
Received July 29, 2021, accepted September 5, 2021, date of publication September 14, 2021, date of current version October 4, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3112750

Encryption and Re-Randomization Techniques
for Malware Propagation
AHSAN RASHEED ABBASI 1, MEHREEN AFZAL 1, WASEEM IQBAL 1,
SHYNAR MUSSIRALIYEVA 2, FAWAD KHAN 1, AND AWAIS UR REHMAN3
1Department of Information Security, National University of Sciences and Technology, Islamabad 44000, Pakistan
2Department of Information Systems, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
3Department of Computer Science, University of South Asia, Lahore 54000, Pakistan

Corresponding author: Waseem Iqbal (waseem.iqbal@mcs.edu.pk)

ABSTRACT Encryption, which is essential for the protection of sensitive information can also transform
any malicious content to illegible form, which can then reside in any network, undetected. Encryption of
malicious payload is used by malware authors to mask their code, however, the objective of hiding the
malicious code can be further improved by techniques of re-randomization. The concept of re-randomization
using asymmetric cryptography has been emerged as a new area of interest for malware designers.
Re-randomizing is a technique which can prevent detection of source path of a malware and makes it
indistinguishable. This article extends the idea of using asymmetric cryptography for re-randomization
and has proposed a novel scheme using Pailliar’s asymmetric cryptosystem. Moreover, this research work
illustrates the limitations of RSA for malware re-randomization. A comprehensive performance analysis of
the re-randomization techniques for various malware payloads is also presented, which can be used for the
detection of re-randomized malware effectively.

INDEX TERMS Paillier cryptosystem, RSA, ElGamal, homomorphic encryption, malware encryption, re-
encryption, environmental keys.

I. INTRODUCTION
The rapid evolution of internet has enabled individuals and
devices from across the borders to connect and interact
with each other. This inter-connectivity facilitated humans
in numerous ways. However, such an increased reliance of
corporate, healthcare, and individuals on the internet for per-
forming even basic activities of life generated the volumes of
confidential and personal information [9]. In the pursuit of
this sensitive information, adversaries develop sophisticated
techniques to exfiltrate the wealth of data from individuals
and organizations.

To achieve the purpose of data exfiltration, denial of ser-
vice or system disruption several types of malware have
been designed and many successful attacks can be found in
literature [1]–[3], [22]. On the other hand, malware detection
techniques are also getting better day by day. In this tug of
war, malware designers continuously work on maturing the
mechanics of malware. Desired goals of malware designers
include extending the life span of malware and its efficient

The associate editor coordinating the review of this manuscript and

approving it for publication was Chi-Yuan Chen .

propagation techniques along with the techniques to conceal
its malicious behavior. Moreover, malware designers make
focused efforts to defeat static [23] and dynamic [26]malware
analysis techniques by using anti-sandbox, anti-debug and
anti-analysis methods such as dead code insertion, encryp-
tion, etc. [5], [6], [8], [19].

Cryptographic techniques are extensively used by malware
designers to conceal malware fingerprints. Indistinguishabil-
ity, an important feature of cryptographic protocols ensures
that an adversary does not have an added advantage to deter-
mine if the samemessage is encrypted twice. This remarkable
feature exists in most of the probabilistic encryption schemes,
which includes the classical ElGamal, and Paillier cryp-
tosystems. Application of such schemes for re-randomization
results in evading malware with greater accuracy because
malware becomes indistinguishable from other data. Apply-
ing this technique successfully can for example, result in
failure of intrusion detection system (IDS) or anti-malware
for detection of malware. Idea of re-randomization tech-
nique based on ElGamal cryptosystem has been presented
in [16]. The detail of re-randomization process is discussed
in section III.

132522 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-3567-5476
https://orcid.org/0000-0002-2179-9259
https://orcid.org/0000-0002-3616-2621
https://orcid.org/0000-0001-5794-3649
https://orcid.org/0000-0001-6609-5928
https://orcid.org/0000-0001-9338-4274

A. R. Abbasi et al.: Encryption and Re-Randomization Techniques for Malware Propagation

Importance of research in this direction also lies in the
fact that to design strategy to detect and prevent malware,
techniques used by malware designers need to be well under-
stood. In this article, we have not only given the imple-
mentation methodology for ElGamal based re-randomization
technique but have also explored the possibility or otherwise
in-feasibility of other public key cryptographic techniques for
re-randomization. A new scheme using Paillier cryptosystem
is proposed along with the simulation on different malware
samples. A comparative study of different schemes is also
presented. Following are the contributions of this paper:
• This research work proposes and implements the novel
scheme for malware encryption and re-randomization
based on Paillier cryptosystem.

• We have evaluated and implemented ElGamal based
scheme [16] for malware encryption and
re-randomization.

• This work explains the infeasibility of classical RSA
cryptosystem to re-randomize the malware payload.

• The paper contributions also includes the comprehensive
simulation results on popular malware samples.

II. RELATED WORK
Malicious use of encryption and malicious use of mathemat-
ics are evolving fields [7], [11] which originated in Young
and Yung’s earlier research about the use of public key
cryptography for designing an offensive system for money
extortion named as cryptovirology [12]. Eric Filiol describes,
how encrypting malware payload prevents malware analyst
to reverse engineer of binaries [15]. Markus Jakobosson’s
Asymmetric re-encryption [21] proves the input and output
encryption co-related to the exact plaintext, without leak-
age of an information related to the plaintext to verifier or
the server subset of the verifier. In 2004, Golle et al. [18]
described a new primitive, universal re-encryption based
on the ElGamal public key cryptographic algorithm which
allows the re-randomization of ciphertext without knowing of
the relevant private key. A high tech professional grade virus
called Gauss [20] was detected in 2012-13 with an encrypted
payload using data from the targeted victim’s computer as the
decryption key. No analyst can decrypt the payload and deter-
mine, what the payload will do until the virus is installed on
the system of a targeted victim. Filiol presented the encryp-
tion of malicious software [14], and described that it is feasi-
ble to stop someone to analyze the software and reversing it,
likely with the use Riordan and Schneier [28] keys to encrypt
payload. In 2017, H.Galteland and G.Gjosteen worked on
malware encryption and re-randomization [16]. They present
technique in which malware author encrypts payload using
unique key(s) generated from target environmental data. The
ciphertext is re-randomized at each new node leads to form
an indistinguishable variant of the same malware in the net-
work that infects subsequent machines or devices without
the knowledge of private key. The success of their model
lies in the fact that different replicated variant of identical
malware in the network boost the malware analyst’s workload

substantially and prevents analyst to defend some nodes in
the network. However, they did not give any implementation
results on their proposed ElGamal based scheme.

