17], [18].
The objective loss function is made up of three types of

losses and is defined as

LFULL = LGAN + αLPERCEPTUAL + βLDIVERSITY (20)

where α and β control the significance of losses.
Here, the loss functions are:

1. An adversarial loss LGAN for equalizing distribution of
domains. It is defined as

LGAN = Ex∼pdata(x)
[
(D (G (x, z))− Lreal)2

]
(21)

where, Lreal is the table of actual data, z is a noise tensor,
G (x, z) is a produced image from generatorG,andD is the
discriminator.

2. Diversity loss LDIVERSITY to improve diversity in gener-
ate/output images, which are defined as

LDIVERSITY=−
1
N

N∑
i=1

1

mean−j6=1||g(zi)−g(zj)|| + E+E

(22)

where, N is the number of input noises as well as several
outputs.

3. A perceptual loss LPERCEPTUAL to overcome the uncon-
strained problem by keeping the object and content in the
output and can be described as:

LPERCEPTUAL =
1

CjHjwj

[
||φj(x)− φj(G(x, z))2

]
(23)

where, φj (x) is the output of the j-th layer of feature
encoder network φ for image x. If the j-th layer is a
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FIGURE 14. Results compared with Cycle-GAN. (Liu et al. [18]).

TABLE 6. Comparison of FID of Artsy-GAN and CycleGAN. (Liu et al. [18]).

TABLE 7. Processing time comparison in GPU Tesla M40. (Liu et al. [18]).

convolutional later then, φj (x) will be a feature map of
Cj ∗ Hj ∗ wj
Comparison of Artsy-GAN is made with CycleGAN based

on FID, processing time, and diversity in generated images.
Table 6 shows that Artsy-GAN has lower FID scores across
all the styles for which both models are trained.

Table 7 Shows that Artsy-GAN is 9.33% faster than Cycle-
GAN at the minimum resolution(640 × 480) taken and up
to 74.96 % faster at the highest resolution (1960 × 1080).
As the resolution increases, the difference in processing times

increases, proving that Artsy-GAN is much faster and well-
suited for higher resolution images.

Fig. 14 shows that CycleGAN output images are very
similar for the same input image with shallow diversity even
after adding noise to input images. Whereas Artsy-GAN out-
put images vary significantly, confirming its high diversity.
Finally, the proposed Artsy-GAN is a better, faster, and more
diverse method for style transfer, which easily outperforms
other SOTA methods depicted by the result. The perceptual
loss proposed can also be used for different stylings, such as
oil paintings with vibrant textures.

F. DEPTH AWARE STYLE TRANSFER
After the style transfers have been rendered using a differ-
ent picture style, the depth of the content picture has not
been reproduced. It is seen that those traditional methods
like additional regularization in the optimization of the loss
function, etc., are either ineffective in computing or require
a different trained neural style network. AdaInapproach of
Huang et al. [32] enables effective arbitrary style transfer to
the content image. The depth map of the content image
cannot be replicated. [20] proposed an extension to the AdaIn
method to preserve the depth map by applying variable
stylization strength. The comparison showed in the image
Fig. 15.

The technique is the depth-aware AdaIN (DA-AdaIN),
which works with varied strength: closer areas are less styl-
ized, whereasdistant regions representing a background have
amore stylistic feature. Based on the following styling, AdaIn
applies the Style evenly to the content image:

Î = g (AdaIN (f (Ic) , f (Is))) (24)

where,
• Ic - Content Image
• Is - Style Image
• f(·) is an encoder
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FIGURE 15. Comparison between proposed DA-AdaIn to AdaIn methods.
(Kitov et al. [20]).

FIGURE 16. Result of style transfer based on depth contrast parameter β,
ε = 0. (Kitov et al. [20]).

• g(·) Is a decoder trained for appropriate stylization with
the encoder.

• AdaIN(x, y) is a variant of instance normalization.

The extension proposed is:

• AddStyle using varied strengths, based on your camera
proximity, in various areas of the content image.

• Closer places must be preserved in the forefront so that
less stylized; remote areas are considered more stylistic
backgrounds. The hyperparameter α = [0, 1] can be
regulated by the following formula in a standard stylizer
strength check:

Î=g (αf (Ic)+(1− α)AdaIN (f (Ic) , f (Is))) (25)

• Since f (Ic) is the actual unaltered content encoder
representation, whereas AdaI N (f (Ic) , f (Is)). Is a
completely styled encoder representation. To manage
spatially varying strength, the modified formula can be
used

Î=g (P� f (Ic)+(1−P)� AdaIN (f (Ic) , f (Is)))

(26)

• where P ∈ RHe×Wc is stylization strength map
shows repeated element multiplication for each chan-
nel for each spatial position in the content encoder
representation:

{P� F}cij = PijFcij (27)

• The algorithm has two hyperparameters:

◦ β > 0 controls the prominence of the proximitymap
around its mean value.

FIGURE 17. Result of style transfer based on proximity offset parameter
ε, β = 20. (Kitov et al. [20].

◦ ε ∈ [0, 1] controls minimal offset of the image
regions from the camera.

Image result based on different hyperparameters values:

G. StyleBank: AN EXPLICIT REPRESENTATION FOR
NEURAL IMAGE STYLE TRANSFER
StyleBank is made of many convolutional filter banks, each
of which explicitly reflects one Style and transmits the Style
of neural images. To convert a picture to a particular style,
the appropriate filter bank is used on top of the intermediate
feature embedding generated by a single auto-encoder. The
StyleBank and the auto-encoder are concurrently learned,
with the auto-encoder encoding no style information due to
the flexibility provided by the explicit filter bank representa-
tion. Additionally, it supports incremental learning to add a
new image style by learning a new filter bank while keeping
the auto-encoder unchanged. The explicit style representation
and the adaptable network design enable us to combine styles
at the picture and area levels.

To investigate an explicit representation for Style, [21]
revisit traditional texton (referred to as the essential element
of texture) mapping methods, in which mapping a texton to
the target location is equivalent to convolution between a
texton and a Delta function (indicating sampling positions)
in the image space.

In response, [21] offersStyleBank, a collection of differ-
ent convolution filter banks, each reflecting a distinct style.
The matching filter bank is convolved with the intermediate
feature embedding generated by a single autoencoder, which
decomposes the original picture into several feature maps to
convert a picture to a specific style.

In comparison to previously published neural style transfer
networks, the proposed neural style transfer network is novel
in the following ways:

• This method offers an explicit representation of styles
using this way. After learning, the network canisolate
styles from content.

