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ABSTRACT This paper presents a novel deep learning-based arterial pulse wave analysis (PWA) approach to
diagnosis of peripheral artery occlusive disease (PAD). Naive application of deep learning to PAD diagnosis
can be hampered by the fact that securing a large amount of longitudinal dataset encompassing diverse
PAD severity as well as anatomical and physiological variability presents formidable challenge. Training
of a deep neural network (DNN) to a small training dataset raises the risk of overfitting the PAD diagnosis
algorithm only to the individuals in the training dataset while deteriorating its ability to generalize also
to other individuals who may exhibit a large variability in anatomical and physiological characteristics
beyond the training dataset. To overcome these obstacles, we propose a continuous property-adversarial
regularization (CPAR) approach to robust generalization of a DNN against scarce datasets. Our approach
fosters the exploitation of latent features that can facilitate the intended task independently of confounding
property-induced disturbances. by regularizing the extraction of disturbance-dependent latent features in
the network’s feature extraction layer. By training and testing a deep convolutional neural network (CNN)
for PAD diagnosis using scarce virtual datasets, we illustrated that the CNN trained by our approach was
superior to a conventionally trained CNN in detecting and assessing the severity of PAD against disturbances
originating from diversity in the patients’ height and arterial stiffness: when trained with one-time pulse
wave signal measurement at ankle and brachial arteries in a small number of patients, our approach achieved
detection accuracy of >90% and severity assessment of 0.83 in 1 value, which were >15% and >40%
improvement over conventional approach without CPAR. In addition, we ascertained the advantage of our
approach in efficient training and robust generalization of DNN by contrasting it to multi-task learning which
promotes the exploitation (as opposed to regularization in CPAR) of disturbance-dependent latent features
in fulfilling the intended tasks.

INDEX TERMS Deep learning, continuous domain-adversarial learning, peripheral artery disease,
cardiovascular disease, arterial pulse wave analysis, convolutional neural network.

I. INTRODUCTION

Peripheral artery occlusive disease (PAD) is a highly preva-
lent vascular disease entailing high morbidity and mortal-
ity risks. The United States and the world are estimated to
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have >8 million (2000 [1]) and >200 million (in 2010 [2])
patients with PAD. In addition, PAD may become even more
prevalent with societal aging. Regardless, PAD is underdiag-
nosed with low primary care awareness [3].

PAD diagnosis in clinical settings requires imaging-
based techniques [4]-[6], which involve invasive procedures
and/or expensive equipment. Hence, these techniques are not
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suited to high-throughput PAD screening and surveillance.
On the other hand, the ankle-brachial index (ABI), a widely
employed technique for PAD screening, has been criticized
for its poor accuracy and robustness in diagnosing PAD [7].

The analysis of arterial pulse wave signals (called here-
after the pulse wave analysis (PWA)) can play a pivotal
role in PAD diagnosis. Indeed, PAD alters the morphology
(i.e., shape) of arterial pulse wave signals (e.g., arterial blood
pressure (BP) signals) by affecting the pulse wave propaga-
tion and reflection characteristics in the arteries. Hence, PWA
has the potential to outperform techniques built upon discrete
fiducial points (i.e., features) in the arterial pulse wave signals
(e.g., ABI) by allowing the exploitation of the arterial pulse
wave signals in their entirety [8]-[11]. A practical advantage
of PWA is that it may be relevant to affordable and high-
throughput PAD screening and surveillance with convenient
arterial pulse wave signals measured at the extremity loca-
tions (e.g., arm and ankle).