III. MALWARE ENCRYPTION AND RE-RANDOMIZATION
TECHNIQUE
H.Galteland and G.Gjosteen malware encryption scheme is
based on malware attack process [16], shown in figure 1,
in which the malware author with malware M and the mal-
ware source Msource, infects X initial nodes (in or outside
the target network) with distinct variants of his malware.
In response the X initial nodes infect subsequent machines in
the network by propagating indistinguished copies of same
malware.

Each and every direct connection to the malware source
helps to increase the malware analyst’s probability of finding
the malware author’s origin, because of that the malware
author must perform as several additional infections as fea-
sible and prefer indirect routes to the target node T.

Encrypting the payload protects malicious software code
from being reversed and tries to obscure the malware author’s
intents. The malware encryption and re-randomization
scheme [16] encrypt the malware payload using ElGamal
public key algorithm [13] on source device. The malware
attack model further distributed into malware encryption,
decryption and re-randomization process.

The malware encryption process consists of malware and
cleartext loader. The malware is the malicious code that
need to execute on target system to compromise the oppo-
nent node(s). Before the malware attack process begin, The
cleartext loader program scans and check the target system
for environmental variables, which can be system variables,
operating system unique parameters, path variables and other
network triggers etc. The cryptographic hash function is used
to transform the environmental variables to encryption key(s),
instead of storing keys insides the malware payload. Later on,
these environmental keys auto decrypt the malware payload
on specific target node or network. The cleartext loader secu-
rity depends on obfuscation scheme used by malware author.

On the target side, once the malware loader executes on
a new device, it scans the compromised node’s environ-
mental variables and tries to decrypt the malicious payload
through the derived keys. If the malware decryption succeeds,
the malware payload will execute. Otherwise, malware re-
randomization process will be executed.

The malware re-randomization process produces several
indistinguishable variants of a malware, rather than replicat-
ing identical samples. The homomorphic property of public
key encryption scheme is used to re-encrypt the ciphertext.
The malware re-encryption scheme is based on universal re-
encryption scheme [18] that uses the ElGamal public key
algorithm to re-encrypt the ciphertext.

The re-randomization algorithm input an encrypted
payload to generate the same malicious code, with some
randomly chosen values in order to create a new cipher-
text against same plaintext. The homomorphic encryption

VOLUME 9, 2021 132523

A. R. Abbasi et al.: Encryption and Re-Randomization Techniques for Malware Propagation

FIGURE 1. Malware propagation model.

property of ElGamal is used to generate different looking
sample of same malware to infects X target nodes without
any knowledge of private key.

The re-randomization process begins with scanning the
target environmental data. The loader program generates the
decryption key(s) from the environmental data, to decrypt
the encrypted malicious payload and checks for decryption
succeed or fail. If the malware decrypted successfully on
a node, it will execute the malware. Otherwise, malware
decryption fails and it will re-randomization of payload,
as shown in figure 1. In this case, the re-randomization
algorithm takes uniformly random values (ElGamal random
factor) as input to re-encrypt the encrypted malicious payload
to generate the indistinguishable sample of same malware
without the knowledge of secret key. The re-randomization
process uses the homomorphism of ElGamal that allow
re-encryption of malicious payload. At last, it will drop
the re-randomized payload to subsequent nodes(s) in the
network.

From malware analyst prospective, whose responsibility
is to protect computers in the network N from any potential
threat of malware, and has comprehensive understanding of
the environment that he protects. The malware analyst can
observer the wider malware space Ms, to find the more mal-
wareM samples. The malware author initiates with N distinct
encrypted samples of a malware to infect X initial nodes
on the network. Suppose, the malware analyst collects these
initial X malware sample. Analyst’s primary objective is to
ensure that neither of these X initial variants compromise his
devices in the network. To guarantee this, analyst approxi-
mately need K decryption for each of his N nodes. Hence,
the malware analyst workload W to analyze the malware
sample is almost W = XNK . With the re-randomization of

each encrypted malware sample the work load of the analyst
will beWR.

IV. PROPOSED IMPLEMENTATION OF
ElGamal-BASED MALWARE ENCRYPTION
AND RE-RANDOMIZATION SCHEME
The malware encryption and re-randomization scheme is
built on public key cryptosystem ElGamal over group
G of primitive order p, with generator g. The frame-
work of proposed implementation of malware encryp-
tion and re-randomization is based on Galteland extended
scheme [16]. The implemented scheme consists of four algo-
rithms, the malware encryption algorithm Encm, the malware
decryption algorithm Decm, the malware re-randomization
algorithm Re-randDecm and malware re-randomized pay-
load decryption algorithm Re-rand-Decm. The decryption
algorithm Decm will be executed, if the malicious pay-
load is only encrypted (not re-randomized), otherwise
(in case of malware re-randomization) the malware re-
randomized payload decryption algorithm Re-randDecm will
be executed.

A. MALWARE ENCRYPTION ALGORITHM
The malware encryption algorithm Encm [Algorithm 1] takes
input a executable file (malware) and transforms it into bit
string m (bit stream) to encrypt the files of large size. The bit
string is then padded with one 1 bit and length 0’s bits. The
number of zeros padded which is L, where L = l∗(n+1)+1,
l is the message length and n is number of re-randomization
that will perform on encrypted malicious payload. So the
plaintext (padded malicious code) mLm is bit string of
length Lm.

132524 VOLUME 9, 2021

A. R. Abbasi et al.: Encryption and Re-Randomization Techniques for Malware Propagation

FIGURE 2. Malware encryption and re-randomization process.

1) ENCRYPTION PARAMETERS
The malware encryption uses the standard ElGamal’s param-
eters. Let G represent the underlying group for ElGamal
asymmetric cryptosystem with p as order of group G and
generator denoted as g. The p represents the big prime number
and the generator g is chosen at random number, such that
g < p and gcd(p, g) = 1. The values r and s are chosen as
random such that r, s ∈ (1, 2, . . . (p− 1)).