• This technique enables region-based style transfer due to
the explicit style representation. This is not possible with
existing neural style transfer networks, but it is possible
with classical texture transfer.

• This method enables concurrent training of many styles
with a single auto-encoder and progressive learning of a
new style without modifying the auto-encoder.
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FIGURE 18. The network model. (Chen et al. [17]).

[21] construct a feed-forward network based on a simple
image autoencoder (Figure 18), which converts the input
picture (i.e., the content image) to the feature space via the
encoder subnetwork.

H. TWO-STAGE COLOR INK PAINTING STYLE TRANSFER
VIA CNN
[22] proposes the best approach to move bloom pictures to
paint ink painting. Not quite the same as a common neural
style move technique, the report presents a way that imitates
the creation of shading ink painting. It can be viewed as
two specific steps – edge marking and picture colorization.
Rather than utilizing edge identification calculations, the line
drawing is taken to help and adventure the CNN-based neural
style move technique to get line drawing. Concerning picture
colorization, the GAN-based neural style move strategy is
utilized.

The framework comprises two segments: a line extraction
model and an image colorization model. The line extrac-
tion model changes blossom photograph content into a line
drawing through the planning x1 = f1(content). The image
colorization model colorizes the line drawing x1 to give
output y through the planning y = g (·). In this methodol-
ogy, f1(content) is anticipated to be the planning as follows.
At that point, an estimated shading portrayal could likewise
be acquired from content ≈ f1 − 1(x1). Thus, both line and
estimated shading portrayal in substance picture is developed
through the planning f1(content). With matched information,
contingent GAN, prepared in a directed way, may incorpo-
rate substance picture with client determined Style. Hence,
adapted photos from generator fool discriminator, yet meet
the necessities for shading ink painting tone.

1) AS REFERENCED BEFORE, THERE ARE TWO PRIMARY
MODELS
First, the Line Extraction model includes an image coloriza-
tion model that removes most lines of blossoms and leaves
in substance pictures. The Line Extraction model is utilized
to characterize loss capacities by estimating contrasts in sub-
stance and tastefulness between highlights extricated from
pictures. In the training stage, the flower image is taken by the
image colorization model, and output picture x1 is created in
a like manner. The line extraction model is fixed during the

preparing stage, and output highlights are utilized in picture
loss capacities.

L = λcLc(F(xcontent),F(x1))+ λsLs(G(xs),G(x1)) (28)

In equation 28, Lc(·) is the Euclidean distance between
content portrayals of substance pictures and adapted pic-
tures. Ls(·) is the squared Frobenius standard of the contrast
between the Gram lattices of style picture and adapted pic-
ture. F and G are the element change capacities. Secondly,
Image Colorization Network, which further has Conditional
GAN and DualGAN, is used to experiment and check which
one gives the better output. In this way, when the Generator
and Discriminator are adapted to additional data, it studies
a strict model. As shown in Fig. 19, line drawing is taken
over by both modeling and line extraction models. As the
line drawing can be noticed, the Discriminator can observe
how the Generator transforms the information line to a suit-
able photo. In this manner, the Discriminator will, in gen-
eral, be more solid to separate the created photos from the
significant.

In DualGAN, an unaided learning system figures out how
to decipher pictures from areaX to those in spaceY and figure
out how to upset the errand. During this case, as appeared
in Fig. 21, two picture sets from 2 areas, explicitly, line
drawing set (space X) and shading ink painting set (area Y),
are taken care of into two gatherings of GAN. Generator GA
initially changes line drawing x1 from space X into adapted
composition picture y. Y is turned at that moment into a
regenerated line image x1. In the meantime, GB generators
convert the shading style of ink painting in an adapted line
image x1 to a recreated shading ink color. L1 distance is
obtained to live the remaking mistake, adding to the GAN
target. Hence, generators figure out how to get pictures with
perceptual authenticity.

2) OBSERVATIONS
A summary of contributions is presented in Table 8. One
peculiar limitation seen is that themodels tend to fail at higher
resolution images.

IV. ADVANCEMENT PAPERS
This set of papers present advancements to current archi-
tectures. These advancementsallow different types of control
to the Style Transfer by improving Color control, Stability,
Spatial Control, and other vital aspects which enhance the
quality of generated images.

A. PERCEPTUAL FACTOR CONTROL IN NEURAL STYLE
TRANSFER
[23] presents an extension to the existing methods by propos-
ing spatial, color, and scale control over a generated image’s
features. By breaking down the perceptual factors into these
features, more appealing images can be generated that avoid
common pitfalls. Finally, [23] shows a method to incorporate
this control into already existing processes. The identification
of perceptual factors is the key to producing higher-quality
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FIGURE 19. Line extraction model architecture. (Zheng and Zhang [22]).

TABLE 8. A short summary of architecture-based papers and their key contributions.

FIGURE 20. The organization model of image colorization model. (Zheng and Zhang [22]).

images. Spatial control implies controlling which region of
the style image is applied to each region of the content
image. This helps as different regions have different styling,
and mapping them incorrectly can cause visual artifacts. The
first method to do this uses Guidance-based Gram Matrices,
where each image is provided with a spatial guidance channel
indicating which region should be applied to what Style.
This involves computing a Spatially Guided Feature Map for

R regions and L layers as:

F rl (x)[:,i] = T r1 ◦ F1(x)[:,i] (29)

where ◦ denotes element-wise multiplication. The Guided
Gram Matrix can then be defined as:

Grl (x) = F rl (x)
TF rl (x) (30)
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FIGURE 21. Model design of the complete network. (Zheng and Zhang [22]).

Furthermore, the contribution to the loss function is given
as:

El =
1

4N 2
`

∑R

r=1

∑
ij
λr
(
Gr
`

(
x̂
)
−Gr

` (xS)
)2
ij (31)

where Nl is the number of feature maps in layer ‘‘l,’’ Gr
`

(
x̂
)

and Gr
` (xS) are the guided gram matrices generated as per

Equations (29) and (30) for the generated image x̂ and the
input style image xS . λr is the weighting factor that controls
the stylization strength in the corresponding region r.

An alternative approach focuses on stacking the guidance
matrices with the feature maps directly. This is more efficient
than the previous approach but comes at the cost of texture
quality, as noted. The second factor addressed in [23] is Color
control, independent of geometric shapes or textures. Color
control is beneficial in situations where the model needs to
contain the image’s color is essential (E.g., Photo-realistic
Style Transfers). [23] present two approaches to deal with
this:
1. Luminance-only Transfer:Style Transfer is only per-

formed on the luminance channel. This is done by extract-
ing style and content Luminance channels and producing
output luminance channels that are then combined with
the original content colors to create the generated image.