The mainstream of existing work on PWA has resorted to
empirical feature selection. Hence, PWA may be combined
with modern deep learning (DL) to leverage its ability for
automatic feature selection [11]. Yet, an obvious challenge
in incorporating DL into PWA is dataset limitation con-
straint: naive application of DL to PWA-based PAD diag-
nosis requires massive longitudinal datasets associated with
PAD progression in time, which preferably also encompass
diverse anatomical and physiological characteristics as well
as disease severity levels. Yet in reality, only scarce (and
possibly non-longitudinal) dataset from a small number of
patients associated with limited anatomical and physiological
characteristics may be available, which may pose formidable
challenges in training a deep neural network (DNN) for PAD
diagnosis which is generalizable to a wide range of anatomi-
cal and physiological characteristics. In fact, the morphology
of the arterial pulse wave signals depends not only on PAD
but also on the anatomical and physiological characteristics
of a patient. For example, mechanical properties of the arterial
wall and height of the patient can alter the shape of arte-
rial pulse wave signals by affecting the way forward and
backward traveling BP waves are superposed — mechanical
properties (e.g., arterial stiffness, diameter, and thickness) by
altering pulse wave velocity (PWV) and height by altering the
timings of superposition even for a given PWV [12]. Hence,
if a DNN is trained using scarce dataset from a small number
of patients (who possibly encompass only a narrow range of
anatomical and physiological characteristics), the resulting
PAD diagnosis algorithm may be overfitted only to the indi-
viduals in the training dataset, while its ability to generalize
to other individuals (who may exhibit a large variability
in anatomical and physiological characteristics beyond the
training dataset) may be deteriorated.

To overcome these obstacles, we propose a continu-
ous property-adversarial regularization (CPAR) approach to
robust generalization of a DNN against scarce datasets.
Inspired by domain-adversarial learning [13], we extend
the conventional discrete domain-adversarial regularization
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to enable regularization and generalization of a DNN
across multiple continuous properties by reformulating
the anti-domain classification formalism used in discrete
domain-adversarial regularization to a novel anti-property
regression formalism applicable to multiple continuous prop-
erties. In this way, our approach fosters the exploitation
of latent features that can facilitate the intended task inde-
pendently of confounding property-induced disturbances,
by regularizing the extraction of disturbance-dependent latent
features in the network’s feature extraction layer. By training
and testing a deep convolutional neural network (CNN) for
PAD diagnosis using scarce virtual datasets, we illustrated
that the CNN trained by CPAR was superior to a conven-
tionally trained CNN in detecting PAD and assessing its
severity against disturbances originating from diversity in the
patients’ height and arterial stiffness.

This paper is organized as follows. Section II covers the
details of the CPAR approach and how it was applied to
develop and test a CNN-based PAD diagnosis algorithm.
Section III presents results, and Section IV provides discus-
sion of the results. Section V concludes the paper with future
directions.

Il. METHODS

In this section, we first present the CPAR approach to
robust generalization of a DNN against continuous property-
induced disturbances. Then, we apply the CPAR approach
to PAD diagnosis via CNN-based PWA, in order to effi-
ciently train a CNN using relatively scarce dataset from a
small number of patients so that it can robustly generalize to
broad patient cohort with wide anatomical and physiological
variability.

A. CONTINUOUS DOMAIN-ADVERSARIAL
REGULARIZATION

In circumstances in which a DNN is trained using a scarce
dataset consisting of only a small number of samples,
the DNN may be overfitted to the training dataset and thus
exhibit poor performance when applied to an unseen dataset
whose samples are associated with properties not covered
by those in the training dataset. Two alternative approaches
may be employed to mitigate such a degradation in the gen-
eralization performance of a DNN: transductive learning and
regularization. In transductive learning, a DNN is pre-trained
with the training dataset and subsequently refined in the target
dataset [14]-[16]. In a prior work, a CNN was pre-trained
using chest X-ray images associated with adults, and then was
refined using chest X-ray images associated with pediatric
population for pediatric pneumonia diagnosis [17]. In another
prior work, a CNN was pre-trained using digital mammogra-
phy images, and then was refined using digital tomosynthesis
images for breast cancer diagnosis [18]. Hence, transduc-
tive learning requires two training phases and labeled target
dataset. In regularization, a DNN is trained with a regulariza-
tion penalty imposed on the loss function to bias and gener-
alize the DNN [19]. To properly bias the DNN to maximize
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its generalization capability, the regularization penalty must
be judiciously formulated by considering the intended task
and the characteristics of the dataset. Otherwise, the DNN
may still be overfitted, or it may be underfitted and generalize
too broadly, ultimately leading to poor performance in both
training and target datasets. Regularization-based generaliza-
tion has been pursued in various applications [20], [21]. For
instance, a prior work on fault diagnosis of rotating machin-
ery regularized the discriminant structure of a DNN to extract
robust latent features generalizable to unseen domains [22].
In PAD diagnosis based on PWA, the morphology of arterial
pulse signals (which are presented to the DNN as inputs)
are influenced by PAD as well as other confounding factors,
e.g., anatomical (e.g., height of a subject) and physiological
(e.g., arterial biomechanical properties of a subject) char-
acteristics of individual patients. A unique nature of these
confounding factors is that they are continuous rather than
discrete. Hence, an ideal regularization penalty for training
a DNN suited to PAD diagnosis based on a scarce dataset
must facilitate the generalization of the DNN across a wide
range of continuous disturbances. In this work, we pro-
pose a novel regularization approach that can address such
a challenge.