2) KEY GENERATION
The plaintext m is encrypted using encryption key k , gen-
erated from environmental data of the target node, where
k ∈ Z∗p . In our implementation, we use the MAC address
of target system and transforms it into the key k .

Algorithm 1 ElGamal Based Malware Encryption: Encm
Input: m← {0, 1}l

Output: c
1: k = mac mod p
2: mLm = m||1||0(L−1)

3: r, s
r
←− Z∗p

4: γ
r
←− Z∗p ,

5: γLm = SHAKE-128 (γ)
6: (c1, c2, c3, c4, c5) = (gr , gkr , gs, gks.γ, γLm ⊕ mLm)
7: c = c1||c2||c3||c4||c5
8: return c

3) ENCRYPTION FACTOR γ
The encryption factor γ is chosen as random. For encryption
process the length of encryption factor γ must be equal to Lm,
where Lm is the length of plain textmwith padded bit stream.
For every variant, the value γ will change as it is chosen

as random. Hence, we need to define a way to transforms
a random encryption factor γ into a string γLm of arbitrary
custom length Lm. To transform the encryption factor γ into
to a string γLm , we employed the SHAKE hash algorithm.

SHAKE-128: The SHAKE algorithm [30] belongs to
SHA-3 family of XOF (Extendable output functions) algo-
rithms. The XOF is a hash function in which the mes-
sage digest can be extended to any arbitrary custom length.
The SHAKE-128 and SHAKE-256 are two standard SHA-3
XOF’s. The suffix ‘‘128’’ and ‘‘256’’ specify the strength of
the algorithm instead of indicating the message digest length
as in other standard hashing algorithms. The SHAKE-128 and
SHAKE-256 were the first XOFs to be standardized by NIST.

In our implementation of malware encryption algorithm,
we input the random encryption factor γ to SHAKE-
128 algorithm and get our required message digest as string
γLm of arbitrary length Lm. We have employed the Odzhan C
implementation of SHAKE-128 [25] in our implementation.
Hence, the SHAKE-128 algorithm is useful to get the desired
length output in the encryption process.

4) ENCRYPTION
For encryption function [step 6:Algorithm 1], input com-
prises, ElGamal encryption parameters p and g, padded mali-
cious payload (plaintext) mLm , the key k , the random factor
r , s and the encryption factor γ , γLm . The output of encryp-
tion algorithm [Algorithm 1] is ciphertext c, which is calcu-
lated by concatenating the ciphertext instances c1, c2, c3, c4,
and c1.

B. MALWARE DECRYPTION ALGORITHM
The decryption algorithm Decm [Algorithm 2] takes as input
the ciphertext C. The decryption process is executed at the

VOLUME 9, 2021 132525

A. R. Abbasi et al.: Encryption and Re-Randomization Techniques for Malware Propagation

target node, so there is a need to auto-decrypt the malicious
payload on the target machine using the secret key k . As the
key k is derived from target node’s MAC address of the target
node. Hence, we need to extract the target MAC address
and calculate the key k . To decrypt the encrypted malicious
payload, there is a requirement to verify the target node,
by checking ck1 = c2, where c1 = gr and c2 = gkr .
If the verification fails than moves onto re-randomization
algorithm to target subsequent node without executing, oth-
erwise, the payload will be decrypted and executed.

Algorithm 2 ElGamal Based Malware Decryption: Decm
Input: c
Output: m
1: k = mac mod p
2: γ = c−k3 .c4
3: γLm = SHAKE − 128(γ)
4: mLm = c5 ⊕ γLm
5: m = mLm − (1||0L)
6: return m

To decrypt the malicious payload, the first step is to
extract the γ from the ciphertext, as the cipher text
c = c1||c2||c3||c4||c5,hence

c−k3 .c4 H⇒ g−ks.gks mod p

H⇒ γ

After determining γ , γLm will be evaluated using the XOF
SHAKE-128. The length of ciphertext object c5 is equal to
the padded plaintext length Lm. The length Lm and γ is input
to SHAKE-128 to get γLm of length Lm.

To decrypt the padded plaintext mLm , XOR the ciphertext
object c5 and γLm To determine the padded bit stream length,
search the first ’1’ from the end of bit stream of γLm and
discard the padded bit from the γLm , to get the original plain-
text. As in encryption algorithm, the plaintext is padded with
tail of zeros and a single 1. To execute the malware payload,
write the decrypted data to a file. Hence, we get the original
malicious payload plaintextm. Before executing themalware,
there is a need to verify the malicious payload using the
standard signature of underlying file format. On successful
verification, malware payload will be executed.

C. MALWARE RE-RANDOMIZATION ALGORITHM
The re-randomization algorithm Rr-randm [Algorithm 3]
takes as input the ciphertext c and the public parameter p.
Decryption process is executed on the node which prompts
the decryption fails or invalid private key k for decryption.
In consequence, before targeting the new node, re-encrypt
the ciphertext without knowledge of private key k . The re-
randomization algorithm chooses two new random factors r ′

and s′. The encryption factors γ ′ to re-encrypt the ciphertext
c, is also chosen at random.

The value of βLβ with length Lβ is evaluated as,
βLβ = c3||c4||c5. Where the ciphertext c objects, c3 = gs,

Algorithm 3 ElGamal Based Malware Re-Randomization:
Re-randm
Input: c, p
Output: c′

1: βLβ = c3||c4||c5
2: r ′, s′

r
←− Z∗p

3: γ ′
r
←− Z∗p

4: γ ′Lβ = SHAKE-128(γ ′)
5: (c′1, c

′

2, c
′

3, c
′

4, c
′

5) = (cr ′1 , c
r ′
2 , c

s′
1 , c

s′
2 .γ
′, γ ′Lβ ⊕ βLβ)

6: c′ = (c′1||c
′

2||c
′

3||c
′

4||c
′

5)
7: return c′

c4 = gks.γ and c5 = γLm⊕mLm . The γ
′
Lβ will be computed by

using the XOF SHAKE128. The output of re-randomization
algorithm Re-randm is ciphertext c′.