2. Color Histogram Matching:In this method, the style
image’s colors are transformed such that their mean and
covariance match with the content image’s mean and
covariance using a linear transform.

Each of them has its pros and cons. For instance, Luminance-
only transfer preserves the content colors, but this comes
at the expense of losing dependencies between luminance
and colors. The color-matching might maintain this, but it
depends on the transform, which can be rather tricky to find.
Scale control allows us to pick separate styles at different
scales. The image’sStyle is the spread of image texture in
an arbitrary area [23] propose creating fresh pictures ofStyle
from two separate photos combining a fine and a coarse-scale
picture. This is handy when it comes to Style Transfer on
high-resolution images. Given a high-resolution content and

style image, the output is achieved by downsampling to the
desired resolution. This output is upsampled and used as
the initialization for original images. This technique requires
fewer iterations for optimization and filters low-level noise
as well. The method can be iterated to generate very high-
resolution images.

As seen in Fig. 22, the method works well to get a high-
resolution image like the one that does not use it. However,
the ‘‘CTF’’model requires fewer iterations and is seen to have
less noise.

B. STABILITY IMPROVEMENTS IN NEURAL STYLE
TRANSFER
The latest image style transfer methods can be grouped into
two groups. The first one is the optimization approach that
solves a particular optimization problem for the generated
image. These results are outstanding but take some time to
develop each picture. Second is Feed-forward approaches
that provide solutions to these problems and are usable
for real-time synthesis but tend to give unstable readings.
[24] introduces a new method for stabilizing feed-forward
style transfer methods for video stylization using a recur-
rent network trained using temporal consistency loss. In this
method, the network tries to minimize the summation of three
losses. The combined loss is defined as

L (W, c1:T, s)

=

T∑
t=1

(λcLC (pt , ct)+ λsLs (pt , s)+ λtLt (pt−1, pt))

(32)

Here λc, λs, and λt areused to assign importance to loss
term.

The three losses are as follows:

1. Content style loss Lc which is defined as

Lc (p, c) =
∑

j∈C

1
cjHjWj

∥∥φj(p)− φj(c)∥∥22 (33)
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FIGURE 22. (a) The content image. (b) Spatial control that differentiates
in sky and ground textures. (c) Color control that tries to preserve the
original colors of the content image. (d) Two Styles are used on fine and
coarse scale to stylize the image. (Gatys et al. [23]).

Here, φj (x) is the j-th layer activation network activation
of the shape Cj ∗ Hj ∗Wj for image x.

2. Style reconstruction loss Lsis defined as

Ls (p, s)=
∑

j∈s

1
Cj · HJ ·Wj

∥∥G(φj(p))− G(φj(s))∥∥2F
(34)

Here, G
(
φj (x)

)
is a Cj ∗ Ci gram matrix for layer j

activations
3. Temporal consistency loss Lt defined as

Lt (pt−1, pt) =
1

HW
||mt2ρt−1−mt2p̃t ||

2
F (35)

FIGURE 23. System overview. (Gupta et al. [24]).

FIGURE 24. Image sharpness based on SSIN. (Gupta et al. [24]).

Here, m (h,w) ∈ [0, 1] is 0 in the region of occlusion and
motion boundaries,� indicates element-wise multiplication,
and H , W isthe height and width of the input frame. Style
and content losses motivate high-level feature mapping of the
content image with features in Style. Temporal consistency
loss prevents drastic variations in the output between time
steps. Content image and a previous frame are fed as input to
the network. At each step, the output of the network is passed
as input in the next step.

As Fig. 23 shows, it is a recurrent convolutional network
where each style transfer network is a deep Conv. Network
with two spatial downsampling blocks, followed by several
residual blocks. The final layers are nearest-neighbor upsam-
pling blocks.

Fig. 24 shows the results for translation and blurring distor-
tions of images. An image patch is taken and distorted then
SSIM is computed between both the original and distorted
patch. Both are then stylized, and SSIM is calculated for
the styled original and styled distorted patch. The proposed
method is compared with the Real-Time baseline model on
all styles. The results prove that this method is significantly
more robust at controlling distortions.

Table 9 shows the results of the comparison done based on
speed. This method matches the Real-Time baseline in terms
of speed and is three times faster than the Optimbaseline [24].

Fig. 25 shows a pair-wise comparison of stylized frame
output. PSNR/SSIM values are shown for each example pair.
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FIGURE 25. Pair-wise stylized image SSIN comparison. (Gupta et al. [24]).

TABLE 9. (Gupta et al. [24]).

FIGURE 26. On the output image (c), the undesirable style image color
overlay is evident. (Gatys et al. [13]).

This method produces similar frames as OptimBaseline [24].
Still, on comparing with real-time baseline, the frames made
are better and temporally consistent for unstable styles like
Rain Princess and Metzinger.

There are two problems with this method:

1. Occasionally, as a result, one object can block others,
which is undesirable.

2. Show-door artifacts appear in the generated image.

C. PRESERVING COLOR IN NEURAL ARTISTIC STYLE
TRANSFER
Though there have been many papers on style transfer, there
has been some shortcoming: the algorithms transfer the colors

of the original painting to the output painting, which can
alter the appearance in undesirable ways. [25] describes a
simple linear method for retaining colors after style transfer,
extending to the neural artistic style transfer algorithm. One
of the problems seen, as said before, is that the yield after
style transfer, however, replicates the Style of brushstrokes,
mathematical shapes, and painterly structures displayed in
the style picture. Nevertheless, it likewise duplicates the color
distribution of the style picture undesirably.

Two different methods for preserving colors of the content
image seen are color histogram and luminance only transfer.
1. Color histogram matching:

1. Consider S- style image and C- input image. Style
image’s colors are transformed to coordinate the input
image’s colors, producing S’- a new style image that
replaces S as an input to the NST algorithm. One choice
that is to be made is the color transfer procedure.

2. Each pixel is transformed as:

xS ′ ← AxS + b (36)

where, A: 3 × 3 matrix B: 3D vector xi = (R,G,B)T

3. This transformation is chosen in such a way that
the mean and covariance of the RGB value in the
new image style (S’) matches the content image (C),
i.e., µS ′ = µC and 6S ′ = 6C

4. The values on A and b from equation (36) based on the
condition mentioned about (C) are:

b = µC − AµS
A6SAT

= 6C (37)

5. There aremany different solutions for Awhich satisfies
these constraints
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1. The first variant is using the Cholesky decompositions:

Achol = LCL
−1
S

where, 6 = LLT is Cholesky decomposition of 6.
2. Formulation of 3D color matching is the second vari-

ant, which is: AIA = 6
1/2
C 6

−1/2
S

3. It is seen that transfer of color histogram before style
transfer gives better outcomes, which is neural style
move is figured from the first data sources S and C.
Afterwards, the yield T is color-coordinated to C, cre-
ating another yield T′.

