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ABSTRACT Isolated microgrids powered by renewable energy sources, battery storage, and backup diesel
generators need appropriate demand response to utilize available energy and reduce diesel consumption
efficiently. However, real-time demand-side management has become a significant challenge due to the
communication time-delay issue. In this paper, a distributed model-free strategy is proposed to manage
the demand of Electric Water Heater (EWH) units. The distributed artificial intelligence technology based
on Reinforcement Learning (RL) is adopted to independently control the 150 EWHs using a virtual tariff.
Two different strategies are proposed to generate the virtual tariff and they are compared to each other
to investigate the impact of communication time-delay to the proposed RL algorithm in real-time control
scenario. The first strategy is based on measuring the battery State of Charge (SOC) in real time while
the second method is based on predicting the SOC 24-hours in advance using an Artificial Neural Network
(ANN). The results show that the communication time-delay greatly influences the convergence result of
the first method while the second method showed high immunity. The results also show that the proposed
algorithm reduces the use of energy consumption by an average of 8.91%(6.675kW) for each EWH, which
symbolizes the viability of the proposed approach.

INDEX TERMS Energy storage, distributed control, reinforcement learning, electric water heaters,
Q-learning, time-delay.

NOMENCLATURE

α The learning rate.
η The learning rate coefficient.
µ The mean value.
ρ The mass density of the water.
σ The standard deviation value.
ϕ1(t) The Gaussian density.
ϕ2(t) The stochastic delay density
A The cross-sectional vector area.
at The action.
Et Reward for running the EWH.

The associate editor coordinating the review of this manuscript and

approving it for publication was Tallha Akram .

erf (·) The error function.
Lt Reward for water tank temperature.
Mf The mass of water in the full tank.
Mt The demand for inlet cold water to the tank.
rt Total reward function.
st The state.
t The time index.
To The ambient temperature (◦C).
Tt The current average water temperature in

the tank.
Tariffk Virtual tariff.
Templ Water temperature.
ToD Time of day.
v The flow velocity of the mass elements.
UA The heat loss coefficient.
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I. INTRODUCTION
The world is rapidly turning into a global village, and the
requirement for energy and other related services is also
increasing. However, 1.4 billion people worldwide still lack
access to electricity, and about 85% of them are live in rural
areas [1]. The CO2 emissions from the electricity and com-
mercial heat used in buildings have increased to 10GtCO2 [2].
Due to the depletion of fossil fuels and their associated
environmental impact, more distributed generators based on
Renewable Energy Sources (RES) are penetrating the current
power systems market. This will not only mitigate the global
climate change caused by fossil fuel but also support social
and economic development of remote and isolated communi-
ties [3]–[5].

Energy storage is considered as an essential element to
balance the generation and demand. Energy management of
storage and non-critical loads is also vital to improve the
economic performance and reliability of an environmentally
friendly power system [6]. The domestic hot water consump-
tion accounts for up to 40% of the total domestic energy
usage [7]. An effective control strategy needs to optimize the
total power consumption including domestic hot water con-
sumption among renewable generators, energy storage sys-
tems, and other facilities to minimize fuel consumption while
meeting load demand. It cannot only help these traditional
power networks upgrade to smart grids, but also reduce the
cost of fossil fuels in the entire island power system, optimize
the energy structure, and reduce greenhouse gas emissions.
Many control and optimization approaches have been inves-
tigated to achieve optimal results in energy systems such as
Linear Programming (LP) [8], Mixed Integer Linear Pro-
gramming (MILP) [9], [10], Mixed Integer Non-Linear Pro-
gramming (MINLP) [11], and Genetic Algorithm (GA) [12].
These existing traditional analytical approaches are quite
cumbersome and need several simplifying assumptions. They
all require a detailed mathematical model of the system and
some of them require system linearisation.

Artificial Intelligence (Al) based methods can, however,
perform complex non-linear non-convex optimization and
predict the energy demand and generation without the need
for a mathematical model [13]. There has been a growing
interest in the application of Al-based algorithms in energy
systems. Several studies have also been presented to predict
power consumption in energy systems, including Artificial
Neural Networks (ANN) [14], Multiple Linear Regression
(MLR) [15], Support Vector Machine (SVM) [16], and Deci-
sion Tree (DT) [17]. For energy prediction in buildings,
Mechaqrane and Zouak [18] presented a performance com-
parison between a linear Auto-Regressive model with exoge-
nous input (ARX) and a neural network ARX (NNARX)
model to forecast the indoor temperature, with the latter
resulting in improved efficiency.