D. RE-RANDOMIZED MALICIOUS PAYLOAD DECRYPTION
The re-randomized ciphertext decryption algorithm
Re-randDecm [Algorithm 4], is modified form of decryption
algorithm Decm with some inclusion. The Re-randDecm
algorithm takes as input the public parameters p and g and
the ciphertext c′. The secret key k is generated from the
target node’s MAC address to decrypt the payload. To verify
the target node for decryption of payload we check c′1

k
=

c′2, which is: (grr
′

)k = gkrr
′

. The verification fails means,
the underlaying node is not the target of the malware.

Algorithm 4 ElGamal Based Re-Randomized Ciphertext
Decryption: Re-randDecm
Input: c′, p
Output: m
1: k = mac mod p
2: γ ′ = c′

−k

3 .c′4
3: γ ′Lβ = SHAKE(MD5(γ ′))
4: β ′Lβ = c′5 ⊕ γ

′
Lβ

5: γ = c−k3 .c4
6: γLm = SHAKE − 128(MD5(γ))
7: mLm = c5 ⊕ γLm
8: m = mLm − (1||0L)
9: return m

On verification failure, the decryption process will stop,
and re-randomization algorithm will be executed to target the
other node(s). On successful verification, the payload will be
decrypted and executed. To decrypt the payload, the first step
is to determine γ ′ from ciphertext c′, as:

c′
−k

3 .c′4 = cs
′ (−k)
1 . cs

′

2 γ
′

= grs
′ (−k). gkrs

′

γ ′

= γ ′

Now, we can compute the γ ′Lβ using the input γ
′ and Lβ to

SHAKE128. The length Lβ is same as the length of c′5. The
βLβ is computed by XOR the ciphertext c′5 and γ

′
Lβ .

132526 VOLUME 9, 2021

A. R. Abbasi et al.: Encryption and Re-Randomization Techniques for Malware Propagation

The βLβ is concatenation of ciphertext’s c instances in Rr-
randm [Algorithm 3], as, c3||c4||c5. In other words, βLβ =
gs || gks.γ || γLm ⊕ mLm . We can determine the length of gs

and gks.γ , as they have equal in length with ciphertext c′

instances c′3 and c
′

4 respectively. Hence, we can find c3, c4 and
c5 from βLβ . This procedure continues for n iterations, where
n is the number of re-randomization performed on encrypted
payload.

Next step is to computer γ , from the ciphertext c instances,
c3 and c4 using the secret key k , as:

c−k3 .c4 = g−ks.gks mod p

= γ

Now,we can computer γLm from γ and c5’s length Lm using
SHAKE-128. The malicious payload’s padded plaintext mLm
is computed by applying XOR operation on c5 and γLm .
The padded bit stream length can be determined by search-

ing the first ’1’ from the end of bit stream(right to left)
of γLm and discard the padded bit from the γLm to get the
original plaintextm. As in encryption algorithm, the plaintext
is padded with tail of zeros and exactly a single 1. Write the
decrypted data to a file to execute and launch the malware.
The re-randomization decryption algorithm needs to execute
n time on the encrypted malicious payload, where n is the
number of re-randomizations performed on the malicious
payload. Before execution of the malware, the standard exe-
cutable file format signature is employed to validate the mali-
cious payload. Malicious software payload will be executed
on successful validation.

V. LIMITATION OF RSA FOR MALWARE
RE-RANDOMIZATION
Partially homomorphic encryption (PHE) [29] helps to keep
confidential information protected by enabling only specific
mathematical operations on encrypted data to be performed.
This implies that for an infinite number of occasions a single
operation, either multiplication or addition, could be con-
ducted on the encrypted data. RSA public key cryptosystem
is a PHE scheme, which is commonly used to establish
secure connections through SSL / TLS. Some other exam-
ples of PHE scheme are ElGamal public key cryptosystem
(a multiplicative homomorphic scheme) and Paillier cryp-
tosystem (an additive homomorphic scheme). RSA public
key cryptosystem supports the multiplicative homomorphic
encryption. For malware re-randomization, the requirement
is to re-encrypt the encrypted payload or ciphertext without
knowledge of secret key. The both ElGamal and Paillier’s
random factor r helps us to re-encrypt the encrypted mali-
cious payload without revealing the plaintext. In case of
RSA, by default the textbook RSA is not semantically secure,
as it is deterministic encryption scheme. Although, RSA has
homomorphic property but is not sufficient to re-encrypt the
ciphertext because there is no random factor, that helps us to
re-randomize the ciphertext as in ElGamal and Paillier.

RSA can be either semantically secure or homomorphic,
but not both. In practice, before encrypting the plaintext
message m, RSA can add the randomness (e.g. RSAES-
OAEP) [17], which provide semantic security, but completely
loses the homomorphic property.

Some other approaches have been used by researchers,
to use RSA for re-encryption of ciphertext in proxy re-
encryption. Wang et al. [31], split the algorithm into two
parts to ensure the re-randomization for proxy re-encryption.
The first part of the algorithm will use the original private
key as well as the fresh public key and create a kind of inter-
mediate key. The second part ensures that the key will then
be circulated to untrusted entities which use the intermediate
key and the new public key to update their encrypted data
to the new key pair. However, in this case, we need to auto-
decrypt the malicious payload on the target node by using
environmental keys. It is impractical to generate the new key
pair to re-encrypt the ciphertext. The reason is, the private
key is not appended with malware payload or in text loader.
It will be generated on run time from target node. Hence,
it is not feasible to use RSA cryptosystem to re-randomize
the malware payload.

