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ABSTRACT A network intrusion detection (NID) system plays a critical role in cybersecurity. However,
the existing machine learning-based NID research has a vital issue that their experimental settings do not
reflect real-world situations where unknown attacks are constantly emerging. In particular, their train and
test sets are from a single data set, which inevitably overestimates the detection power since all test attack
types are known in training, and test cases will have similar characteristics to the training data. This paper
introduces a new strategy to constitute test data with updated traffic with attack types not included in training
data. In the proposed setting, the prediction accuracy of the existing detectors is dropped by about 20%
compared to what has been reported. Also, in-depth analysis of detection performance by attack types
has revealed that the existing models have strength at certain attack types but struggle to detect the other
attack types such as DoS, DDoS, web attack, and port scan. To overcome the issues, we propose a new
neural detector, called MHSA, based on a multi-head self-attention mechanism whose architecture suits
better to capture scattered pieces of evidence in network traffic. Our model improved the overall detection
performance by 29% in false positive rate at the true positive rate of 0.9 and by 9% in AUC over the current
state-of-the-art models, successfully detecting the attacks that are not well captured before. Furthermore,
we show that our proposedMHSAmodel even outperforms the best ensemble detector constructed by joining
the state-of-the-art classifiers.

INDEX TERMS Deep neural network, intrusion detection, multi-head attention, realistic prediction
performance evaluation, self-attention.

I. INTRODUCTION
With the massive increase in connectivity and the expan-
sion of the attack surface, the risk and severity of net-
work security threats have grown dramatically. The network
intrusion detection (NID) system is a popular measure for
defending against network security threats by monitoring
network traffic and detecting malicious activities. Recently,
machine learning and deep learning-basedmethods have been
proven effective in creating NID systems with high accuracy
and availability. A variety of studies have been conducted
on designing effective machine learning and deep learning
approaches for NID systems in detecting malicious network
traffic [1]–[21], [41]–[48], [55], [58].

Despite many existing studies on applying machine learn-
ing and deep learning to NID systems, there are only a few
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considerations in designing realistic experiment settings to
properly evaluate the detection performance of NID models.
First, test data consists of the same attack types as in training
data in the previous studies. As a result, the trained models
are tested only against attack types known in training time,
inevitably limiting accurate evaluation of prediction perfor-
mance in the real world where unseen kinds of attacks may
exist. In real-life NID systems, precise detection of emerging
or zero-day attacks is a critical capability. Second, attack
patterns tend to change over time in the actual situation,
and therefore it will be better to consider separate data sets
for training and testing where more recent attacks reside
in the test set. In fact, this reflects a common strategy for
data collection in intrusion detection studies – for exam-
ple, IDS-2017 (also known as CIC-IDS-2017) [30] contains
up-to-date attacks that may not be included in the IDS-2012
(a.k.a. ISCX-IDS-2012) [29] data set. For a more realistic
performance evaluation, we suggest a new strategy to use
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TABLE 1. Prediction accuracy of the state-of-the-art malicious traffic
detectors evaluated in different experimental settings. In their original
experiments, training and test data are from a single data set. A more
realistic evaluation where the test set contains newer and different
attacks shows much lower accuracy values than what has been reported
in the original literature.

an old data set (IDS-2012) for training and a newer data set
(IDS-2017) for testing, where the test set includes unseen
attack types (for example, botnet and web attacks) and more
recent attacks. Our strategy will allow us a more realistic
evaluation of NID models for detecting future attacks.

The need for a better evaluation strategy can be seen more
concretely in Table 1. The table shows the prediction accuracy
values of the deep learning-based state-of-the-art malicious
traffic detectors, encoded gated recurrent unit (E-GRU) [39],
hierarchical attention (HA) [17], and convolutional neu-
ral network long short-term memory (CNN-LSTM) [20],
reported in their original literature, where the training and
the test data are from a single data set (either IDS-2012 or
IDS-2017). When we try a more realistic setup where we
train with IDS-2012 and test with IDS-2017, we can see
that prediction accuracy values have dropped significantly,
indicating that the original test scores may overestimate the
detection performance on future attacks.

Our new analysis also hints that the existing methods
may have certain weaknesses in detecting different types of
attacks. In Table 2, we present the detection rates of the
detection models for each attack type. The numbers indicate
that the state-of-the-art models have competent performance
on specific attack types but can be inadequate to identify
the other attacks such as denial of service (DoS), distributed
denial of service (DDoS), web attack, and port scan. Some of
these attacks are comprised of seemingly legitimate packets,
making them hard to detect. For example, in a Slowloris
attack [49], the attacker sends a partial HTTP header to a
victim. The action causes the victim to keep the connection
open, as the victim does not start processing theHTTP request
until it receives the complete header. Then, the attacker sends
the next portion of the header periodically before the time
out is reached so that the victim cannot release the resources
allocated to it. In this way, the attacker maintains many
connections simultaneously and uses up the system resources
of the victim. That is, the attacker occupies all available
connection sockets, and all legitimate connection attempts
are blocked. However, it is challenging to detect these types
of attacks, as the evidence of malicious behaviors exists in
various forms.