In recent years, RL has been used to implement Demand
Response (DR) and distributed energymanagement strategies
for smart homes and smart grids [19]–[21]. Xu et al. pro-
posed a completely distributed multi-agent associated with

RL to optimize the reactive power dispatch. The proposed
Q-learning algorithm can increase the learning speed and
achieve near-optimal solutions [22]. In [23], a cooperative
RL algorithm is proposed for distributed economic dispatch
without using a specific mathematical model. A Markov
decision process (MDP) modelled the energy trading process
and an RL algorithm was utilized to optimize the decision
in the MDP [24]. The simulation results verified the per-
formance of the proposed demand side management sys-
tem.When interacting with a specific environment, RL-based
optimization algorithms can learn and choose actions based
on experience [25]. In contrast, traditional optimizationmeth-
ods need specific system’s and environmental mathematical
models, which require a high degree of data, knowledge of
control, and expertise. In [26], a distributed energy manage-
ment strategy for a combined heat and power system, and
a vanadium redox battery was introduced to optimize the
discharging policy using RL. A deep RL based energy trading
scheme with multiple Microgrids was proposed in [27] to
optimize the energy trading policy. [28] presented an RL
based distributed energy management scheme to maximise
the profit through energy management and load schedul-
ing without prior information. Another distributed operation
strategy was proposed in [29] to operate a community battery
energy storage system based on a double deep Q-learning
method. In [30], the authors presented a decentralisedMarkov
Decision Process (MDP) to solve an online decentralised
and cooperative dispatch problem in order to calculate the
approximate Q-value function considering communication
delay. These studies, however, did not consider the demand
side management of Electric Water Heater (EWH) units.
In fact, EWHs are responsible for nearly 30% of the elec-
tricity utilised by domestic consumers in winter-dominated
climates [31].

The application of RL for demand side management of
EWHs started to receive some attention in the literature.
AI-Jabery et al. in [32] proposed a fuzzy Q learning to
control an EWH, and showed that the proposed algorithm
could achieve global convergence. In [33], the proposed
Q learning and action dependent heuristic dynamic pro-
gramming methods are shown to reduce the cost of domes-
tic EWHs energy consumption by approximately 26% and
21%, respectively. [34] presented a batch RL approach to
control a cluster of 100 EWHs to decrease the daily cost
within a learning period of 45 days. The study in [35]
applied a fitted Q-iteration algorithm to an EWH to con-
trol the heater’s ON/OFF actions. It is shown that energy
consumption was reduced by 15% in comparison to that
when a thermostat controller was used. Somer et al. [36]
proposed a model-based RL approach to optimize the heating
cycles of an EWH to maximise the self-consumption of the
local PV generation. Six residential buildings were tested
and the self-consumption of PV generation was increased
substantially. Another RL scheme to optimize the hot water
production was presented in [37]. A set of 32 houses in
the Netherlands was used, and the energy consumption
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was reduced by roughly 20% without affecting customers’
comfort.

In the above studies, EWHs are considered as a standalone
system with their own constraints and they are not consid-
ered as an integral part of a larger power network that also
includes intermittent RES, limited capacity energy storage
systems, diesel generators, and Information and Communi-
cation Technology (ICT) systems. Taking a comprehensive
approach that also includes the influence of time-delay is an
important aspect to realise reliable smart grids in practice.
Moreover, in many islands, the energy tariff is subsidised
and fixed, and thus there is no incentive for consumers to
change their consumption behaviours. Furthermore, lacking
knowledge of each consumer’s demand profile makes the
centralised control of EWH demand less efficient in reducing
total power demand while satisfying individual consumer’s
comfort requirements. Therefore, this paper proposes an
intelligent hierarchically distributed strategy based on RL to
control EWH units in isolated microgrids. The distributed
controllers use a virtual dynamic tariff that is generated cen-
trally. The virtual tariff can be determined and broadcasted
hourly using direct measurement of Battery’s SOC. Realising
that this method makes the system prone to communication
delays and packet loss, an alternative approach that is based
on prediction is proposed. This method requires the tariff to
be broadcasted only once a day. The main highlights and
contributions of the paper can be summarised as follows:

1) This paper proposes a distributed control framework
to isolated networks whose energy tariff is fixed (as
the case in Ushant Island). The proposed framework
uses distributed controllers to optimize 150 electric
water heaters independently. The main consideration is
that the water consumption habits of each household
are different so that the distributed approach can more
accurately control the water temperature and reduce
diesel energy consumption.

2) The distributed RL controller based on a distributed
Q-learning algorithm is adopted. It can learn how to
choose actions based on experience and be directly
applied in real-time to reduce diesel consumption effec-
tively with different EWH demand profiles. Seven dif-
ferent scenarios of different combinations of RES and
energy storage are considered. Simulation results show
that the energy consumption of the diesel with RL
algorithm is reduced by an average of 8.91%(6.675kW)
compared to controlling the EWHs by traditional hys-
teresis control, the proposed algorithm can support
the service provider in optimizing the overall energy
operation.

3) A dynamic virtual tariff as a cost indicator is pro-
posed to provide a directive/incentive signal for the
local RL based controllers to optimize diesel consump-
tion. To investigate the impact of potential time delays
on RL algorithm. Two approaches, a direct measure-
ment (DM) strategy and prediction strategy, are pro-
posed for generating the virtual tariff. The simulation

results show that the communication time-delay will
produce certain fluctuations during the iterations, and
the final convergence results will also be affected.
It demonstrates that the prediction strategy allows the
framework to execute the algorithm on the basis of
ensuring communication quality. Results show that the
errors caused by the prediction strategy are negligible.

The rest of this paper is organised as follows. The micro-
grid network is described in Section II along with the
proposed virtual tariff. The electric water heater mathe-
matical model, and the time-delay model are introduced
in Section III. The proposed algorithms are introduced in
Section IV. In Section V, simulation results for different
scenarios are presented. Finally, section VI presents the
conclusion.

II. MICROGRID DESCRIPTION AND DYNAMIC
VIRTUAL TARIFF
The standalone microgrid under study is shown in Fig. 1.
It consists of RES, a battery energy storage system (BESS),
a diesel generator, and domestic loads. When the diesel gen-
erator is not operating, the battery unit acts as the grid forming
unit controlling the bus voltage and frequency, and hence
absorbing surplus power and supplying shortage power. How-
ever, the battery has a finite capacity and thus when it is fully
charged, renewable energy production has to be curtailed.
Similarly, when it is fully discharged, either some of the loads
have to be shed or the diesel generator has to be dispatched.
The required capacity of a BESS is normally determined by
a set of various factors, such as uncovered energy demand,
and excess renewable energy generation, in addition to the
technical and financial constraints. If the battery is to be sized
to completely eliminate the need for the diesel generator,
i.e., rely 100% on RES, the battery capacity has to be large
enough to cover any shortage in energy even if it happens very
rarely. This may result in a high capital cost of the battery
and, therefore, it is more economical to size the battery to
cover 80% or 90% of the renewable energy generation and
rely on the diesel generator to cover the rest. On the other
hand, DR can play an important role in reducing the diesel
usage and the battery size.

A. VIRTUAL TARIFF
The general purpose of any DR is to shift the load demand
to time periods when the electricity price is low. However,
in many islands like Ushant, the energy tariff is fixed and thus
traditional demand response becomes difficult. To deal with
this hurdle, a dynamic virtual tariff is proposed to optimize
the distributed operation of EWHs independently. This tariff
is generated at the energy management system (EMS) based
on the surplus/shortage of renewable energy generation and
hence the battery SOC and the consumption of diesel.