Our regularization approach is inspired by the state-of-the-
art domain-adversarial learning. In domain-adversarial learn-
ing, a DNN is trained to exploit the features relevant to the
task but independent of the domain via domain-adversarial
training [13], [23]. This is accomplished by defining the
shift between a source domain (Dg; training dataset) and
a target domain (Dr; test dataset and datasets encountered
in real application of the DNN) as the J{-divergence and
utilizing it in training a DNN: the J(-divergence serves as a
penalty term in training the feature extraction layer, where it is
minimized to set the parameters in the feature extraction layer
so that the consequent features are regularized and domain-
independent [24], [25]. Our CPAR approach extends the con-
ventional domain-adversarial training (applicable mostly to
discrete and categorical domains) to continuously connected
source and target domains. Consider a domain defined by a
continuous parameter P:

Pelplp=p=p) (M

where the lower bound p and the upper bound p specify the
range of p. For a given sample x in the domain associated with
px € P, we define the source and target domains as follows:

Ds (p) = {x|d (p,px) < &}
Dr (p) = {x|d (p, px) > €} 2

where d (x, y) £ tanh |x — y| is a distance measure between
x andy, and ¢ > 0. Let the mapping in a DNN associated with
the feature extraction layer, label prediction layer, and domain
regression layer as Gy (x), G; (G (x)), and G, (Gr (x)),
respectively (Figure 1). Denoting the set of latent features
derived from the samples in the source and target domains
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pertaining to p € P as follows:

Fs (p) = {Gr (x) |x € Ds (p)}
Fr (p) = {Gr 0) |x € Dr (p)} 3)

the effective J{-idvergence d;’? (P) between Fgs (p) and
Fr (p) across the entire (source and target) domain can be
derived by integrating the H-idvergence d3¢ (Fs (p) , F1 (p))
associated with a specific value of p over all possible values
of p in the domain. Given ng (p) the number of samples
from the source domain and nr (p) the number of samples
from the target domain, dg¢ (Fs (p) , Fr (p)) can be computed
empirically as follows [13]:

dyc (Fs (p) . F (p))
B 2{1 B [ns () Zi:l I[” (Gf (x1) —O|p)]

s G ) =10l]) @

j=1

where 71 (-|p) is a binary classifier for source vs target
domains in the hypothesis class JH (p) associated with p,
while 7 [-] is an indicator (i.e., I = 1 if the predicate is true
and I = 0 otherwise). Then, d;g (P) is given by:

dig (P =3 duc (Fs (@), Fr () )

where the summation is an approximation to the integration
over p. Then, it is possible to regularize the latent features
against P (i.e., make them independent of P) by training a
DNN so that d;}g (P) is minimized, which allows the DNN to
robustly perform the intended labeling task both in the source
and target domains [13]. Inspired by Eq. (5), we conceive the
following loss function for domain regression:

Lp (Gf, Oy |P)
E : 1 ns (p)+nr (p)
- — L 0: 0
P[”S (p) +nr (p) Zk:l D (%, 0f MP)}

1 ns(p)+nr (p)
B Z,, [ns (p) +nr (p) Zk=1

X {(1 —e(p,pxk))logd( !

x> Gy (Gr (w)))

1
+ e(p,pxy)lo (6)
(P Pxi) gl—d(pxk,Gn (Gr (x0))) }:|
where e ( ) = Ld(p.py)<e and Gy (Gr (xi))
P Pxy O,d P’PXk) >e’ ! ’ k

is the domain regressed by the DNN when x; is inputted.
We employ the standard 2-norm-based loss function for label
prediction:

Ly (67,6, P)
1 ns(p)+nr (p)
= - L ’ 0 ’ 9
ZP [ns () +nr (p) Zk:l L (k. 6. 01 |P)}