For improving the detection performance on the attack
types mentioned above, which are stealthy by design, it is
necessary to analyze the behaviors of packets from a vari-
ety of perspectives. As shown in Table 2, the recurrent
neural network models are not enough to capture multi-
ple aspects of representations from packets. We propose to
use the multi-head self-attention (MHSA) mechanism [22]
to get packet information from multiple perspectives. That
is, the mechanism allows our model to use information
selectively from multiple representation subspaces at dif-
ferent positions simultaneously. This will allow our model
to achieve higher detection performance than the existing
models on DoS, DDoS, port scan, and web attacks, as we
discuss later in the experiments.

Table 2 also shows an important fact that eachmodel has its
own strong points and weaknesses in detecting certain types
of attacks. For example, the Bi-LSTMmodel is outstanding in
identifying the DoS, infiltration, and botnet attacks, whereas
the E-GRU model outperforms all other models on detecting
the DDoS attacks. To combine the strengths of the models,
a typical approach is to construct an ensemble model based
on the state-of-the-art detectors or the attack-type best mod-
els. We will show later that our proposed MHSA detector
even outperforms the best ensemble model with a significant
margin.

Our contributions in this work can be summarized as
follows:
• We introduce a new evaluation strategy using different
data sets in training and testing, where the test set can
have updated patterns and new types of attacks. This
strategy better reflects real intrusion detection scenarios
where the development depends on archived data and
attackers keep trying to change traffic patterns and invent
new attacks to avoid detection.

• We propose the MHSA neural network as a better
alternative to the state-of-the-art models, especially for
detecting DoS, DDoS, port scan, and web attacks that
are not well captured by the existing methods.

• Our proposed MHSA model, a single detector, defeats
the best ensemble model based on the state-of-the-art
detectors where each base model has its own strength
in identifying different attack types.

The rest of this paper is organized as follows. Section II
introduces the existing machine learning and deep learning
models for NID systems. Section III provides the details of
our proposedMHSAmodel and attentionmechanisms, which
play a crucial role in our architecture. Also, we describe how
to construct ensemble models. In Section IV, we evaluate
the prediction performance of our model in a realistic setting
where unseen or updated attacks may exist, comparing it to
the state-of-the-art detectors. Section V concludes the paper.

II. RELATED WORK
The network intrusion detection (NID) system, a key compo-
nent of cybersecurity, protects critical assets by identifying
anomalous behaviors in the network traffic. Depending on the
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TABLE 2. The detection rates of state-of-the-art models to each attack type. All models are trained on the IDS-2012 data set and tested on the IDS-2017
data set. The boldface numbers indicate the best detection rate in each attack type.

detectionmethod, the NID systems can be largely categorized
into signature-based and behavior-based NID systems [33].
The signature-based NID system [34] aims to detect mali-
cious network activities by examining specific patterns in
network traffic. Despite their popularity, this method tends
to be insufficient for detecting unknown attacks for which
patterns have not been analyzed. The behavior-based NID
system, also known as an anomaly-based NID system [35],
analyzes the network traffic and identifies malicious activi-
ties from potential attacks. Unlike the signature-based NID
system, the behavior-based NID system performs better at
identifying unseen attacks. With the growing complexity and
variety of software, new vulnerabilities are emerging contin-
uously. Moreover, easy access to advanced technology such
as artificial intelligence is contributing to the rapid evolution
of network security threats. In this situation, the principal
focus of the research and development in the field of NID
has become the behavior-based NID system [35], where the
machine learning-based [1]–[8], [41]–[45] and deep learning-
based approaches [9]–[21], [46]–[48] have been popular.

Machine learning algorithms such as support vector
machine (SVM) [36], random forest [37] and k-nearest
neighbor algorithm (k-NN) [38] have been actively adopted
for NID systems in classifying network attacks. Ikram and
Cherukuri [1] employed SVM with principal component
analysis (PCA) for detecting malicious network traffic. The
automatic parameter selection technique is used to opti-
mize the SVM parameters, such as the kernel parame-
ters and the soft margin parameter in their model. In [2],
Vijayananda et al. proposed a NID system in wireless mesh
networks. The proposed system consists of multiple SVM
classifiers with a genetic algorithm-based feature selection
method. The individual SVM classifiers are assigned to
detection of each type of attack, trained with informative
features of each attack type selected by the proposed fea-
ture selection technique. In [6], Ingre et al. proposed an
NID model using decision trees. The proposed model uses
the correlation-based feature selection method to reduce
the number of features. Li et al. [8] presented a multi-
layers anomaly detection model which extracts features
from different network layers. For reducing the redundancy
and noise caused by information from multiple network
layers, they proposed an algorithm with the combination
of PCA and random forest. Additionally, k-NN [5] and
clustering methods [4] have been used to detect network
attacks.