When the SOC is at its maximum limit, there is surplus
in renewable energy. When the SOC is between its maxi-
mum and minimum limits, the renewable energy and battery
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FIGURE 1. Islanded Microgrid and control strategy framework.

are able to supply power demand. However, when the SOC
reaches its minimum limit, there is shortage in energy the
diesel generator must be started to cover the deficiency.
Therefore, the tariff can be simply divided into three levels
to reflect surplus/shortage of renewable energy. The value of
proposed tariff has a scale of 1 to 3. When the SOC is at its
maximum limit, the tariff is set to level 1. For SOC range from
30% to 100%, the tariff is set to level 2. And when the SOC
reaches its minimum value of 30%, the tariff is set to level
3 which means that the battery is fully exhausted, discharge
is not allowed, and the diesel generator is operating.

The proposed control structure is shown in Fig. 1. It con-
sists of a centralised controller that generates the virtual tariff
at the central EMS and distributed controllers for EWHs. Two
strategies for generating the virtual tariff are proposed:

1) DIRECT MEASUREMENT STRATEGY
Every hour, the battery SOC is measured directly from the
Battery Management System (BMS)and the virtual tariff is
then determined, as explained above, and broadcasted to the
EWHs’ controllers in real time. This method is based on real
data but it is prone to communication delays and packet loss.

2) PREDICTION STRATEGY
At the start of each day, the historical data is used to pre-
dict the generation of RES and load demand for a 24-hour
horizon. Generation of renewable energy sources and load
demand can be predicted with high accuracy [38], [39], and
thus they are assumed to be known during the optimization
process. Two years’ historical data is used to train anArtificial
Neural Network (ANN) model to predict renewable energy
generation and load demand, and is updated every 24 hours.
A battery model is then used to calculate the SOC profile for
24 hours. The virtual tariff is then calculated and broadcasted
to the distributed controllers. This strategy broadcasts the

tariff once a day which will reduce the potential impact of
communication delays or packet loss in advance.

Once the tariff is broadcasted, the distributed RL con-
trollers will select appropriate actions to operate the EWHs
locally to minimise virtual cost in real-time which will result
in a reduction in diesel consumption in the island but at
the same time satisfy consumers’ requirements in terms of
maintaining comfortable water temperature.

III. SYSTEM MODELLING
A. ELECTRIC WATER HEATER MODEL
The thermal model of the EWH describes the dynamic
heat-power exchange while considering the inlet cold water
and environmental conditions. The dynamic thermal model
can be obtained using the Equivalent Thermal Parame-
ter (ETP) approach [40], [41].When the EWH is ON between
the time t and t + 1, the temperature at t + 1 can be obtained
as:

Tt+1 = (Tt −
β + Q
α

)e−α1t +
β + Q
α

. (1)

where α = 1
RC , β =

To
RC and R = 1

UA . Q is proportional to
the power rating of EWH.

On the other hand, when the EWH is OFF between time t
and t + 1, Q is zero and the temperature at t + 1 drops due to
the thermal loss and inlet cold water.

Tt+1 = (Tt −
β

α
)e−α1t +

β

α
. (2)

Consumed hot water is continuously replaced by cold
water through the tank inlet. Therefore, the water temperature
can be obtained as

Tt+1 =
(Mf −Mt )Tt + ToMt

Mf
. (3a)

Mt = ρvA1t. (3b)
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Combining equations (1) to (3), the mathematical function
that describes the dynamics of the EWH can be expressed as

Tt+1 = (
(Mf −Mt )Tt + ToMt

Mf
−
β + †tQ
α

)e−α1t

+
β + †tQ
α

.

s.t. ∀ t ∈ 1, . . . , T (4)

†t =
{
1 if ON
0 if OFF .

(5)

B. COMMUNICATION DELAY MODEL
In order to investigate the possible impact of communication
delay on the RL algorithm, a mathematical delay model is
proposed to calculate the delay probability and incorporate
it to the proposed approach. From a measurement point of
view, the end-to-end delay across a settled path essentially
consists of two parts: a deterministic delay Dd and a stochas-
tic delay Ds. The probability density function (PDF) of delay
can be written as [42]

ϕ(t) = pϕ1(t)+ qϕ1(t) ∗ ϕ2(t)