1 ns(p)+nr (p) 5
B ZP [m 2 e (k= Gi (Gr (x0))) }
@)
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FIGURE 1. A CNN architecture for peripheral artery occlusive disease (PAD) diagnosis via CNN-based PWA.

where y; is the label associated with x;. Then, training a
DNN with CPAR boils down to solving the following set of
optimization problems:

6f = argminLy, (6,611 P)
1

0, = arg rrelinLD (6,6, P)
n

Qf* = argminL; (Qf,91|P)+A; 8)
O Lp (65,6, | P)

where A > 0 is the regularization weight. It is noted
that the way Lp (Gf, Oy |P) is incorporated into the train-
ing of 6, and 6 are distinct in Eq. (8). Indeed, given that
Lp (65,6, | P) > 0 and its value increases as domain regres-
sion fails, 6, can be optimized by minimizing Lp (6f, 6, | P).
In contrast, if Lp (6, 6, | P) is incorporated into the train-
ing of O in the classical way (i.e., optimizing 6; by
minimizing Ly, (9/', 0; |P) — ALp (Gf, Oy |P)), then the cost
function may behave poorly: (i) the loss function is no
longer lower-bounded since Lp (6f, 6, | P) can grow indef-
initely, and (ii)) CPAR cannot be effectively enforced when
Lp (6f. 6 | P) =~ 0 because the contribution of Lp (6, 6, | P)
to the gradient becomes negligible. Hence, our choice of
the loss function for training of 6; has several advantages:
(i) it is positive and lower-bounded at zero; (ii) it is large
when Lp (67, 6, | P) is small, which promotes regularization
by CPAR; and (iii) it gets dominated by Ly (6f, 6;|P) as
Lp (Gf, 0y | P) grows indefinitely, which promotes training of
6y, to improve the domain regression layer while minimizing
the CPAR action.

It is worth mentioning that our CPAR approach can
be readily extended to simultaneously deal with multiple
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domains pertaining to more than one continuous parameters
P; {pi |pi < pi < ﬁi}, simply by connecting multiple
domain regression layers to the feature extraction layer (see
Figure 1 for a CNN with two domain regression layers).
In this case, the loss functions in Eq. (8) are extended to the
following, where Np is the number of domain parameters:

0 = arg ngn ZP,- Ly (6,611 Pi)
9;; :argnélinLD (9f,9,7i|P,'), i=1,---Np
ni
1
0 = i Ly (67,01 |Pi)+Ai—F7—— (O
! argn};}nzpi L (01 Pi) + "Lp (6. 0y, | Pr) ©

B. PAD DIAGNOSIS BASED ON CONTINUOUS
PROPERTY-ADVERSARIAL REGULARIZATION

We applied the CPAR approach in Section IL.LA to the
development of a CNN for PAD diagnosis under dataset
limitation constraints. As shown in Figure 1, the CNN archi-
tecture consists of a modified AlexNet [26] structure (whose
efficacy in PAD diagnosis was demonstrated in our prior
work [11]) combined with two domain regression layers. The
CNN receives arterial pulse wave signals at an arm (brachial
artery) and an ankle (tibial artery) as inputs to perform PWA
and diagnose PAD. The label prediction layer predicts PAD
severity. The domain regression layers are used in the training
phase to maximize the extraction of features independent of
two key anatomical and physiological characteristics affect-
ing the morphology of arterial pulse wave signals and thus the
efficacy of PAD diagnosis: height and arterial stiffness (using
PWYV as a surrogate measure). Details follow.
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FIGURE 2. A lumped-parameter mathematical model of human arterial tree based on the transmission line

theory.

1) VIRTUAL DATASET CREATION

We created virtual datasets for training and testing of a CNN
for PAD diagnosis using an established lumped-parameter
mathematical model of human arterial tree based on the trans-
mission line (TL) theory [27] (Figure 2). The mathematical
model consists of 55 TLs, each of which represents a segment
of arterial tree characterized by segment-specific viscous,
elastic, and inertial properties. Full details of the mathemat-
ical model is provided in He et al. [27]. This mathematical
model was validated using physiological measurements as
well as the results of other studies, and was used in the study
of arterial stenosis and arterial viscoelasticity [10], [28], [29]
as well as PAD diagnosis [10], [11].