VI. PAILLIER-MALWARE ENCRYPTION AND
RE-RANDOMIZATION
The proposed scheme is based on the probabilistic public key
encryption algorithm, Paillier [27]. The goal is to prevent
malware payload from analysis by increasing the malware
analyst’s workload. Encrypting malware payload obstruct
to identify malware author’s intentions. The malware re-
randomization or re-encryption aid to hide the identity of
malware author and make each malware sample indistin-
guishable. We proposed a framework for malware encryption
and re-randomization of malicious payload on the target
node without revealing the plaintext or the private key. The
secret key is generated from the target environmental data,
to encrypt the malicious payload using Paillier encryption
algorithm. To execute malicious payload on the target node,
there is a need to extract the environmental key and use it
to decrypt the malware payload. On successful decryption
the malicious payload will execute. Otherwise, re-encrypt the
encrypted payload, and transmit it to next node to find the tar-
get and execute. The proposed scheme follow the malware
propagation model, describe in Section 2. We have imple-
mented the proposed scheme based on Paillier for malware
encryption and re-randomization, using C language on Linux
platform. For big integer value(greater than 8 bytes), we have
used the GMP C library. The proposed scheme includes three
main algorithms, malware encryption algorithm, malware re-
randomization algorithm and the malware decryption algo-
rithm. The malware encryption and decryption algorithms
have sub algorithms, the encryption key generation and
decryption key generation algorithms, respectively.

A. MALWARE ENCRYPTION
The malware encryption process aids the malware writers by
encrypting the malicious payload to maximize the workload

VOLUME 9, 2021 132527

A. R. Abbasi et al.: Encryption and Re-Randomization Techniques for Malware Propagation

for analysis. Encrypting the payload restricts the malicious
software from being reversed by an analyst and obscures
the malware author’s desires. Environmental data is collected
from the target network and therefore could consist of IP
address, directory paths, PATH variables etc. In this work,
we use MAC address as environmental variable to generate
encryption and decryption keys. The mechanism for malware
encryption consists of the payload and the cleartext loader for
malware. The malware payload consists of malicious code to
be run on target system in order to access the node(s) of the
challenger. The loader software scans and tests environmental
variables on the target system and defines how these variables
can be converted to produce encryption or decryption keys
rather than keeping keys within the payload of malware. The
encryption process consists of the encryption key generation
algorithm and payload encryption algorithm.

1) ENCRYPTION KEY GENERATION ALGORITHM
The encryption key generation algorithm KeyGenEnc
[Algorithm 5] is based on Paillier key generation, which com-
putes two prime numbers p and q (of equal size) as a input,
where p and q are relatively prime to each other. On the other
side, the secret key λ of Paillier Cryptosystem [27] depends
on p and q, and can be computed as, λ = lcm(p− 1, q− 1).

Algorithm 5 Paillier Based Encryption Key Generation:
KeyGenEnc
Input: mac_addr
Output: pubk (n, g)
1: p

P
←− mac_addr

2: q
P
←− mac_addr ; q < p

3: n = p ∗ q
4: g = n+ 1
5: return n, g

But, in our case it is impractical. Because, for malware
propagation, our requirement is to auto-decrypt the malicious
payload on the target system. It can be achieved using the
key(s) generated from target environmental data. This implies
that the decryption key λ must be depended on the target
environmental data, and can be re-generated.

To overcome this problem, we generate the prime p and
q, from target environmental data (MAC address of target
system), and computes a modulus n = p ∗ q. Now, choose
a random number g such that g ∈ Z∗

n2
and the order of g is

multiple of n. Selecting g = n + 1, is effective choice and
can be easily computed [10]. The output of Encryption Key
Generation algorithm KeyGenEnc is public (encryption) key
pair (g, n).

2) ENCRYPTION ALGORITHM
The encryption algorithm 5Encm [Algorithm 6] takes the
malware executable file as input and transform it into array
of string, as plaintext message m. The encryption algorithm
5Encm uses the public key pair (g, n), generated from key

generation algorithm KeyGenEnc to encrypt the plaintext.
Select a Paillier’s random factor r , where r ∈ Z∗

n2
.

Paillier cryptosystem allows encrypting integers modulo
n. Therefore, if input plaintext message m is bigger than n,
encrypting it will lose most of the plaintext message m, only
m mod n is retrieved through decryption. In case of malware
encryption, it is likely that m > n.

Algorithm 6 Paillier Based Malware Encryption:5Encm
Input: m, pubk (n, g)
Output: c
1: r

r
←− Z∗

n2
2: if m > n then
3: m = m1||m2|| . . . ||mz ; z = len(m)/len(n)
4: ci = gmi ∗ rn mod n2 ; i = 1, 2, . . . , z
5: c = c1||c|| . . . ||cz
6: else
7: c = gm ∗ rn mod n2

8: end if
9: return c

To encrypt a message bigger than n, we break it into
z blocks, which encrypt separately. Where z is number of
chunks or blocks and each message block mi < n.
We use public key pair (g, n) and random factor r to encrypt
message m or message blocks m′is. The output of Encm is
ciphertext c.

B. MALWARE RE-RANDOMIZATION
Re-randomizing the malicious payload, generates several
indistinguishable variants of a malicious software rather
than just replicating the same samples. Re-randomization
of malware can be achieved using public key cryptographic
algorithm’s homomorphic property. The inputs of the re-
randomization algorithm5Re-randm [Algorithm 7] includes
an encrypted payload or cipher text c and public key pair
(n, g) to create the exact malicious payload (encrypted), with
certain randomly selected values. Paillier’s homomorphism
and probabilistic property is used to create different looking
samples of the same malware.

Algorithm 7 Paillier Based Malware Re-Randomization:
5Re-randm
Input: c, pubk (n, g)
Output: c′

1: c = c1||c|| . . . ||cz
2: r ′

r
←− Z∗

n2

3: c′i = ci ∗ r ′n mod n2

4: c′ = c′1||c
′

|
| . . . ||c′z

5: return c′

The re-randomization algorithm 5Re-randm computes a
random factor r ′, such that r ′ ∈ Z∗

n2
and re-randomize the

ciphertext ci’s, as shown in 5Re-randm [Algorithm 7] and
generate output re-randomized ciphertext c′.

132528 VOLUME 9, 2021

A. R. Abbasi et al.: Encryption and Re-Randomization Techniques for Malware Propagation

C. MALWARE DECRYPTION
The malware decryption process begins with scanning the
target environmental data. After collecting required environ-
mental data, generates the private key from the acquired data,
and decrypt the malicious payload using the obtained pri-
vate key. The decryption process consists of two algorithms,
the private key generation and the decryption of ciphertext.