=
p

σ
√
2π

e−
(t−µ)2

2σ2 +
qλ

σ
√
2π

e−λt
∫ t

0
eλu−

(u−µ)2

2σ2 du. (6)

where p+q = 1 and ϕ1(t)∗ϕ2(t) =
∫ t
0 ϕ1(u)ϕ2(t−u)du. ϕ1(t)

is the deterministic delay density that can be approximated by

ϕ1(t) = 1
σ
√
2π
e−

(t−µ)2

2σ2 . ϕ2(t) = λe−λt assumes to follow the

exponential distribution by one alternating renewal process
with the mean length of the closure periods λ−1.
To determine the time-delay probability, (6) can be recal-

culated to infer the Cumulative Distribution Function (CDF)
of time delay such as

P(t) =
∫ t

0
ϕ(u)du

=
1
2
{erf (

µ
√
2σ

)+ erf (
t − µ
√
2σ

)}

+
p−1
2

eη{erf (
λσ 2
+µ
√
2σ

)+erf (
t−λσ 2

− µ
√
2σ

)}. (7)

where η = 1
2λ

2σ 2
+ µλ− λt and erf (x) = 2

√
π

∫ x
0 e
−t2 . The

relative parameters is set as µ = 5.3 ms, σ = 0.078, p =
0.580 and λ = 1.39 [42]. According to (7), the probabilities
of different time-delay for each broadcast can be added to
analyze the performance.

IV. PROPOSED REINFORCEMENT LEARNING
FOR EWH CONTROL
Reinforcement learning is an area of machine learning con-
cerned with how to take actions in an unknown environment
so as to maximise a cumulative reward. It learns bymodifying
an optimization policy in real-time through interacting with
the environment and using past experience. The dynamic
EWH problem is modelled as a discrete finite MDP. In this
model, the EWH operation (ON/OFF) depends on the virtual

tariff and the water temperature. RL elements including state
and action spaces, reward function, learning and exploration
rates, and discount factor are described in detail in the follow-
ing subsections:

1) STATE SPACE
The state variables are time of day (ToDj), virtual tariff
(Tariffk ) and water temperature (Templ).

S =


j = 1 : J

s|sj,k,l = (ToDj,Tariffk ,Templ) k = 1 : K
l = 1 : L

(8)

where ToD is discretised into J = 144(24× 6, every 10 min-
utes), the virtual tariff is divided intoK = 3 levels in the range
of 1 to 3, and the water temperature is divided into L = 5
levels between 55◦C and 70◦C.

2) ACTION SPACE
Action Space is the ON/OFF commands for each EWH

A = {a|(ON ,OFF)} (9)

3) REWARD

rt = −Et + Lt . (10)

where rt updates the Q table and to encourage the agent
to choose the appropriate action. Et is based on the virtual
tariff and Lt facilitates consumer preferences and comfort
requirement:

Et =

{
Power ∗1t ∗ Tariff , ON
0, OFF

(11)

Lt is represented by Fig. 2. It shows high negative penalty
for going outside the temperature range of 55 and 70 degrees.
It is similar to a coefficient without a unit. Furthermore,
Lt shows the highest value when the temperature is about
68 degrees which reflects consumer preference. Other prefer-
ences can be implemented by modifying the reward function.
The main purpose of the reward function is used to update
the Q table and let the agent to know the quality of differ-
ent actions. During the iterative process, the reward value
will train the RL agent to choose the best action with high
probability.

FIGURE 2. Output curve of term Lt for different temperature.
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4) Q-LEARNING
In the Q-learning algorithm, an action at a given state is cho-
sen to explore or exploit the future reward value. The Q-value
table Q(st , at ) is updated at each iteration. The highest value
for each state s in the Q-table corresponds to the highest
expected reward after taking action. The optimal updating
policy based on the Bellman equation [43] is expressed as
follows:

Q(st , at ) = Q(st , at )+ α(r(st , at )

+γ max
at+1

Q(st+1, at+1)− Q(st , at )). (12)

where α controls how much previous learning is retained in
the update of Q-table. α starts at 0.9, and after 80 days of
training it becomes 0.15.