4. The algorithm also reduced competition between the
reconstruction of the content image and the simulta-
neous matching of the texture details from the image
style.

5. Luminance-only transfer:
• Visual perception is much more susceptible to changes

in luminance than to color.
• Luminance channels Ls and Lc are initially derived

from the style and content images., NST algorithm is
applied to them and yield luminance image Lt.
• Using YIQ color space, I, and Q filters - the input

picture’s color information merged with Lt to generate
the resulting image.
• The significant mismatch between the style luminosity

histograms and the material images should be balanced
before the Style is transferred.
each style image’s luminance pixel is updated:

LS ′ =
σC

σS
(LS − µS)+ µC (38)

where µS and µC is the mean luminance σS and σC is
the standard deviation.

D. DEEP PHOTO STYLE TRANSFER
A profound learning way to deal with photographic style
transfer manages an outsized kind of picture that reliably
moves with the given Style. One of the commitments is to
dispose of the works of art-like impacts by preventing spatial
data losses and obliging the exchange activity in the shading
area. Another critical commitment might be an answer for
the test presented by the distinction in content between the
given and reference pictures, ending in unwanted exchanges
between random substances. The calculation utilized here
takes two pictures: an input picture, commonly a stock photo,
and an adapted and corrected reference picture, the reference
style picture. The proposed approachmight be a photorealism
regularization term inside the target work during the improve-
ment, compelling the reproduced picture to be spoken to by
locally relative shading changes of the contribution to stop
twists.

1) PHOTOREALISM REGULARIZATION
[26] describes how toregularize this optimization approach
to maintain the structure of the original image and generate
photo-realistic results. The idea is to express this limitation on

FIGURE 27. Result cholesky and image analogies color transfer.
(Gatys et al. [13]).

FIGURE 28. Working of luminance-based style transfer with color
histogram.(Gatys et al. [13]).

the transformation performed to the input image rather than
on the output image directly. The topic of characterizing the
space of photo-realistic photos remains unresolved. [26] did
not need to solve it; instead, utilized the fact that the input
was already photo-realistic. The goal is to protect images
from losing this attribute during the transfer by including
a provision that penalizes image distortions. The answer is
to find an image transform locally affine in color space,
a function that translates the input RGB values onto their
output counterparts for each output patch.

LTOTAL =
L∑
l=1

αlLlC + 0
L∑
l=1

βlLls+ + λLm (39)

L is the no. of convolutional layers, and l is the l th Conv.
layer of the network. Weight 0 controls style loss. Weights
αl and βl are layer preference parameters. Weight λ is used
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FIGURE 29. Manual division empowers assorted errands, for example,
moving a fireball (b) to a scent bottle (a) to create a fire-enlightened look
(c) or exchanging the surface between different apples (d, e).
(Luan et al. [26]).

to control photorealism regularization. LlC , L
l
s+ and Lls+ are

content, augmented Style, and photorealism regularization,
respectively. Fig. 29, Shows how clients can monitor the
exchange outcomes by only offering semantic masks. This
utilization case allows masterful applications and makes it
possible to handle unusual cases for which semantic naming
is not supported, e.g., direct fireball scent holders.

2) AUGMENTED STYLE LOSS WITH SEMANTIC
SEGMENTATION
The style term is restricted by calculating the matrix on the
whole picture. Because a Gram matrix defines its constituent
vectors up to an isometry, it implicitly stores the precise
distribution of brain responses, limiting its capacity to adjust
to changes in semantic context and causing ‘‘spillovers.’’
The masks are added extra channels to the input picture
and enhance the neural style method by concatenating the
segmentation channels and updating the style loss. [26] also
learned that the segmentation does not need to be pixel precise
because the regularization finally restricts the output.

Fig. 30 shows instances of disappointment because of mis-
matching. These can be fixed utilizing manual segmentation.

E. GauGAN: SEMANTIC IMAGE SYNTHESIS WITH
SPATIALLY ADAPTIVE NORMALIZATION
Conditional picture synthesis implies the task of creating
photo-realistic pictures molding on some input data. [27]
is about a particular restrictive picture blend changing over
a semantic division veil to a photo-realistic picture. This
structure has a broad scope of uses, for example, content
generation and picture altering.

[27], which is worked by stacking convolutional, stan-
dardization, and nonlinearity layers, is the ideal situation,

FIGURE 30. Failures are caused by mismatching. (Luan et al. [26]).

FIGURE 31. Flow of segmented Style transfer. (Makow et al. [28]).

defective because their normalization layers tend to
‘‘wash away’’ information in information semantic covers.
To address the issue, the creator has proposed spatiallyadapt-
able standardization. This restrictive standardization layer
directs the inceptions using semantic input formats through a
spatially flexible, learned change and can reasonablymultiply
the semantic information all through the networks.

1) SPADE GENERATOR
There is no convincing motivation to deal with the divi-
sion guide to the Generator’s top layer with SPADE since
the informed regulation boundaries have encoded enough
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TABLE 10. Remarks on part 3.

information about the imprint design. This way, discard the
Generator’s encoder, which is consistently used in late plans
that smooth out achieves a more lightweight network. Equiv-
alently to existing class-contingent generators, the new Gen-
erator can acknowledge a subjective vector as info, engaging
a fundamental and standard way for the multi-modular blend.
Curiously, the division shroud in the SPADE Generator is
dealt with through spatially flexible equilibriumwithout stan-
dardization. Only networks from the past layer are standard-
ized. From this time forward, the SPADE generator can all
the more probable protect semantic information. It acknowl-
edges the benefit of standardization without losing semantic
information.

2) MULTI-MODAL SYNTHESIS
Using a self-assertive vector as the Generator’s contribution,
the design gives an essential technique to the multi-modular
union. To be explicit, one can add an encoder that quantifies
a picture into an irregular vector, which the Generator then
deals with. The encoder and generator structure a variation-
alautoencoder, in which the encoder endeavors to get the
Style of the image. In contrast, the Generator solidifies the
encoded Style and the division veil information by meth-
ods for SPADE to change the primary picture. Moreover,
the encoder fills in as a style direction network at test time
to get the Style of target pictures.