1) DECRYPTION KEY GENERATION
The decryption key generation algorithm KeyGenDec
[Algorithm 8] output the public key pair (n, g) and private key
λ. The KeyGenDec uses the MAC address of target system to
generate the keys. The public key pair is generated with the
same process as in KeyGenEnc [Algorithm 5]. The private key
λ is generated by using the parameters p and q as shown in
KeyGenDec [Algorithm 8].

Algorithm 8 Paillier Based Decryption Key Generation:
KeyGenDec
Input: mac_addr
Output: pubk (n, g), prik (λ)
1: p

P
←− mac_addr

2: q
P
←− mac_addr ; q < p

3: n = p ∗ q
4: g = n+ 1
5: λ = LCM (p− 1)(q− 1)
6: return n, g, λ

2) DECRYPTION ALGORITHM
The decryption procedure is same for both encrypted only
and re-randomize or re-encrypted payload, so c′ = c. The
decryption algorithm takes as input the ciphertext c and the
keys generated from KeyGenDec. The Decryption process
shown in 5Decm [Algorithm 9].

Algorithm 9 Paillier Based Malware Decryption:5Decm
Input: c, pubk (n, g), prik (λ) //* c == c′

Output: m
1: c = c1||c|| . . . ||cz
2: mi =

L(cλi mod n2)
L(gλ mod n2)

3: where: L(x) = (x−1)
n , ∀x ∈ Z∗

n2
4: m = m1||m2|| . . . ||mz
5: return m

After decryption of ciphertext instances ci’s, we get the
plaintext instances mi’s. We concatenate all the mi’s to get
the plaintext message m and write the result in file to verify
and executes the malware payload.

In our implementation, the loader program checks for sig-
nature of malicious software samples to validate the results
of decryption. For windows, the executable (exe) file for-
mat starts with 0 × 4D5A (MZ) signature. So, the text

TABLE 1. Malware samples.

loader program will check the.exe file signature to vali-
date the decryption for windows based malware. Otherwise,
the underlying malware will belong to the deb or bin file
format if malware is based on Linux. The signature of
deb file format is 0 × 213C617263683E! (< arch>.) and
0 × 7F454C46 (.ELF) is the signature of the binary exe-
cutable file. On successful verification of malware payload,
the loader program execute the malicious payload.

VII. PERFORMANCE EVALUATION
In this section, we present experimental setup and results
of our proposed implementation of ElGamal based scheme
and proposed Paillier based malware encryption and re-
randomization scheme.

A. EXPERIMENTAL SETUP
The implementation of both ElGamal and Paillier based
malware encryption schemes is on C language for Linux
and windows platform. The code has been implemented on
Windows 10 (exe) and Ubuntu 16.04(ELF). The Experiments
are performed on Intel(R) Xeon(R) CPU E5-1660 v3 with a
3.00 GHz and 16 GB of memory. We import open source
OpenSSL-MD5 directive for MD5 hash. We implement
indigenous code ElGamal and Pailler for customization and
efficiency. The loader program is able to re-randomized the
malware payload, regardless of underlying architecture or
operating system. The loader program is implemented on
Linux and windows platform which can encrypt and re-
randomize any type of file i.e., exe, apk, DLL, elf etc.We used
some popular Linux, Windows and android malware samples
in our experiments, as shown in table 1.

B. EXPERIMENTAL RESULTS
We evaluated the performance of our proposed implementa-
tion of ElGamal based scheme and proposed Paillier based
scheme.We analyze and compare performance of encryption,
re-randomization and decryption algorithms of both scheme.
The time T1, T2, T3 and T4 represent the approximation of
processor time (in sec) used by algorithms accordingly to
variations in parameters. These parameters are random factor
used by encryption algorithm in both schemes. The AVG is
the average time of T1, T2, T3 and T4.

Table 2 shows the experimental results and comparison
of performance between encryption algorithm of ElGamal
based scheme Encm [Algorithm 1] and Paillier based scheme
5Encm [Algorithm 6] for malicious payload encryption of
different popular malware sample. Table 2 shows that the

VOLUME 9, 2021 132529

A. R. Abbasi et al.: Encryption and Re-Randomization Techniques for Malware Propagation

TABLE 2. ElGamal vs. Paillier encryption algorithm.

TABLE 3. ElGamal vs. Paillier decryption algorithm.

TABLE 4. ElGamal vs. Paillier re-randomization algorithm.

performance of ElGamal based malware encryption scheme
is better than Paillier based malware encryption scheme. The
reason is, the Paillier encryption scheme divide the plaintext
m into multiple blocks before encryption and also merge
the blocks after applying encryption. However, the encryp-
tion algorithm is executed on source node, not on the tar-
get node. Hence, the performance of malware decryption,
re-randomization, and re-randomized payload decryption is
more crucial than the performance of encryption algorithm.

Table 3, shows the performance of decryption algorithm
of both ElGamal Decm [Algorithm 2] and Paillier 5Decm
[Algorithm 9] based scheme for encrypted malware pay-
load decryption. The Paillier decryption and re-randomized
ciphertext decryption algorithm is same. Here, we analyze the
performance of 5Decm [Algorithm 9] with encrypted (only)
ciphertext. By analyzing the Table 3, which shows time taken
by Paillier based malware decryption scheme is less than
time taken by ElGamal based malware decryption scheme
to decrypt the encrypted malicious payload. The variation in
time T1, T2, T3 and T4 of ElGamal basedmalware decryption
scheme is due to the use of random factor r and s in encryption
algorithm.

The encrypted malware payload re-randomization is
performed on the target node, to form indistinguishable

encrypted malware sample to target subsequent nodes in the
network.

Table 5, shows the performance analysis of ElGamal based
re-randomized malware decryption algorithm Re-randDecm
[Algorithm 4] and Paillier based re-randomized malware
decryption algorithm 5Decm [Algorithm 9]. From Table 5,
it is observed that the Paillier based re-randomized payload
decryption algorithm has faster execution time to decrypt
the malicious payload, as compare to ElGamal based re-
randomized payload decryption algorithm. The use of ran-
dom factor r , s, r ′ and s′ in ElGamal based encryption
and re-randomization algorithms causes more fluctuation in
the time T1, T2, T3 and T4 of ElGamal based malware
re-randomized malicious payload decryption scheme.