Recently, as deep learning has shown good performance
in a variety of fields such as image recognition [25] and
machine translation [22], there have also been various studies
for applying deep learning in the NID task. Among them,
convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) have achieved remarkable results. CNN
models [11]–[13], [46]–[48] detect network attacks by cap-
turing spatial patterns from network traffic data converted
to grayscale images. On the other hand, RNN models
[14]–[20] classify network attacks by extracting temporal
patterns in network traffic data. In [48], Wang et al. used
the two-dimensional CNN architecture to detect malicious
network traffic. Also, Xiao et al. [11] proposed an end-
to-end encrypted traffic classification method with the one-
dimensional CNN. It was shown that the proposed method
achieved performance improvement compared to the two-
dimensional CNN model and the machine learning-based
model. Zhou et al. [12] presented the NID model based on
the LeNet-5 architecture. Their model achieved over 99%
accuracy on the Moore data set [54]. In addition, there have
been numerous studies that treat network traffic data as time-
series data and use RNNs to identify malicious network traf-
fic. Hwang et al. [26] proposed a packet-based NID model
using a novel word embedding mechanism and long short-
term memory (LSTM). The word embedding mechanism
extracts the semantic meaning of a packet, and LSTM net-
works capture sequential information in a packet for detecting
attacks. In [17], Han et al. applied the hierarchical attention
network (HAN) [27] to the NID system, where HAN is
composed of bidirectional gated recurrent units (GRUs) and
attention layers. Using attention mechanisms, the model can
focus on the crucial parts of network traffic, which improves
the detection performance to over 99% on the IDS-2012
data set and IDS-2017 data set. Furthermore, the mod-
els combining CNNs with RNNs have been proposed to
improve the detection performance. In [19], Wang et al. pre-
sented a novel intrusion detection system called hierarchical
spatial-temporal features-based intrusion detection system
(HAST-IDS), which is composed of CNNs for learning low-
level spatial features of network traffic and LSTM networks
for learning high-level temporal features. In [21], Su et al.
designed a traffic anomaly detection model which consists
of multiple convolutional layers, a bidirectional LSTM layer,
and an attentionmechanism. The convolutional layers capture
local features of network traffic, whose outputs are fed into
the bidirectional LSTM layer to learn time-series features in
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packets and build packet embedding vectors. Then, the atten-
tion layer analyzes the important degree of packet embedding
vectors to obtain fine-grained features which are more salient
for detecting malicious network traffic.

Also, there are several studies employing ensemble meth-
ods to improve the robustness and detection performance of
NID systems by combining multiple detectors. For example,
Moustafa et al. [55] proposed the AdaBoost [59] ensemble
classifier composed of decision trees, naive Bayes models,
and artificial neural networks. The Adaboost ensemble model
achieved over 95% detection rate on UNSW-NB15 [56] and
NIMS botnet [57] data sets with simulated internet of things
sensor data, showing better predictive power than the individ-
ual classifiers included in the ensemble. Furthermore, in [58],
Sharma et al. proposed another ensemble-based NID system
using extreme learning machines (ELMs) [60], where a dedi-
cated ELM is trained to handle a specific type of attack using
a different subset of features chosen per attack type.

Although the state-of-the-art models have reported out-
standing detection performance, our experiment tells that
they may not be satisfactory for detecting all types of attacks,
as shown in Table 2. This observation has motivated us to
propose a neural detector based on multi-head self-attention,
capturing the scattered evidence in multiple forms from net-
work packets to improve the detection performance on the
attack types that the existing models cannot identify. Also,
current literature has evaluated detection performance using
training and test sets from a single data set, which we believe
is not enough to reflect the real-world environment where
unknown types of attacks may exist.

In addition, we construct ensemble models to enhance
the overall detection performance by strengthening the weak
points of single models by combining selected single mod-
els advantageous for different attack types. We show that,
however, our suggested single neural detector MHSA even
outperforms the best ensemble model, in both attack-type
detection rate and overall detection performance.

III. METHODOLOGY
In this section, we describe our proposed detection model
usingmulti-head self-attention and attentionmechanisms (we
denote our model as MHSA). In addition, we explain the
ensemble method that combines the strength of each model
in detecting different types of attacks.

A. MODEL ARCHITECTURE
The MHSA model is a deep neural network for network
intrusion detection that takes a flow as an input in the form of
a p× q dimensional matrix where p and q are the numbers of
packets and bytes, respectively. The MHSA model is essen-
tially a binary classifier and outputs the probability that the
given flow will be malicious.

Fig. 1 shows the overall architecture of our proposed
MHSA detector model. It has four modules: byte encoder,
packet encoder, flow encoder, and network traffic classifier.
The byte encoder is intended to capture multiple aspects

FIGURE 1. The overall architecture of the proposed MHSA (multi-head
self-attention) model. The network traffic classifier detects an attack
based on a flow-embedding vector constructed using a byte encoder,
packet encoder, and flow encoder.

of representations from packets, whose architecture is the
same as the encoder part of the Transformer network [22].
The packet encoder builds packet embedding vectors through
weighted sums of byte embedding vectors, the outputs of the
byte encoder, where the weights correspond to the importance
of bytes. In the same way, the flow encoder constructs a flow
embedding vector by highlighting the critical packets. Lastly,
the network traffic classifier determines whether the network
traffic is benign or malicious using the flow embedding
vector.

1) BYTE ENCODER
The purpose of the byte encoder is to convert bytes of pack-
ets to vector representations. It contains three steps. Firstly,
the byte embedding layer transforms a sequence of bytes
into a series of embedding vectors. Second, the positional
encoding layer injects relative position information into the
sequence of byte embedding vectors. In other words, the byte
sequence of the ith packet [bi1, . . . , biM ], where M is the
length of a packet, is converted into the sequence of vectors
Ei = [ei1, . . . , eiM ], where eij ∈ Rde is the embedding vector
corresponding to the jth byte of the ith packet and de is the
embedding dimension we obtain after the byte embedding
layer and the positional encoding layer.