In the first place, [27] considers two kinds of tasksto the
Generator: self-assertive commotion or down inspected divi-
sion maps. Second, fluctuating the sort of limit-free standard-
ization layers before applying the tweak limits. Next, move

the convolutional piece size following up on the name guide,
and find that part size of 1×1 harms execution, likely because
it blocks utilizing the name’s setting. Ultimately, adjusting the
restriction of the generator network by changing the number
of convolutional channels.

F. EXPLORING STYLE TRANSFER
In recent times NST algorithms have improved significantly
on tasks such as image segmentation, replicating the content
image into different images using styles. In [28], several
new extensions and improvements to the original neural style
transfer were seen, such as altering the original loss function
to achieve multiple style transfers while preserving the color
and semantically segmented style transfer. Gaty’s approach
includes a pre-trained feed-forward network that performs
a forward pass ‘‘image transformation’’ on the input image
before inputting it to style transformations, which can be done
on real-time video applications.

Method:

• The baseline taken was fast neural style transfer, consist-
ing of two components: picture transformation network
Fw and loss function ϕ.

• The overall combined loss function is the final objective
is given as:

W ∗ = argmin
W

Ex,{yi}

[∑
i=1

λili (fW (x) , yi)

]
(40)

where W- weights X- image to be transformed Yi- Style
image
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FIGURE 32. A scene from the test Sintel dataset, the style image used, and the outputs obtained from various methods. The highlighted regions are the
ones with prominent differences. The error images show the temporal inconsistence which is prominent in the third approach.(Ruder et al. [31]).

• Image Transformation Network: Color images used
are 3 × 256 × 256 in shape.
◦ Downscaling: done by convolutional layer with

stride 2
◦ Upscaling: done by convolutional layer with stride

1/2.
◦ This method provides computational benefits of

operating lower-dimensional spaces.
• Perceptual Losses:
◦ Feature Reconstruction loss: pixels of the output

image ŷ have feature presentations similar to the
loss network ϕ computes.

Iφ,jfeat

(
ŷ, y
)
=

1
CjHjWj

∥∥φj(ŷ)− φj(y)∥∥22 (41)

◦ Style Reconstruction loss: penalizes style differ-
ences such as colors and textures

� Firstly, the Gram matrix is defined:

Gφj (x)c,c′ =
1

CjHjWj

Hj∑
h=1

Wj∑
w=1

φj(x)h,w,cφj(x)h,w,c′

(42)

� Style loss is the squared normalization of the Frobe-
nius standard for the difference between gram out-
put matrices of the generated and actual target
image.:

lφ,jstyle

(
ŷ, y
)
=

∥∥∥Gφj (ŷ)− Gφj (y)∥∥∥2F (43)

� It minimizes the style reconstruction loss results in
generating an image that preserves stylistic features
over not spatial characteristics of the target.

• Simple Loss function:
◦ Pixel loss: the normalized distance between the

output ŷ and target

lpixel =
1

CHW

(
ŷ, y
)
=‖ ŷ− y ‖22 (44)

◦ Total Variation Regularization: this is used for
maintaining spatial smoothness.

◦ Multiple Style Transfer: An extension of vanilla
neural style transfer allows multiple style images to
be transferred to a single content image.

◦ Requires a smile modification to the style loss
function:

lmulti =
∑n

i=1
wil

φ,Ji
style

(
ŷ, yi

)
(45)

◦ This allows the flexible choice of the style layers
and weights independently for each style image.

◦ Allows us to generate images that blend the styles
of multiple images readily.

◦ Trained on Adam optimizer
◦ When forced to blend multiple styles, it leads to a

more extensive style loss than a single style image.
◦ Color Preserving Style Transfer: used the luminous

only transfer, which works very well and takes a
simple transformation after a typical style transfer
algorithm.
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FIGURE 33. The ReCoNet architecture [33] for Video neural Style Transfer (presented by Gao et al.). It, Ft and Ot are input image, encoded
feature map, and generated image at time ‘‘t’’. A Frame is made up of these three objects. The previous frame is compared with the current
frame to compute ‘‘temporal loss’’ which results in better dependencies between two consecutive frames. (Ruder et al. [31]).

◦ Semantically Segmented Style transfer: clustering
parts of input images together that belong to the
same object class. It first generates a mask for the
input of shape H x W for each pixel location to
apply gradient descent and where to not. All the
above extensions make it possible to be an effect
to achieve real-time video processing applications.

G. AUTOMATIC IMAGE COLORIZATION USING GANs
[29] talks about how GANs can automate the image’s col-
orization process without changing the picture’s configura-
tion. [29] have used Conditional GAN to achieve the result.
The architecture approach used here was on fully connected
networks; [29] used layers of convolutions in Generator. [29]
have also used the technique similar to expanding encoder
networks and compressing decoder networks to reduce the
memory’s dependency on training. The Generator takes in
the greyscale image and then downsample it. It is com-
pressed after it goes through here, and these operations are
repeated four times resulting in a matrix. In the expansion
phase, it gets upsampled. Batch normalization and the use
of leaky ReLU help in better training and performance of
GAN. The Discriminator starts with greyscale images and the
predicted image to form the color image. The unique activa-
tion functions used to stabilize the last layers of Generator
and Discriminator are the tanh activation function and Sig-
moid activation function. Another uniquemethod used here is
Adam’s Optimizer for learning rate and Strided convolutions,
resulting in upgrading the training performance depending
on the invariances’ convolution layers. Convergence failure
was experienced on various occasions, settling by changing
optimizers, expanding learning rates, changing kernel rates,
and presenting batch normalization.

1) OBSERVATIONS
This part focuses mainly on achieving better quality images
from GANs by improving color accuracy. [23], [25] and [28]
parallelly propose Spatial and Color Control, which allows
the use of multiple styles and preserves content image color
for generating more photo-realistic images. By constraining
transform and adding a custom energy term, [26] provides
a versatile model that handles various input images. [27]
introduces ‘‘spatially adaptive normalization’’ that assists in
synthesizing photo-realistic images. A key feature provided
by [23] is Scale Control, which allows us to mix coarse and
fine attributes of two different styles. This method helps with
training on high-resolution images and is highly scalable in
that regard. [24] is solely focused on video Neural Style
Transfer and introduces temporal consistency in-between
frames to allow dependency between adjacent frames.

V. APPLICATION-BASED PAPERS
This section looks at the approaches, challenges, and limita-
tions in Neural Style Transfer for Videos on Mobile phones.
A few architectures are proposed based on their performance
on mobile devices.