To ensure exploration, an ε-greedy policy is selected [25].
The strategy can either pick an arbitrary action with the prob-
ability ε, or take an action corresponding to the maximum
value in the Q-value table. ε starts at 0.8 to enable sufficient
levels of exploration, and after 80 days of training it becomes
0.01 as the focus moves to exploiting the optimal policy. Note
that both α and ε decrease with the number of days to ensure
sufficient exploration even as the learning process goes on as
follows:

α =


α0, if N = 1

η
α0
√
N
, if 80 ≥ N > 1

0.15, if N > 80

(13)

ε =


ε0, if N = 1
ε0

N
, if 80 ≥ N > 1

0.01, if N > 80

(14)

The proposed RL Algorithm in the pseudo code shows
the detailed DR algorithm, including the prediction strategy
and DM strategy. For the RL agent to learn the optimal
policy, it has to explore actions that are less rewarding in
order to learn from experience. Therefore, it is wise to train
the agent offline using historical load/generation data and
a mathematical model for the EWH before commissioning.
This will avoid operating the real EWHs suboptimally during
the learning period.

During offline training, two years’ data is provided to train
the RL algorithm day by day. Once the training is established,
RL can then be commissioned to control EWHs in real time
in a model-free fashion; it applies the ON/OFF actions to the
real EWH, measures its reward and updates its parameters
accordingly. If there is a difference between the model and/or
the hot water demand used in the model and those in prac-
tice, RL can also adapt to this change thanks to it learning
capability.

At the end of each day, the microgrid load/generation data
of that day are fed back to the ANN to keep updating the
historical data that is used for prediction as shown in Fig. 1.

EWH-BasedReinforcement LearningAlgorithm: (Predic-
tion and Direct Measurement Strategies)
Initialise all parameters and variables
Select Virtual Tariff generation strategy
%%% Prediction strategy
1: Process for each day
2: Generate predicted demand and generation via NN
3: Generate the virtual tariff 24-hour ahead
%%% Direct Measurement strategy
1: Process for each hour
2: Read SOC measurement from the Battery Management
System
3: Generate the real-time virtual tariff
%%% RL for EWH in real-time decision making
4: Process for each agent to do in parallel each hour
5: Repeat (for each step in iteration)
6: Choose at from current st via ε-greedy policy
7: Take action at
8: Obtain reward r(st , at ) and next new state st+1
9: Q(st , at ) = Q(st , at )+ α(r(st , at )

+γmaxQ(st+1, at+1)− Q(st , at ))
10: Output the optimal policy
11: End Process

V. SIMULATION RESULTS
Numerical simulation has been carried out to assess the
performance of the proposed DR. The microgrid shown
in Fig.1 has been used in this simulation. The training data is
obtained from Ushant island in France for the time period of
January 1st, 2014 to December 30th, 2015. Another data set
from the year of 2016 is used for real-time testing. The load
demands of 150 EWH units follow a Poisson distribution,
which is proportional to the hourly average household hot
water usage is adopted from [44]. A 0.2MW/2MWh Lithium-
ion battery storage is used. Seven different renewable energy
generation scenarios are explored as shown in Table 1 [45].
Scenarios 1, 2 and 3 consider wind and solar PV genera-
tion while scenarios 4, 5 and 6 consider solar PV and tidal
generation. Scenario 7 consists of three types of RES. The
diesel generator supplies power only if the load demand
cannot be met by RES and the battery. The ANN model is
trained by using a long short-term memory (LSTM) network
with 256 units. Adam, which is a replacement optimization
algorithm for stochastic gradient descent for training deep
learning models, is selected as an optimizer with a learning
rate of 0.01 via Python. The RL models are established and
tested in Matlab.

A. PERFORMANCE OF THE PROPOSED RL-BASED
STRATEGY
The generation and demand data for scenario 3 with a 2MWh
storage is shown in Fig. 3(a). Battery power and SOC as well
as the power from the diesel generator are shown in Fig. 3(b).
the virtual tariff is generated by the centralized EMS and is
shown in Fig. 3(c) along with surplus and deficit powers. It is
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TABLE 1. Renewable energy resources for seven different scenarios.

FIGURE 3. Performance of the proposed strategy in Scenario 3.

clear that the virtual tariff can accurately describe the current
state of energy storage and the surplus/deficit of renewable
energy, i.e. the state of energy in the whole microgrid.