129638 VOLUME 9, 2021



S. Seo et al.: Hunt for Unseen Intrusion: MHSA Neural Detector

Lastly, the MHSA blocks are applied repeated N times to
the sequence of vectors Ei. The block is composed of a multi-
head self-attention layer and a feed-forward layer, depicted
as a gray box in Fig. 1. Additionally, residual connection and
layer normalization are applied to the outputs of each layer
in the MHSA blocks for regularization. To be more specific,
an MHSA block can be formalized as follows:

X = MultiHead(Q,K ,V ),

FFN(X ) = max(0,XW1 + b1)W2 + b2,

where Q ∈ RM×de ,K ∈ RM×de , and V ∈ RM×de are the
sequence of byte vectors, W1 ∈ Rde×dh , b1 ∈ Rdh ,W2 ∈

Rdh×de , and b2 ∈ Rde are projection parameters, and dh is
the dimension of the hidden layer. For simplicity, the residual
connection and layer normalization are omitted in Fig 1.
We denote the output of the MHSA blocks on the ith packet
as [vi1, . . . , viM ], where vij ∈ Rde is the vector representa-
tion corresponding to the jth byte of the ith packet. Using
the MHSA blocks, the byte encoder captures the multiple
scattered evidence of attacks from packets.

2) PACKET ENCODER
The packet encoder builds the packet embedding vectors
by highlighting the informative bytes and fading out the
meaningless bytes. The packet embedding vector is com-
puted by a weighted sum of byte vectors, where the weights,
representing the significance of bytes, are assigned by the
additive attention mechanism. The ith packet Pi is described
as follows:

Pi =
M∑
j=1

αijvij,

where Pi is the de-dimensional vector, αij is the attention
weight assigned to jth byte of the ith packet.

3) FLOW ENCODER
Not all packets of the network flow are equally critical to
detect the attack. Therefore, the flow encoder constructs the
flow embedding vector by reflecting the importance of pack-
ets. The flow embedding vector is computed by a weighted
sum of packet embedding vectors, where the weights are
generated in the same way as the packet encoder. The flow
embedding vector F is computed as follows:

F =
L∑
i=1

αiPi,

where the dimension of F is de and L is the number of packets
that compose the network flow. F is the flow embedding
vector that contains all information of the entire network
traffic.

4) NETWORK TRAFFIC CLASSIFIER
The network traffic classifier identifies malicious network
traffic with the flow embedding vector F . The classifier is

composed of a feed-forward layer with the softmax function:

Y = softmax(FWf + bf ),

where Wf ∈ Rde×dc and bf ∈ Rdc are projection parameters
and dc is the number of classes. Y represents the probabilities
for each class.

B. ATTENTION MECHANISM
Our proposed model makes use of the attention mechanism,
which gives the ability to the classifier to use input infor-
mation selectively by discovering and focusing on important
parts of the inputs. The mechanism has provided improved
accuracy in the fields of computer vision [53] and natural
language processing [22], [52], thereby getting more interest
from researchers.

1) ADDITIVE ATTENTION
Additive attention highlights the significant elements of an
input sequence, where the importance of elements is deter-
mined by attention weights. For a given sequence of vectors
x = (x1, . . . , xn), where n is the length of a vector sequence,
attention weight αi is computed as follows:

ui = tanh(W T xi + b),

αi =
exp(uTi c)∑
j exp(u

T
j c)

, (1)

where xi ∈ Rd is a vector representation of the ith element,
and W ∈ Rd×w, b ∈ Rw, and c ∈ Rw are parameters in
an additive attention network. As shown in (1), the hidden
representation ui is built by applying linear transformation to
a vector xi. Then, the attention weight is assigned to a vector
based on the similarity of ui with a context vector c. The
context vector c can be considered as a fixed query asking for
which vectors are significant in the input sequence. The final
representation of the input sequence is formulated as follows:

X =
n∑
i=1

αixi.

2) SELF-ATTENTION
Self-attention is a kind of attention mechanism that cap-
tures the relatedness between different positions of a single
sequence and represents each position with an expressive
vector. That is, a self-attention network takes a sequence of
vectors x = (x1, . . . , xn) as an input and captures interactions
between xi and other vectors of the input sequence. Then,
a self-attention network outputs a sequence of vectors z =
(z1, . . . , zn) that contains contextual information.

3) SCALED DOT-PRODUCT ATTENTION
An attention mechanism can be described as mapping a
query and a set of key-value pairs to an output, where the
query, keys, values, and output are all vectors. The output
is generated using a weighted sum of values, where each
weight is obtained by an alignment model that takes the query
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FIGURE 2. The schematic of the scaled dot-product attention. The output
is computed by a weighted sum of the values, where the weights are
determined by the dot-product of the query with all the keys.

and the corresponding key as inputs. The attention weights
represent the relative importance of each pair of key-value to
the particular query.