In Table 4, the performance results show that the
re-randomization time of Paillier based malware re-
randomization algorithm 5Re-randm [Algorithm 7] is also
lower than the re-randomization time of ElGamal based mal-
ware re-randomization algorithm5Rr-randm [Algorithm 3].

The performance results show that the Paillier based
malware encryption and re-randomization scheme is
computationally inexpensive when compared with
ElGamal based malware encryption and re-randomization
scheme.

132530 VOLUME 9, 2021

A. R. Abbasi et al.: Encryption and Re-Randomization Techniques for Malware Propagation

TABLE 5. ElGamal vs. Paillier re-randomized payload decryption algorithm.

VIII. CONCLUSION
This work gives a new re-randomization technique based on
Paillier cryptosystem for malware propagation. We have also
proposed the implementation of an existing scheme based
on ElGamal cryptosystem for malware encryption and re-
randomization. A simulation of both schemes on several mal-
ware samples is executed and comparison of the results show
that, ElGamal based scheme’s encryption algorithm is more
efficient than Paillier based scheme’s encryption. Whereas,
the malware decryption, randomization and re-randomized
malicious payload decryption algorithms of Paillier based
scheme are computationally inexpensive, as compared to
ElGamal based scheme. These algorithm needs to be more
efficient due to execution on target environment. This makes
our proposed Paillier based re-randomization scheme more
suitable for malware propagation. Future research should
examine the robustness against different attacks and security
analysis of both Paillier and ElGamal based schemes.

REFERENCES
[1] Behind the scenes of GandCrab’s Operation. Accessed:

Jun. 11, 2021. [Online]. Available: https://www.virusbulletin.com/
virusbulletin/2020/01/behind-scenes-gandcrabs-operation/

[2] (May 2013). Cryptolocker Ransomware Infections. [Online]. Available:
https://us-cert.cisa.gov/ncas/alerts/TA13-309A

[3] (Jul. 2018). Emotet Malware (AA20-280A). [Online]. Available: https://
us-cert.cisa.gov/ncas/alerts/aa20-280a

[4] Ashishb. (Apr. 2016). Android-Malware/Tree/Master/Dendroid.
[Online]. Available: https://github.com/ashishb/android-malware/tree/
master/Dendroid

[5] C. Barria, D. Cordero, C. Cubillos, and R. Osses, ‘‘Obfuscation procedure
based in dead code insertion into crypter,’’ in Proc. 6th Int. Conf. Comput.
Commun. Control (ICCCC), May 2016, pp. 23–29.

[6] B. Bashari Rad, M. Masrom, and S. Ibrahim, ‘‘Camouflage in malware:
From encryption to metamorphism,’’ Int. J. Comput. Sci. Netw. Secur.,
vol. 12, pp. 74–83, Jan. 2012.

[7] P. Beaucamps and E. Filiol, ‘‘On the possibility of practically obfuscating
programs towards a unified perspective of code protection,’’ J. Comput.
Virol., vol. 3, no. 1, pp. 3–21, Mar. 2007.

[8] J.-M. Borello and L. Mé, ‘‘Code obfuscation techniques for metamorphic
viruses,’’ J. Comput. Virol., vol. 4, no. 3, pp. 211–220, Aug. 2008.

[9] M. Chen, S. Mao, and Y. Liu, ‘‘Big data: A survey,’’ Mobile Netw. Appl.,
vol. 19, no. 2, pp. 171–209, Apr. 2014.

[10] I. Damgård, M. Jurik, and J. B. Nielsen, ‘‘A generalization of Paillier’s
public-key systemwith applications to electronic voting,’’ Int. J. Inf. Secur.,
vol. 9, no. 6, pp. 371–385, Dec. 2010.

[11] A. Desnos, ‘‘Implementation of K-ary viruses in Python,’’ Hack.lu,
Tech. Rep., 2009.

[12] T. Dullien and S. Porst, ‘‘REIL: A platform-independent intermediate
representation of disassembled code for static code analysis,’’ Tech. Rep.,
2009.

[13] T. ElGamal, ‘‘A public key cryptosystem and a signature scheme based on
discrete logarithms,’’ in Adv. Cryptol., G. R. Blakley and D. Chaum, Eds.
Berlin, Germany: Springer, 1985, pp. 10–18.

[14] E. Filiol, ‘‘Strong cryptography armoured computer viruses forbidding
code analysis: The Bradley virus,’’ INRIA, France, Res. Rep. RR-5250,
2004.

[15] E. Filiol, ‘‘Malicious cryptography techniques for unreversable (mali-
cious or not) binaries,’’ 2010, arXiv:1009.4000. [Online]. Available:
http://arxiv.org/abs/1009.4000

[16] H. Galteland and K. Gjøsteen, ‘‘Malware encryption schemes-
rerandomizable ciphertexts encrypted using environmental keys,’’
IACR Cryptol. ePrint Arch., Tech. Rep., 2017, p. 1007.

[17] S. Goldwasser, ‘‘Probabilistic encryption: Theory and applications (partial
information, factoring, pseudo random bit generation),’’ Ph.D. dissertation,
Univ. California, Berkeley, CA USA, 1984.

[18] P. Golle,M. Jakobsson, A. Juels, and P. Syverson, ‘‘Universal re-encryption
for mixnets,’’ in Topics in Cryptology–(CT-RSA), T. Okamoto, Ed. Berlin,
Germany: Springer, 2004, pp. 163–178.

[19] R. Goyal, S. Sharma, S. Bevinakoppa, and P. Watters, ‘‘Obfuscation of
stuxnet and flamemalware,’’ in Proc. Latest Trends Appl. Inform. Comput.,
3rd Int. Conf. Appl. Inform. Comput. Theory (AICT), WSEAS, 2012.

[20] GreAT, ‘‘Gauss: Abnormal distribution,’’ Kaspersky Lab Global Res.
Anal. Team, Moscow, Russia, Tech. Rep., Aug. 2012. [Online]. Available:
https://securelist.com/gauss-abnormal-distribution/36620/

[21] M. Jakobsson, ‘‘On quorum controlled asymmetric proxy re-encryption,’’
in Public Key Cryptography. Berlin, Germany: Springer, 1999,
pp. 112–121.