We created virtual datasets by perturbing a few anatomical
and arterial mechanical parameters in the lumped-parameter
mathematical model from their respective nominal values.
We specifically varied (i) height, (ii) stiffness, diameter, and
thickness of all the arteries, and (iii) resistances associated
with terminal arteries. Then, we simulated the mathematical
model equipped with these parameters to obtain a wide range
of virtual brachial and tibial artery BP signals. We considered
both inter-individual variability (IIV) and intra-individual
uncertainty in perturbing these parameters. We considered the
IV in height in the range of 162-198cm (4-/—10% perturba-
tion with respect to nominal value). We considered the IIV
in arterial diameter, thickness, and peripheral load resistance
parameters of +/—20% perturbation around their respective
nominal values. We considered the IV in arterial stiffness to
replicate the range of PWV observed in adults of 50-60 years
in age in hypertension cohort (systolic BP>160mmHg and
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diastolic BP>100mmHg; PWV 4.8-15.1m/s) [30]. In combi-
nation with the IIV associated with arterial diameter, thick-
ness, and peripheral load resistances, PWV in the range
of 4.4-15.8m/s was obtained by perturbing arterial stiffness
over -20%-400% of its nominal value. To create multi-
ple arterial pulse signal samples from each virtual patient
obtained with the IIVs described above, we considered intra-
individual uncertainty in the form of lognormal distributions
associated with the five anatomical (i.e., height) and arterial
mechanical (i.e., arterial stiffness, diameter, thickness, and
peripheral load resistance) parameters, with subject-specific
values (nominal plus ITV) as mean and coefficient of variation
of 0.01.

We considered PAD at the abdominal aorta (which is one
of the most common PAD locations). To simulate PAD with
increasing severity, we decreased the diameter of the abdomi-
nal aorta from its nominal value. We defined the PAD severity
as the degree of occlusion: 0% when normal, and 100% when
fully occluded.

To create training dataset, we randomly sampled 32 vir-
tual patients based on the IIV described above and a ran-
domly chosen PAD severity (from within 0%-80%). From
each virtual patient, we created 1,000 random samples sub-
ject to intra-individual anatomical and physiological vari-
ability by applying the intra-individual uncertainty described
above to the five anatomical and arterial mechanical parame-
ters. Then, we repeatedly simulated the mathematical model
32,000 times by characterizing it by each of the 32,000 ran-
dom parameter samples and the corresponding PAD sever-
ity levels to create brachial and tibial BP pulse signals.
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FIGURE 3. Efficacy of CNN-based PWA approach to PAD diagnosis. (a) Receiver operating characteristic (ROC) curve.

(b) Bland-Altman plot between actual vs predicted PAD severity.

The resulting 32,000 arterial BP pulse signals pertaining to
the 32 virtual patients along with the PAD severity, height,
and PWV associated with these arterial BP pulse signals
formed the training dataset.

To create test dataset, we sampled a large number of
virtual patients by widely changing the IIV corresponding
to the five anatomical and arterial mechanical parameters
by 5% increments (5 (height: —10%, —5%, 0%, +5%,
+10%) x 9 (artery diameter: —20%, —15%,
+15%, +20%) x 9 (artery thickness: —20%, —15%, ...
+15%, +20%) x 9 (peripheral load resistance: —20%,
—15%, ...+15%, +20%) x 77 (artery stiffness: —20%,
—15%, ...4+395%, +400%) = 280,665) and PAD severity
by 10% increment (from within 0%-80%). From each virtual
patient at a specific PAD severity level, we created 10 random
samples subject to intra-individual anatomical and physi-
ological variability by applying the intra-individual uncer-
tainty described above to the five anatomical and arterial
mechanical parameters. Then, we repeatedly simulated the
mathematical model 25,259,850 (=280,665 x 9 PAD severity
levels) times by characterizing it by each of the 2,806,650 ran-
dom parameter samples and all the PAD severity levels
(0%-80%) to create brachial and tibial BP pulse signals. The
resulting 25,259,850 arterial BP pulse signals pertaining to
the 280,665 virtual patients along with the PAD severity
associated with these arterial BP pulse signals formed the
test dataset. The rationale behind creating a large-size test
data was to extensively evaluate the efficacy of the proposed
PAD diagnosis approach via CNN-based PWA.