A. ARTISTIC STYLE TRANSFER FOR VIDEOS
[31] presents the application of image style transfer to a
complete video. A few additions are made regarding initial-
izations and loss functions to suit the video input allowing
stable stylized videos even with a high degree of motion.
In addition, it processes each frame individually and adds
temporal constraints that penalize deviation among point tra-
jectories. [31] also, propose two more extensions:

Long-termmotion estimates allow consistency over a more
considerable period in regions with occlusion.
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TABLE 11. Different methods tested on multiple sequences with their temporal consistency errors. (Ruder et al. [31]).

A multi-pass algorithm is used to reduce the artifacts at
the image boundaries. The algorithm considers forward and
backward optical flow resulting in a better-quality video. [31]
propose using the previous frame to initialize the optimizer
for the current frame. This allows similar parts of the frame to
be rendered, whereas the changed parts are rebuilt. However,
the technique has flaws when used on videos as moving
objects are not initialized properly. To address this, [25]
consider the optical flow by warping the previous output:

x ′(i+1) = ω
i+1
i x(i) (46)

where ω(i+1)
i warps the input stylized frame x(i) using the

optical flow information derived from content frames g(i)

and g(i+1). [31] use DeepFlow and EpicFlow optical flow
estimation algorithms to do so. The next addition is the use
of temporal consistency losses to penalize adjacent frame
inconsistencies. To do so, they detect the disoccluded regions
by comparing the forward and backward flows. The temporal
loss then penalizes deviation between the generated

Image and the compatible optical flow parts of the warped
image. This is done with the help of a feature map ‘‘a’’ that
specifies per-pixel weightage depending on disocclusion and
motion boundaries.

Ltemporal (x,ω, a) =
1
D

∑D

k=1
ak · (xk − ωk)2 (47)

Thus, the short-term loss function is given as:

Lshortterm

(
g(i), c, x(i)

)
= αLcontent

(
g(i), x(i)

)
+ βLstyle

(
c, x(i)

)
+ γLtemporal

(
x(i), ωii−1

(
x(i−1)

)
, a(i−1,i)

)
(48)

This is further extended to achieve longer-term consistency
by incorporating the data for multiple previous frames rather
than just one frame:

Llongterm

(
g(i), c, x(i)

)
= αLcontent

(
g(i), x(i)

)
+ βLstyle

(
c, x(i)

)
+ γ

∑
j∈J :i−j≥1

Ltemporal

(
x(i), ωii−j

(
x(i−j)

)
, a(i−j,i)long

)
(49)

The weights a(i−j,i)long are computed as follows:

a(i−j,i)long = max
(
a(i−j,i) −

∑
k∈J :i−k>i−j

a(i−k,i),0
)

(50)

This means investigating past frames till consistent cor-
respondence is obtained. The advantage of this is that each
pixel is associated with the nearest frame, and as the optical
flow computed over temporally closer images has a lesser
error. Thus, it results in better videos. [31] handle the problem
of strong motion using a multi-pass algorithm. The video is
processed bi-directionally in multiple passes. By alternating
the direction of optical flow, firmer consistency is achieved.
Initially, every input is processed independently based on
random initializations. The inputs are then mixed with the
warped non-disoccluded parts of previous frames on which
the optimization algorithm is run for some iterations. Next,
the forward and backward passes are alternated. The frame
initializations for forwarding and backward passes are given
as:

x(i)(j) =


x(i)(j−1) if i = 1

δa(i−1,i) ◦ ωii−1
(
x(i−1)(j)

)
+

(
δ̄1+ δa(i−1,i)

)
◦ x(i)(j−1) else.

(51)

x′(i)(j) =


x(i)(j−1) if i = Nframes

δa(i+1,i) ◦ ωii+1
(
x(i+1)(j)

)
+

(
δ̄1+ δa(i+1,i)

)
◦ x(i)(j−1) else

(52)

The optical flow computation implementation takes
roughly 3 minutes per frame at a resolution of 1024 × 436,
which is done with the help of parallel flow computation on
the CPU. At the same time, style transfer occurs on the GPU.
The short-term consistency results on the Sintel datasets are
presented in Table 11, where multiple approaches’ errors are
compared across different videos.

The long-term consistency results are more qualitative.
They are thus presented in the form of supplementary videos.

B. REAL-TIME NEURAL STYLE TRANSFER FOR VIDEO
The work looks at the possibility of making video-style trans-
fers using a feed-forward network. Differentiated and direct
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applying a current picture style move procedure to accounts,
the proposed method uses the readied association to yield
fleetingly consistent adjusted weights, which are significant.
In distinction to the previous video style move methods,
which rely upon progression on the fly, the technique refer-
enced disagreement ongoing while at the same time creating
severe visual outcomes.

The adapting network acknowledges one edge as informa-
tion and produces its adjusted yield. The loss network, pre-
prepared on the ImageNet order task, first focuses on the
features of the revised yield outlines and registers the losses
used to set up the adapting network. During the arrangement
cycle, the adapting network and loss network are connected.
The loss network’s spatial loss is utilized to establish the
adjustable network. With satisfactory setting up, the adapting
network, tolerating one single casing as information, has
encoded the worldly cognizance picked up from a video
dataset and would in this manner have the option to make
transiently unsurprising adjusted video outlines.

1) STYLIZING NETWORK
The adapting network speaks to changing a singular video
edge to an adapted one. After three convolutional blocks,
the componentmap’s objective is diminished to a fourth of the
information. By then, five lingering blocks are in this manner
followed, provoking a brisk blend. Stood out from the current
feed-forward association for picture stylemove, a tremendous
favorable position of the network is used for fewer channels
to reduce the model size, which winds up gathering a distinct
loss in the stylization quality.

2) LOSS NETWORK
The sturdy and essential elements of the primary model, the
adapted edge, and the style image for establishing the net-
work adapter should be segregated for space and global loss
calculations. VGG-19 is employed in this article as the loss
network showing acceptable image content and style images.
Two kinds of losses can be found in the model: Spatial Loss
and Temporal Loss.

C. REAL-TIME VIDEO-NEURAL STYLE TRANSFER ON
MOBILE DEVICES
[33] presents a solution to two problems of video style
transfer:
1. The difficulty of usage by non-experts.
2. Hardware Limitations
They present an app that can perform neural style transfer
to videos at over 25FPS. They also discuss performance
concerning iOS-based devices where they test an iPhone 6s
and iPhone 11 Pro. Limitations for Android devices are also
discussed. The solution includes:
1. A real-time application of NST on mobile devices
2. Existing solutions to temporal coherence.
The traditional approach of applying a convolution-based
image generator per frame causes ‘‘temporal inconsistency’’

or unrelated frames causing flicker artifacts. [19] tries to
solve this problem; however, their model has time-consuming
computations.