[22] D. J. K. Stevens. (Mar. 2010). ZeuS Banking Trojan Report. [Online].
Available: https://www.secureworks.com/research/zeus

[23] A. Moser, C. Kruegel, and E. Kirda, ‘‘Limits of static analysis for malware
detection,’’ in Proc. 23rd Annu. Comput. Secur. Appl. Conf. (ACSAC),
Dec. 2007, pp. 421–430.

[24] Mstfknn. (Nov. 2018).Gand Crab. [Online]. Available: https://github.com/
mstfknn/malware-sample-library/blob/master/GandCrab/

[25] Odzhan. (Feb. 2019). Odzhan Shake-128. GitHub. [Online]. Available:
https://github.com/odzhan/tinycrypt/tree/master/stream/shake128

[26] O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach, ‘‘Dynamic malware
analysis in the modern era—A state of the art survey,’’ ACMComput. Surv.,
vol. 52, no. 5, pp. 1–48, Sep. 2019, doi: 10.1145/3329786.

[27] P. Paillier, ‘‘Public-key cryptosystems based on composite degree residu-
osity classes,’’ in Advances in Cryptology–(EUROCRYPT), J. Stern, Ed.
Berlin, Germany: Springer, 1999, pp. 223–238.

[28] J. Riordan and B. Schneier, Environmental Key Generation Towards Clue-
less Agents. Berlin, Germany: Springer, 1998, pp. 15–24.

[29] J. Sen, ‘‘Homomorphic encryption: Theory & applications,’’ 2013,
arXiv:1305.5886. [Online]. Available: http://arxiv.org/abs/1305.
5886

[30] N.I.N.I.S. Technology., ‘‘Sha-3 standard: Permutation-based hash and
extendable-output functions: Fips pub 202,’’ Scotts Valley, CA, USA:
CreateSpace Independent Publishing Platform, 2015. [Online]. Available:
https://books.google.com.pk/books?id=hCwatAEACAAJ

[31] L. Wang, K. Chen, Y. Long, and X. Mao, ‘‘A new RSA-based proxy
re-encryption scheme,’’ J. Comput. Inf. Syst., vol. 11, pp. 567–575,
Jan. 2015.

[32] Ytisf. Binaries/Trojan.Kovter. https://github.com/ytisf/theZoo/blob/
master/malware/Binaries/Trojan.Kovter/

[33] Ytisf. Linux Wirenet. https://github.com/ytisf/theZoo/tree/master/
malware/Binaries/Linux.Wirenet

[34] Ytisf. Linux.Encoder.1. https://github.com/ytisf/theZoo/tree/master/
malware/Binaries/Linux.Encoder.1

[35] Ytisf. (May 2017). Wannacry Ransomware. [Online]. Available:
https://github.com/ytisf/theZoo/tree/master/malware/Binaries/
Ransomware.WannaCry

[36] Ytisf. (May 2017). Wannacry Ransomware. [Online]. Available:
https://github.com/ytisf/theZoo/tree/master/malware/Binaries/
Ransomware.WannaCry

VOLUME 9, 2021 132531

http://dx.doi.org/10.1145/3329786

A. R. Abbasi et al.: Encryption and Re-Randomization Techniques for Malware Propagation

AHSAN RASHEED ABBASI received the mas-
ter’s degree in information security, with special-
ization in cryptography and cryptanalysis, from
the Department of Information Security, Military
College of Signals, National University of Sci-
ences and Technology, Islamabad, Pakistan. His
research interests include cryptology, cryptanaly-
sis, and malware analysis.

MEHREEN AFZAL received the degree in
mathematics and the Ph.D. degree in information
security from the National University of Sciences
and Technology (NUST), Rawalpindi, Pakistan,
in 1995 and 2010, respectively. She is currently
associated with the Military College of Signals,
NUST. Her contributions include research arti-
cles on cryptanalysis and design of cryptographic
algorithms and protocols. Her research interests
include information security and cryptology.

WASEEM IQBAL received the bachelor’s degree
in computer science from the Department of Com-
puter Science, University of Peshawar, in 2008,
and the master’s degree in information security
from the Military College of Signals, NUST,
in 2012. He was inducted as a Lecturer at
the Department of Information Security, NUST,
in May 2012, where he was promoted to an Assis-
tant Professor, in February 2015. He is currently
an Academician, a Researcher, a Security Profes-

sional, and an Industry Consultant. He is currently enrolled in the Ph.D.
Program and is in research phase. His professional services include but not
limited to industry consultation, a Workshops Organizer/Resource Person,
a Technical Program Committee Member, the Conference Chief Organizer,
an Invited Speaker, and a reviewer for several international conferences.
He has authored over 45 scientific research articles in prestigious interna-
tional journals (ISI indexed) and conferences. He is the Principal Advisor
for more than eight M.S. students and ten UG projects, out of ten, eight
of his UG projects are industry funded projects. He has conducted more
the 15 CEH, CHFI, CSCU, and forensics practical hands on workshops
for industry and general public. He achieved the merit-based scholarship
throughout his bachelor’s degree. In recognition of his services, he received
the Overall University Best Teacher Award for the year 2014 to 2015.

SHYNAR MUSSIRALIYEVA is currently an
Associate Professor and the Head of the Depart-
ment of Information Systems, Al-Farabi Kazakh
National University, Almaty, Kazakhstan. Her
research interests include information security and
computational mathematics.

FAWAD KHAN received the B.S. degree in elec-
trical engineering from UET, Peshawar, and the
M.S. degree in electrical engineering fromCECOS
University, in 2010 and 2014, respectively, and
the Ph.D. degree from the School of Cyber
Engineering, Xidian University, in 2018. He is
currently working with the National University of
Sciences and Technology, Pakistan. His research
interests include cryptography and information
security. His professional services include: a Tech-

nical Program Committee Member and a Reviewer of several international
journals and conferences, including IEEE ACCESS, the IEEE TRANSACTIONS

ON INDUSTRIAL INFORMATICS, EURASIP Journal on Information Security
(Springer), and Neural Computing & Applications (Springer).

AWAIS UR REHMAN received the master’s
degree in computer science from the University
of South Asia, Lahore, Pakistan. His research
interests include cybersecurity, vulnerability and
exploits, and machine learning.

132532 VOLUME 9, 2021