In scaled dot-product attention, the dimensions of a query
and a key are dk , and the dimension of a value is dv. As shown
in Fig. 2, scaled dot-product attention is composed of four
steps. In the first step, performing dot-product of a query and
all keys, it estimates the significance of each key. The second
step is dividing the results of dot-product by

√
dk . The scaling

prevents the arguments of the softmax function being too
large, which will result in extremely small gradients. In the
next step, the softmax function is applied to get attention
weights. The last step multiplies each attention weight with
the corresponding value. Scaled dot-product attention pro-
cesses a set of queries simultaneously for efficiency. Thus,
a set of queries is packed into the matrixQ. The keys and val-
ues are also packed into matricesK and V . Finally, the matrix
of outputs is computed as follows:

Attention(Q,K ,V ) = softmax(
QKT
√
dk

)V .

4) MULTI-HEAD ATTENTION
Performing an attention mechanism multiple times on lin-
early projected queries, keys, and values is known to be more
effective than a single attention mechanism [22]. Fig. 3 shows
such multi-head attention linearly projects the queries, keys,
and values h times using different, learned linear projections.
In this way, dmodel-dimensional queries, keys, and values
are mapped into dk , dk , and dv dimensional vector spaces,
respectively. Then, the attention mechanism is performed
on each of the linearly projected queries, keys, and values
in parallel. Finally, the outputs of the attention mechanisms
are concatenated and projected. The multi-head attention is

FIGURE 3. The schematic of the multi-head attention. The attention
mechanisms are performed multiple times in parallel.

formulated as follows:

MultiHead(Q,K ,V ) = Concat(H1, . . . ,Hh)WO,

Hi = Attention(QWQ
i ,KW

K
i ,VW

V
i ),

where WQ
i ∈ Rdmodel×dk ,WK

i ∈ Rdmodel×dk ,WV
i ∈

Rdmodel×dv , andWO
∈ Rhdv×dmodel are the projection matrices.

Here Hi represents the output of a single attention function
that takes linearly projected queries, keys, and values as
inputs. By performing a single attention function h times
on different projected versions of queries, keys, and val-
ues, multi-head attention can analyze the input from various
aspects. We hypothesize that this construction will be use-
ful in detecting small traces of attacks scattered in network
packets.

5) POSITIONAL ENCODING
Positional encoding incorporates the positional information
into sequence data. Models such as multi-head attention
networks, which do not have recurrent and convolutional
architecture, cannot take order into account. Therefore, it is
necessary to inject relative or absolute position information
into the sequence data for the models to make use of the
order of the sequence. Sinusoidal positional encoding is one
of the methods that solve this problem. Sinusoidal positional
encoding adds a vector composed of sine or cosine values
to each element of sequence data based on its position. The
vectors for sinusoidal positional encoding are computed as
follows:

PE(pos,2i) = sin(pos/100002i/d ),

PE(pos,2i+1) = cos(pos/100002i/d ),

where pos is the position of each element, i is the position of
the dimension, and d is the dimension of the element. This
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way, the model can infer the relative position of each element
of sequence data.

C. ENSEMBLE METHOD
The ensemble is a practical technique to build a predictive
model by combining multiple models, so to improve the
performance and robustness of classifiers [51]. For simplicity,
we consider the voting ensembles based on the outputs of
selected models. Depending on the basis for the prediction,
voting ensembles can be largely categorized into hard voting
and soft voting ensembles.

1) HARD VOTING
Hard voting, also known as majority voting, predicts the
class ŷ that is chosen by a majority of classifiers. The hard
voting is described as follows:

ŷ = mode(C1(x), . . . ,Cn(x)).

Here, Ci(x) represents a class predicted by the individual
classifier i, and n is the number of classifiers.

2) SOFT VOTING
In soft voting, the predicted probabilities from individual
classifiers for each class are summed. Then, soft voting pre-
dicts the class with the largest value. Soft voting is defined as
follows:

ŷ = argmax
j

n∑
i=1

C j
i ,

where C j
i represents the predicted probability of the ith clas-

sifier for the jth class.
In our experiment, soft votingwas possible since all models

provided probabilities of being benign or malicious traffic,
and soft voting generated ensemble models with better pre-
diction performance than hard voting.

3) ENSEMBLE OF ATTACK-TYPE BEST PREDICTION MODELS
Ensembles can be constructed using all available models;
however, it may weaken the strength of each model by merg-
ing too many opinions. When some base prediction models
are good at detecting certain attack types, it would be better
to mix only a few selected base classifiers having strength on
perhaps non-overlapping attack types.

IV. EXPERIMENTS
This section evaluates the detection performance of the multi-
head self-attention (MHSA) model and the state-of-the-art
models on our new experiment setting, which is designed
to reflect a real-world environment where unknown attacks
are constantly emerging. We also carry out further analysis
on the number of misclassified samples by attack types to
figure out the strong points and weaknesses of each model.
Finally, we compare the detection performance of our pro-
posed MHSA model with that of ensemble models that inte-
grate the strengths of individual detectors.

TABLE 3. Statistics of the IDS-2012 data set.

TABLE 4. Statistics of the training set (a random subset of IDS-2012) used
for training and validation.

We use the PyTorch 1.7.1 as the experimental framework
on Ubuntu 18.04 64 bit OS with data parallelism across 8
GeForce RTX 2080 Ti GPUs. In experiments, we train our
models using the mini-batch size of 16 and the learning rate
of 0.01 in stochastic gradient descent.