[33] use Gao et al.’s lightweight forward feed network.
There are white bubbles seen in the images. However, these
are caused due to instance normalization and can be removed
using filter response normalization. However, no implemen-
tations exist for mobile devices. Other issues include faded
colors. The model is trained in two stages,

First on Style and content losses and then on a regulariza-
tion term.

L(t) = γLcontent + ρLstyle + τLtv (53)

Second on achieving temporal consistency

L(t − 1, t) =
∑

i∈t−1,t

(
γLcontent (i)+ ρLstyle (i)+ τLtv (i)

)
+ λf Ltemp,f (t − 1, t)+ λoLtemp,o (t − 1, t)

(54)

Ltemp,f, and Ltemp,o are features and output-based temporal
losses presented in Gao’s paper.

The main idea is to use the optical flux between adjacent
frames. The models do not need this information, effectively
making it faster since dense optical flow estimation is compu-
tationally expensive. On the other hand, introducing Tempo-
ral Coherence weakens the style transfer. Speaking of android
vs. iPhone implementations, Apple had better support since
2018’s A12 chip and CoreML library, allowing the use of
dedicated NPUs effectively. However, conversions between
PyTorch to TensorFlow result in additional layers causing a
30-40% FPS drop.

Furthermore, many Libraries are yet to provide full mobile
GPU operation support. Thus, due to the lack of standardiza-
tion, Android implementations are rare. [32] also, compare
two iPhones (6s and 11Pro) with different model sizes, reso-
lutions and chart their FPS:

Fig. 35 shows that the model mentioned above can output
around 13 FPS at 480p on an iPhone 11Pro with half a
million parameters. This indicates that Video NST on mobile
devices still needs many improvements. Then the coarse-to-
fine stylization presented in [24] can probably be applied to
increase the resolution of the generated images.

D. MULTI-STYLE GENERATIVE NETWORK FOR REAL-TIME
TRANSFER
[34] finds it challenging, with dimensionally integrated mod-
eling, to obtain comprehensive styles in this study. A novel
MSG-NET technique is presented, allowing brush dimension
control in real-time. [34] believes that detailed form model-
ing with dimensional style integration in [34] is difficult to
achieve. The method shown is a modernMSG-NET approach
that achieves real-time control of the size of the brush. The
image’s resizing style adjusts the brush’s relative size based
on the changing input images. A more acceptable representa-
tion of image style requires a 2D method.
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FIGURE 34. A chart of the proposed model. It includes two segments: an adapting and a loss network. Dark, green, and red square shapes address an
info outline, a yield outline, and a given style picture independently. (Huang et al. [32]).

FIGURE 35. Performance achieved per configuration in terms of Frames Per Second (FPS) v/s Number of parameters in the model charted for
two mobile devices at two resolution levels. (Dudzik et. al. 2020).

The model is based on the following works:
• Relation to PyramidMatching: Early method was devel-

oped using texture synthesis using multi-style image
pyramids. White noise image manipulation could lead
to realistic image synthesis, so that fayre statics were
inspired.
◦ This method uses a similar feed-forward network,

but it takes advantage of the benefits of deep learn-
ing networks without putting computational costs
into the training process.

• Relation to Fusion Layer: The computed Comatch Layer
uses both content and Style as input, hence a separate
style from content.

• Content and Style Representation:
◦ The image texture or Style can be represented as the

distribution of the features by use of Gram Matrix

G
(
F i (x)

)
=

Hi∑
h=1

Wi∑
w=1

F i
h,w(x)F

i
h,w(x)

T (55)

◦ The Gram Matrix is ordered less and describes the
feature distributions

• CoMatchLayer: Explicitly matches statistics of second-
order features based on the Style given.
◦ Ŷ i is a solution that holds the semantic information

of the content image and matches the texture from
the style image:

Ŷ i& = argmin
yi

{∥∥∥Ŷ − F(xc)
∥∥∥2
F

+α

∥∥∥G(Y i)− G
(
F i(xs)

)∥∥∥2
F

}
(56)

◦ To equalize the contribution target’s Style and con-
tent, the α parameter is used. α is a parameter that
allows a change of weightage for style loss.

◦ An iterative technique allows the difficulty men-
tioned above to be minimized. However, in real-
time, it is not practicable to achieve or distinguish
the model.
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FIGURE 36. An overview of MSG-Net. (Zhang et al. [34]).

FIGURE 37. Extended architecture. (Zhang et al. [34]).

◦ Target style features map is tuned using the follow-
ing approximation:

Ŷ i
= 8−1

[
8
(
F i (xc)

)T
WG

(
F i (xs)

)]T
(57)

◦ The layer can be differentiated and introduced
into the current Generative network and can learn
directly without supervision from the loss function.

• Multi-style Generative Network (MSG-Net): This
method introduces matching the feature statistics explic-
itly during runtime.
◦ Siamese network and encoder of transformation

network share their weights, which picks up the
static features from the Style and gives out Gram
Matrices.

◦ Matches the features of style image at multiple
levels with the content image using CoMatch.

◦ Upsampled convolution: upsampling with convo-
lution layer of stride 2. Compared to stride Con-
volution fractionally, the calculation complexity
and parameters are precisely four times for this
approach. This way, the network does not sample
objects.
Upsampled Residual block: Original architecture is
extendedwith an upsampling version of fractionally
strided convolution as soon in image Fig. 37.

FIGURE 38. Spatial control result. (Zhang et al. [34]).

◦ Brush Stroke Size Control: The network was con-
ditioned to learn different brush stroke sizes with
different picture type sizes. Users can choose the
brush stroke size after training.

◦ The employment of weighted layers of ReLU and
the normalizing process improves the picture qual-
ity created and resists the adaptation of picture
contrast.

◦ Minimizing the Loss by:

ŴG = argmin
Wc

Exe,xs
{
λc
∥∥Fc (G(xc, xs))− Fc(xc)

∥∥2
F

+ λs

K∑
i=1

∥∥∥G (F i(G(xc, xs))
)
− G

(
F i(xs)

)∥∥∥2
F

+ λTV `TV (G (xc, xs))} (58)

The speed and size of models are crucial for mobile apps
and cloud services. These are shown in Table 12.
• MSG-Net is shown faster due to an endless encoder in
place of a pretrained VGG Network.