1) OFF-LINE SIMULATION OF THE RL-BASED STRATEGY
(ONE DAY DATA)
The purpose of this simulation is to demonstrate the ability
of RL to achieve optimal performance. According to the
one day’s virtual tariff, the RL algorithm will update the
Q-table and repeat the iterations using the same daily data
until convergence is achieved. The energy consumption of an
EWH of both strategies is shown in Fig. 4, along with the
results obtained using a GA optimization algorithm and the

FIGURE 4. Energy consumption of the proposed RL-based strategy
compared to the GA and conventional control strategy.

traditional hysteresis control. Two other global optimization
approaches, Simulated Annealing (SA) algorithm and Parti-
cle Swam (PS) algorithm, are also utilized to verify the exper-
imental results of RL as shown in Table 2. An optimal solution
can only be achieved if continuous space/action space is used.
Furthermore, in terms of the large search space, the computa-
tional cost is expensive and it will also be time-consuming if
all state-action pairs need to be visited. The proposed RL can
quickly search for sub-optimal solutions and perform real-
time control. The results demonstrate that the proposed RL
algorithm can reach the optimal results very fast within a few
iterations. The energy consumption using the DM strategy
and the prediction strategy are 62.53 kWh and 63.73 kWh,
respectively. It is very close to the GA result of 61.33 kWh.
The energy consumption when the EWH is controlled by the
traditional hysteresis controller is 90.67 kWh. Table 3 shows
the effect of a single hyper-parameter modification on the
experimental results, and appropriate hyper-parameter set-
tings could achieve outstanding results compared with others.
However, when the time-delay model is considered, it is
shown that the time-delay can lead to large fluctuations and
poor convergence. The GA optimizer finds the optimal solu-
tion from the simulations and this will always happen unless
the GA uses a different model, e.g. a linearised model, or a
model without noise. The RL controller converges quickly to
the optimal solution, whilst directly interacting with the envi-
ronment, i.e. without relying on the simulation model. The
oscillations are caused by the controller trying to explore new
action-state pairs. The superiority of the proposed RL strategy
considering the prediction strategy is clearly demonstrated.

TABLE 2. Optimal results for different methods.

TABLE 3. Impact of single hyper-parameter.
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2) OFF LINE TRAINING OF RL (TWO-YEAR DATA)
Two years of historical generation/demand data from Ushant
Island is used to generate the virtual tariff for two years. The
virtual tariff according to the direct measurement of SOC is
then used to train the RL agent offline using the EWH math-
ematical model. Energy consumption is shown in Fig. 5(a).
The ability of RL approach to tracking the optimum cost
achieved by the GA algorithm is clear.

FIGURE 5. (a) Daily energy consumption of training results during
two-year period based on the DM strategy, (b) Daily energy consumption
of testing results during one-year period (scenario 3).

3) REAL TIME CONTROL OF EWH
The trained RL is used to control 150 EWH units in real
time as explained in subsection IV-4. The yearly island load
data of 2016 and the resources from scenario 3 are used.
The virtual tariff is generated and broadcasted to EWHs in
two ways as was explained in section II-A: daily broadcast
using ANN prediction of SOC, and hourly broadcast using
direct measurement of SOC. The trained RL agent issues the
ON/OFF actions on an hourly basis. At the end of each hour,
the reward is calculated, the and the next action is chosen.
Fig. 5(b) shows the energy consumption for one year along
with the results obtained using the GA. Each day has its
own optimal consumption value and the proposed RL strategy
is able to track this effectively. Both strategies for virtual
tariff generation are able to save energy consumption signif-
icantly and the results are close to the global optimization
policy when time-delay is not considered. Using the RL with
DM strategy for generating the virtual tariff can reduce the
use of diesel consumption by 8.91% (6.675kW) compared
to controlling the EWHs by traditional hysteresis control.
If the virtual tariff is generated by the prediction strategy,
diesel consumption is reduced by 8.85%, only 0.06% increase
compared to DM strategy. This difference, caused by the
prediction error, is quite minimal. The advantages for using
the ANN are the avoidance of hourly communication with
EWH units, and providing customers with the virtual tariff
profile in advance.