A. DATA SETS
Our experiments use two distinct data sets for training and
testing, respectively, where test data may include unseen
attack types that are not contained in training data, so to
perform amore realistic evaluation than the existing literature
where training and testing are done using data from a single
data set. In this work, we use the IDS-2012 data set for
training and the IDS-2017 data set for testing, where the latter
includes new attack types such as botnet and web attacks.

1) IDS-2012 DATA SET
The IDS-2012 data set [29] is a public data set published
by the Information Security Centre of Excellence at the Uni-
versity of New Brunswick in 2012. This data set consists of
seven days of network activities, including benign network
traffic and four types of malicious network traffic: network
infiltration, HTTP DoS, DDoS, and the SSH brute force
attacks. The data has been collected by simulating normal
users’ behaviors and carrying out various multi-stage attack
scenarios to generate realistic network traffic.

We have preprocessed the raw data of IDS-2012, composed
of PCAP (packet capture) files and CSV files containing a
5-tuple (source IP address, source port, destination IP
address, destination port, transport layer protocol), a times-
tamp, and a label for each flow. The preprocessing procedure
can be summarized as follows. 1) Search for the packets
with the same 5-tuple value of a single row from a CSV
file. 2) Select the packets between the start time and the end
time, where the start time corresponds to the timestamp value
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TABLE 5. Statistics of the test set (IDS-2017).

in the row and the end time is the sum of start time and
the flow duration value of the row. 3) Combine the selected
packets and the label from the row to construct flow data.
The resulting statistics of the IDS-2012 data set are shown
in Table 3.

The preprocessing results of the IDS-2012 data set show
that benign data constitutes 97.95 percent of the entire data
set. Class imbalance can cause deep learning models to
be biased towards the majority class and negatively impact
classification performance. Therefore, we perform random
subsampling to balance the numbers: the statistics of resulting
training data based on IDS-2012 are shown in Table 4.

2) IDS-2017 DATA SET
The IDS-2017 data set [30] is designed to cover a variety
of network attacks, including benign and malicious network
traffic from realistic simulation of user behavior and exe-
cution of various attack scenarios. In particular, IDS-2017
is purposed to include more up-to-date network traffic and
attacks than IDS-2012, providing traffic diversity and vol-
umes for research. The raw data of IDS-2017 has been pre-
processed in the same way as the case of IDS-2012 above.
We have used the entire IDS-2017 data set for evaluation: the
statistics are shown in Table 5.

3) FURTHER PREPROCESSING
In general, flow data has a variable length because the number
of packets constituting the flow and the size of packets is
different from each other. In this work, to deal with variable-
length inputs, we transformed the flow data into the fixed-size
data by fixing the number of packets per flow and each packet
size to the specific values, where the values are determined
by the average flow length and average packet length of the
data sets. According to statistics, the average flow length
of the IDS-2012 data set and the IDS-2017 data set are
10.05 packets and 10.84 packets, respectively. In addition,
the average packet size of those data sets is 81.09 bytes
and 167.09 bytes, respectively. We set the length of flows to

20 packets and the packet size to 800 bytes to minimize the
input size while maintaining the packet payloads as much as
possible. If a packet is longer than 800 bytes, we truncate the
trailing bytes to fit it in 800 bytes. On the contrary, if a packet
is shorter than 800 bytes, we pad it with zeroes. We also
randomize the internet protocol (IP) address and media
access control (MAC) address to remove the influence of IP
address and MAC address on detecting malicious network
traffic.

In summary, the preprocessing is composed of two main
steps: 1) combine the packets matching the values of a row
in a CSV file with a label value of the row to construct flow
data, and then 2) zero-pad or truncate the variable-length flow
data to fit it into fixed-size. Besides the above steps, ran-
dom subsampling and randomization of network addresses
are performed before and after the second step, respectively.
In addition to the methods described above, there is no further
data preprocessing such as removing redundant features.

B. EVALUATION METRICS
We evaluate the network intrusion detection (NID) models by
means of the receiver operating characteristic (ROC) curve
and the area under the curve (AUC). A ROC curve shows the
true positive rate (TPR) against the false positive rate (FPR)
at different classification threshold values. ROC analysis is
critical since one can check 1) if a model can achieve the
desired level of TPR, 2) the level of FPR at the desired
point of TPR, 3) the AUC value, which tells the overall
performance characteristic of the classifier under different
threshold values.

The TPR and the FPR are defined as follows:

TPR =
TP

TP+ FN
, FPR =

FP
TN+ FP

.

Here, true positive (TP) indicates the number of samples
correctly classified as positive, and false positive (FP) means
the number of samples incorrectly classified as positive.
In addition, true negative (TN) is the number of samples
correctly classified as negative, and FN indicates the number
of samples incorrectly classified as negative.

Both TPR and FPR are essential indicators that represent
the performance of NID systems [40]. High TPR means a
high detection rate, which is the first priority in intrusion
detection systems. At the same time, lowFPR is also an essen-
tial factor in intrusion detection since high FPR implies that
many of the detected attacks can be false alarms. Therefore if
the detection system has a high FPR, it will be necessary for
security professionals to examine all the alarms to distinguish
true positives – this will be complicated and time-consuming,
limiting our defense readiness to respond immediately to
attacks. The accuracy rate used in many NID literature is a
less appealing measure for evaluation since it represents the
ratio of correct answers to all test cases, which can look very
high if some of the major classes (e.g., benign) are classified
correctly, even though there are many false positives and false
negatives.
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FIGURE 4. The ROC curves of the individual models. The horizontal
dashed line indicates the TPR value of 0.9.