• Model Scalability: It is noted that there is no loss in
quality as the number of styles rises on a real-time basis.

• Fig. 38 shows the spatial control using this model.

1) OBSERVATIONS
[19] Moreover, [32] extends on [24] and adds Optical Flow
estimation based on multiple frames to improve temporal
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TABLE 12. Comparison between different model’s architecture based on
model-size and speed. (Zhang et al. [34]).

consistency. [32] introduces a CoMatch Layer that maps
second-order feature statistics with target styles. [33] focuses
on implementation on mobile devices and compares the per-
formance of video style transfer [33] models of varying size
and input images for two devices. It is observed that achieving
reasonable frame rates with high resolutions is difficult, given
the lack of GPU usage on mobile devices.

VI. NST EVALUATION METRICS
Evaluation metrics for NST could be challenging because
of the variety in GANs models. However, accuracy, Fréchet
Inception Distance (FID), Intersection-over-Union (IoU),
time, perceptual path lengths, and warping error are the most
often utilized metrics for the models constructed in the pub-
lications evaluated [36].
• The accuracy was used to measure the relative depth of
the predicted images. It was also used to predict feature
maps, where the higher the accuracy, the more accurate
the feature maps indicated.

• The Fréchet Inception Distance (FID) approximates the
real and fake feature distributions with two Gaussian
distributions. They then compute the Fréchet distance
(Wasserstein-2 distance) between two Gaussian distri-
butions and use the findings to determine the model’s
quality.

• Few papers use the Intersection-over-Union (IoU) met-
ric to determine the accuracy of segmentation and detec-
tion in object classification and localization.

• The perceptual path length quantifies the difference
between consecutive images (VGG16 embeddings).
It determines if the image changes along the shortest
perceptual path in the latent space where fake images
are introduced.

• The warping error is the difference between the warped
and real subsequent frames. The warping error value
is a good metric for determining the smoothness of
video since it is an efficient technique to monitor video
stability with many frames.

VII. POSSIBLE FUTURE APPLICATIONS OF NST
Apart from various exciting image transformation use cases,
NST can be extended in a fewmore application areas such as:
• Movies: NST can change the scenes captured in movies
using representational objects instead of green screens
and tedious editing [37], [38].

• Online Education: Using different style banks, the same
model can be used for other applications, such as creat-
ing animated versions of real-life stories in Education.

• Gaming: It can also be used in Mixed Reality (MR)
games wherein the real world seen from the MR
headset will change based on the style used for the
game [38], [39].

• Fashion industry: NST can find applications in the fash-
ion industry where designers and consumers can use it to
overlay items while designing or trying them [40], [41].

Approaches like [42] provide a good starting point for real-
time video style transfer and can be improved to work on
mobiles efficiently. Observed with user privacy being in the
headlines every day, Federated learning can also provide
safer, more private data access by localizing training to spe-
cific devices. Some recent approaches include [43], [43].
Studies like [36] compare the evaluation metrics commonly
used. Having more architectures that train on unpaired data
is another interesting sub-domain to venture into. A good
approach that performs style transfer on unpaired data is [44].
Although [44] works for high-resolution unpaired images
and not videos, it can be considered a good entry point for
high-resolution video style transfer. [45] uses Vision Trans-
formers for image style transfer. There can be many more
such fascinating use cases for NST shortly based on the user
requirements.

VIII. RESEARCH GAPS
The research gaps observed in this literature review are
summed up in Fig. 39 and can be grouped into three basic
categories, namely architecture-related, platform-related, and
dataset related
• Platform-related:
a. Native Mobile NST: Implementing real-time video
neural style transfer directly on mobiles. Most applica-
tions implement style transfer on mobiles via a Client-
server approach. This is primarily due to mobiles having
relatively new software and low-power hardware.
b. Use of Federated Learning: Federated learning is
another gap observed while looking at Mobile NST. It is
a recent idea and has been used to overcome low power
device limitations.

• Dataset Related:
a. Lack of benchmark datasets: As discussed previously,
multiple papers mix and match datasets by re-purposing
them from different domains. While this has the pros of
swapping and replacing datasets in training, the need for
a benchmark dataset can be seen for evaluation purposes.
A benchmark dataset couldmake testing, evaluating, and
understanding the model’s performance standardized.
Another point observed is that some articles create their
datasets and apply different transforms to data, which
can distort the image’s structure, leading to the genera-
tion of artifacts.
b. Lack of a good benchmark metric: It is observed
and discussed above that many papers turn to Amazon
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FIGURE 39. Research gaps.

M-Turks (a service that offers manual labor) to inspect
the quality of the images generated. Photorealism is usu-
ally inspected manually and thus could be a place to add
a metric. However, this can be difficult as photorealism
is subjective and might change depending on context.
In addition, as discussed previously, whereas there are
metrics such as Intersection over Union or Accuracy,
they rely on ‘‘comparing’’ two similar images. This can
be particularly challenging to use as one needs some
‘‘ground truth’’ to compare to, and paired samples can
be tricky to obtain.

• Model Architectures: It is seen that many of the models
cannot handle super-resolution verywell. The scalability
of models in terms of the resolution of generated images
is thus another concern. Apart from this, most data avail-
able or pieced together is usually unpaired, meaning the
content and style images do not have the same structural
composition.

IX. CONCLUSION AND FUTURE SCOPE
NST, one of the exhilarating AI applications adopted for
artistic use of photos and videos, has started capturing the
attention of GANs researchers in the last few years. These
papers consisted of a comprehensive study of GANs and
Video NST, divided into four parts. Initially, the working of
GANs has been explained and its recent development on the
different types of models for NST on mobile devices like
CartoonGAN, Artsy-GANs, etc. The unpaired images can
be used for training GANs using CycleGANs. Furthermore,
adding ‘‘temporal losses’’ allows consistency between adja-
cently generated frames as seen over multiple architectures.

Then the GANs improvement papers, explaining how Spatial,
Color, and Scale control can allow better image generation.
Lastly, how NST can be applied over mobile devices in
real-time using GANs has been explained.

However, real-time NST on mobile devices with a reason-
able frame rate is still relatively difficult to achieve. As time
progresses, low power devices and devices with a smaller
footprint will perform and handle large-scale computation
better. This will be an exciting avenue to investigate, consid-
ering NST can be used in Augmented Reality. Non-iterative
video NST is a good topic for future research since it can
considerably reduce the time required to process videos.
Since NST has vast potential, its research would see growing
exponentially in coming years.
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