The proposed DR scheme is applied to the seven RES
scenarios shown in Table 1. The total generation and diesel
consumption are presented in Fig. 6 with 150 EWH units
being controlled by hysteresis, GA, and direct measurement
strategy based RL controllers. It can be noticed that both

FIGURE 6. Annual energy consumption and generation for seven
scenarios in 2016.

FIGURE 7. Diesel consumption cost for different storage size in
scenario 3.

the RL algorithm and GA algorithm can save diesel cost
significantly compared with the traditional hysteresis con-
trol, especially in scenario 7. However, the GA requires
pre-knowledge of all information in advance and spends a
lot of computing resources to get optimal results. The annual
energy consumption when using the RL strategy is very
close to that of GA-based strategy in all scenarios. However,
the proposed RL algorithm can achieve near optimal results
in real-time control with no previous knowledge of EWH
models. Furthermore, the yearly summary of the seven dif-
ferent scenarios indicates that RL strategy can cover enough
energy demands in scenario 7 and reduce diesel generator
consumption significantly. Compared to the other six scenar-
ios, scenario 3 generates up tomore than 150MWh renewable
energy generation. However, the total diesel cost in the case of
hysteresis controlled EWHs shows that there is a substantial
surplus of renewable energy not being utilised due to the
limitation of the battery size. The results in Fig. 7 for scenario
3 show the diesel consumption cost considering different
sizes of batteries. The larger the battery capacity, the more
diesel energy is saved. However, considering the battery cost
and service life, and the energy consumption of the entire
island, the 2WMh capacity energy storage is chosen.

Fig. 8 shows the energy consumption performance of an
EWH based on a typical virtual tariff profile (a) when it is
controlled by the proposed RL using DM strategy (b) and a
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FIGURE 8. Performance comparison of the EWH controller: (a) Example of
Virtual Tariff, (b) Proposed RL-based EWH controller, (c) Traditional EWH
controller.

simple hysteresis thermostat (c). The virtual price in Fig. 8(a)
represents three different prices under three different states
(renewable energy only, renewable energy and storage energy
only, and diesel consumption only) according to the different
electricity prices of different utility companies. It can be seen
that the temperatures in both strategies are controlled within
the required temperature range (55◦C and 70◦C). However,
Fig. 8(b) shows that the RL based strategy can shift the ON
commands to periods when the tariff is low. It means that
RL agent tends to store energy in the water when there is
surplus in energy by keeping the temperature near its maxi-
mum. Meanwhile, it can also keep the water temperature just
above the minimum during shortage of energy. Furthermore,
RL resulted in less total energy consumption compared to that
of the hysteresis control approach.

In summary, all the results verify the performance of the
proposed DR strategy based on the RL algorithms. It is
capable of learning a cost-effective way for EWH manage-
ment under different conditions, without requiring informa-
tion about the model in advance.

VI. CONCLUSION
An intelligent distributed real-time DR based on RL has been
proposed to manage the demand of 150 EHWs in isolated
islands. To overcome the problem of fixed electricity price,
an adaptive virtual tariff that reflects the status of the battery
and the diesel generator has been generated and used in
the reward function of the RL algorithm. Two methods for
generating the virtual tariff have been proposed: DM strat-
egy and prediction strategy. Simulation results show that the
prediction strategy is suitable to achieve good performance
compared to the DM strategy and it makes the algorithm
less dependent on communication time-delay. The prediction
strategy can also be used to encourage customers to arrange
the use of other electrical equipment in advance to reduce
total energy consumption. The performance of the proposed
distributed controllers is assessed by simulation which shows
the ability of RL to learn the optimal control policy. It is
shown that employing the proposed RL algorithm results in

an average 8.91%(6.675kW) reduction in the usage of diesel
generators for each electric water heater.

However, Q-learning can provide near-optimal solutions.
In future, we seek to consider state-of-the-art reinforce-
ment learning algorithms, such as deep reinforcement
learning algorithm and Bayesian reinforcement learning
algorithm, to generate better exploration strategy and min-
imize the objective function [46], [47]. In addition, the
hyper-parameters adjustment has a significant impact on the
performance of the RL algorithm and hence we plan to further
optimize the parameters by using the state-of-the-art algo-
rithms, e.g., Bayesian optimization method and Monte Carlo
method [48].
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