C. RESULTS
1) OVERALL DETECTION PERFORMANCE OF INDIVIDUAL
MODELS
We compare the detection performance of our pro-
posed MHSA model with that of the deep learning-based
state-of-the-art malicious traffic detectors: bidirectional long
short-term memory (denoted by Bi-LSTM), encoded gated
recurrent unit (E-GRU) [39], hierarchical attention (HA) [17],
and convolutional neural network long short-term memory
(CNN-LSTM) [20]. Bi-LSTM is essentially a recurrent neu-
ral network (RNN) that distinguishes malicious and benign
network traffic. E-GRU consists of an encoder and GRU net-
works. The encoder performs feature extraction on network
flow data, whose outputs are fed into the GRU networks to
classify attacks from network traffic. E-GRU shows improved
detection capability through learning representations of net-
work flows using the encoder from an auto-encoder. HA uses
bidirectional GRU-based RNNs and attention connections
to learn the hierarchical representation structure of network
traffic. It progressively builds a flow embedding vector by
aggregating the critical bytes into packet embedding vectors.
HA integrates significant packets into the flow vector in a
similar fashion, where the attention mechanism determines
the importance of bytes and packets. Then, HA predicts
whether the flow is benign or malicious with the flow
vector. Finally, CNN-LSTM integrates CNN layers into an
LSTM network to capture spatial and temporal patterns from
network flows simultaneously. The resulting architecture is
known to be fast compared to other state-of-the-art methods.

Figure 4 shows the ROC curves of the network intru-
sion detection models, where MHSA-2, MHSA-4, and
MHSA-6 represent the variants of the proposedMHSAmodel
with different numbers of MHSA blocks in the byte encoder.
From the ROC curves, we can read how large FPR values will
be from different methods to achieve the desired TPR level
of 0.9. The best performing model is one of our proposed
models, MHSA-2, whose FPR value is the smallest (0.210)
among the models at the TPR value of 0.9. On the other hand,
the FPR values of the deep learning-based state-of-the-art
models: Bi-LSTM, E-GRU, HA, and CNN-LSTM are 0.508,
0.414, 0.295, and 0.490, respectively. As a result, MHSA-2

improves the detection performance compared to the state-of-
the-art models by about 29% in FPR. In addition, MHSA-2
achieves performance enhancement by 9% in terms of the
AUC score.

2) DETECTION PERFORMANCE OF INDIVIDUAL MODELS BY
FLOW TYPES
Here we investigate the detection capability of classification
models in terms of different flow types in the test data.
We conjecture that each detection method will have the
strength on different types of input patterns due to their
differences in design. For instance, CNN-based models will
better capture multiple localized patterns, while RNN-based
models will better utilize (potentially long-term) temporal
information. We also hypothesize that our proposed MHSA
model will be better at detecting attacks such as DoS and
DDoS since themulti-head self-attentionmechanismwill suit
detecting scattered traces of attacks in multiple forms.

Table 6 shows the number of misclassified test instances
for different flow types. The numbers in boldface indicate
the best performance in each flow type. Here, we can observe
that one of our proposed models, MHSA-2, achieves the best
detection performance on DoS, DDoS, web attack, and port
scan as we expected. Especially, the model shows remarkable
performance on the DDoS and the port scan attacks with
detection rates of 99.96% and 99.80%, respectively.MHSA-2
also has competent performance on other flow types, except
for the benign and botnet types. Still, its performance for
the benign and botnet attacks is not the worst among the
competitors. Other models also achieve good performance on
certain attack types, but they fail to identify other flow types
well compared to those few. For example, while CNN-LSTM
detects benign and port scan types well, the model has the
worst performance on brute force, heartbleed, infiltration, and
DDoS attacks.

3) COMPARISON WITH ENSEMBLE MODELS
In the previous experiment, we demonstrated the strength of
our model MHSA-2 that it achieves the best overall predic-
tion performance compared to the existing methods and is
excellent at detecting DoS, DDoS, web attack, and port scan
attacks that seem to be not adequately handled by the other
methods. Here we compare the detection performance of our
MHSA-2 model and ensemble models constructed by joining
the state-of-the-art models, which is a typical approach to
improve the performance of base classifiers.

We use the soft voting scheme for building ensemble
models as discussed in Section III-C. Table 7 shows the
prediction performance of all ensemble combinations of two
state-of-the-art classifiers with their AUC scores on the test
set, along with the scores of the single models for compar-
ison. Here we can find that our MHSA-2 (the S1 model
in the table) model surpasses the best ensemble model E6
in terms of the accuracy, F1 score, and AUC score. The
MHSA-2 model has the AUC value of 0.903, which is better
than that of the best ensemble model E6, 0.889. We also
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TABLE 6. The number of misclassified instances of individual models and the best ensemble model to each attack type. The boldface numbers indicate
the least number of misclassified instances for each attack type.

TABLE 7. Comparison of the AUC scores, accuracy, and F1 scores between individual models and ensemble models, where the accuracy and F1 scores are
computed at the TPR value of 0.9. The results show that our MHSA-2 outperforms the best ensemble model E6, consisting of MHSA-2 and CNN-LSTM. The
boldface numbers indicate the best AUC scores, accuracy, F1 scores of individual and ensemble models.

compared our MHSA-2 model to the ensembles joining
three single models: still, our MHSA-2 model was the best
(results are not shown for the sake of simplicity). Further-
more, Table 6 shows that the MHSA-2 model outperforms
the best ensemble model E6 in detection rates for all attack
types. We think these results come from the weaknesses
of the state-of-the-art models in detecting particular attack
types such as DoS, DDoS, port scan, and web attacks; the
ensemble combinations of our MHSA-2 model and the exist-
ing models have weakened the strength of the best model
MHSA-2.

The ROC plots of MHSA-2 and ensemble models are
illustrated in Fig. 5. Here we present only the ROC curves
of ensemble models based on MHSA-2 since the combi-
nations of MHSA-2 and other models have achieved the
best performance among all constructions. We also include

the ROC curve of the state-of-the-art ensemble model [58]
(we denote this model as the ET-ELM Ensemble) for com-
parison with our models. The ET-ELM Ensemble model is
composed of extreme learning machine classifiers, each of
which detects a specific type of attack using a different subset
of features chosen by the extremely randomized trees-based
feature selection method [61]. The ET-ELMEnsemble model
combines the outputs of each classifier to identify the network
intrusion. The figure shows thatMHSA-2model has achieved
the best performance in ROC, which represents the overall
detection performance in realistic evaluation. More specifi-
cally, our MHSA-2 model achieved the lowest FPR (0.210)
at the TPR level of 0.9, which is a significant improvement of
about 12% and 40% compared to the E6 model and ET-ELM
Ensemble model (their FPR values are around 0.238 and
0.3516, respectively).
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FIGURE 5. The ROC curves of MHSA-2 and ensemble models. The
horizontal dashed line indicates the TPR value of 0.9.

V. CONCLUSION
In this paper, we present a new evaluation strategy to reflect
better the real-world where cybersecurity threats are evolving
continuously, and therefore unseen attacks are constantly
emerging.We propose a novel neural detector based onmulti-
head self-attention, called MHSA, which can capture packet
information from multiple perspectives to alleviate the lim-
itations of the state-of-the-art models. The MHSA model
improves the detection performance compared to the exist-
ing models, especially excellent at detecting DoS, DDoS,
port scan, and web attacks. Moreover, the proposed MHSA
model outperforms the best ensemble model constructed by
combining the state-of-the-art models in detection rate for
each attack type and consequently shows better overall detec-
tion performance. Although our MHSA model has achieved
significant improvement over the existing methods, several
aspects remain to be investigated for real-world intrusion
detection system (IDS) development.

A. DETECTION OF UNSEEN ATTACKS
The purpose of applying AI technology in developing intru-
sion detection systems can be two-folded: reducing expert
effort and detecting unseen attacks. Controlling false alarms
through careful calibration by the ROC analysis of detectors
will be essential to achieve the first goal. The second goal
of detecting unseen attacks is why increasing numbers of
developers incorporate AI technology into IDS development.
However, the theoretical basis of machine learning assumes
that the probability distribution of training and testing data
be the same: detection of entirely new attacks will be very
challenging, if not impossible. Therefore, the goal of detect-
ing ‘unseen’ attacks should be elaborated as detecting new
attacks that share specific characteristics to the known attacks
used in training. For evaluation, one would need to find good
training and test data that fit the purpose, such as IDS-2012
and IDS-2017 used in our experiments. However, more care-
ful analysis will be needed to check if some public data sets
fit the purpose of real-world deployment.

B. ON-SITE FINE-TUNING AND RETRAINING
In some IDS development scenarios, on-site fine-tuning and
real-time retraining might be possible. However, both will

require the collection of new site-specific data, where it is
hard to determine how long we need to collect new data until
we get a sufficient amount of information regarding unseen
attacks. Further, we would need the intervention of human
experts to detect and adequately label the attacks to use them
for fine-tuning or retraining, where the speed of labeling can
bottleneck the entire process. AI techniques such as transfer
learning [62], [63] can be helpful to use new data from other
sites if such data use is allowed by affected organizations.
However, one would need to investigate the similarity of
attacks among the sites to apply the techniques effectively.
The retraining cost of the detection AI model will also be a
critical factor.

C. BEST DETECTION MODELS FOR SPECIFIC ATTACK
TYPES
In this paper, we have suggested the MHSA detector with
a conjecture that its multi-head self-attention construction
will help to capture scattered pieces of evidence in network
attacks, and Table 6 shows that our detector MHSA-2 is the
best at detecting DoS, DDoS, web attack, and port scan attack
types. Among these, the detection performance improvement
on DDoS attacks is very significant: about×144 compared to
the second best, the E-GRU model. We believe this success
indicates that there is still good room for improvement for
detecting a specific type of attack, where the optimal mod-
els may use different architecture to better capture distinct
characteristics of the attack: this will be a good direction for
follow-up research.
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