2) TRAINING, TESTING, AND ANALYSIS OF CNN FOR PAD
DIAGNOSIS

The morphology of arterial pulse wave signals are influ-
enced by confounding factors arising from anatomical and
arterial mechanical characteristics as well as PAD severity.
According to the Moens-Korteweg equation [12], arterial
stiffness, diameter, and thickness alter the shape of arterial
pulse wave signals by changing PWV (which impacts the
timings with which forward and backward traveling pulse
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waves are superimposed [12]). In addition, height also alters
the shape of arterial pulse wave signals by changing the length
of pulse wave travel paths. To achieve robust PAD diagnosis
accuracy irrespective of these disturbances, we applied the
CPAR approach to the training of a CNN for PAD diag-
nosis via PWA. Our prior work suggested that height and
arterial stiffness exerts large influence on the morphology of
arterial pulse wave signals among all the disturbances due
to anatomical and arterial mechanical characteristics [11].
Hence, we included two domain regression layers in the CNN
as shown in Figure 1, and used the CPAR approach so that
the features extracted from the brachial and tibial BP pulse
signals and inputted to the label prediction layer for PAD
diagnosis do not include those indicative of height and arterial
stiffness.

Considering that direct non-invasive measurement of arte-
rial stiffness is extremely challenging if not impossible,
we employed PWV as a surrogate of arterial stiffness.
Although PWV is dependent on arterial diameter and thick-
ness as well as arterial stiffness [12], the observation from
our prior work showed that the effect of arterial stiffness is
predominant in altering the shape of arterial BP pulse signals
among all the arterial mechanical properties [11], which sug-
gests that PWV may serve as a credible surrogate of arterial
stiffness.

We evaluated the efficacy of our CPAR-trained CNN-based
PWA approach to PAD diagnosis for its ability to detect PAD
and assess PAD severity by training and testing the CNN
using the training and test datasets outlined in Section IL.A.1.
To robustly evaluate our approach, we repeatedly created the
training and test datasets 10 times, evaluated the performance
of the CNN, and reported the efficacy of our approach in
terms of the aggregated performance of the CNN obtained
from the 10 tests. In training the CNN, we used the ADAM
optimizer with « = 0.5, B8 = 0.999, the learning rate of
0.0001, and the regularization weight (1) of 0.002.

Our performance metrics included (i) sensitivity, speci-
ficity, accuracy, and area under the ROC curve (AUC)
as the measures of PAD detection and (ii) 2 value and
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root-mean-squared error (RMSE) between actual vs

CNN-predicted PAD severity as the measures of PAD severity
assessment, all derived using the test dataset. We evaluated
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the detection accuracy of our CPAR-trained CNN-based
PWA approach to PAD diagnosis against a number of PAD
severity values as the PAD Ilabeling threshold. To examine
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FIGURE 6. PAD detection accuracy of the CNN trained with PWV (PWV) and arterial stiffness (E) used for domain regularization.

TABLE 1. PAD severity assessment accuracy associated with the ABI technique as well as CNN trained with (i) CPAR, (ii) conventional learning without

CPAR, and (iii) multi-task learning.

ABI DL (NO CPAR) DL (CPAR) MULTI-TASK LEARNING
RMSE [%)] 23.0 15.0 9.5 16.9
* Value 0.034 0.588 0.834 0.478

the advantage of PWA over conventional ABI technique,
we compared the performance metrics associated with PWA
and ABI. To enable objective comparison, we mapped
ABI value to PAD severity via a pre-calibrated polyno-
mial regression model relating ABI to PAD severity (which
was derived based on the virtual patient characterized
by the nominal anatomical and physiological parameter
values).

To scrutinize the role of CPAR in promoting the use
of features independent of domain disturbances, we com-
pared the PAD diagnosis efficacy of the CNN trained with
(i) CPAR, (ii) conventional learning without CPAR (in
which no domain-adversarial regularization is enforced),
and (iii) multi-task learning (which, as opposed to CPAR,
fosters the exploitation of the features commonly useful
for PAD diagnosis and domain regression) using the test
dataset. In addition, we investigated the performance of our
CNN-based PWA approach to PAD diagnosis with respect
to the extent to which CPAR is applied, by comparing the
CNN trained with CPAR applied to height only, PWV only,
and both height and PWV using the test dataset. Finally,
to assess the validity of PWV as a credible surrogate of
arterial stiffness, we also trained the CNN with arterial
stiffness used for domain regularization, and compared its
performance with the CNN with PWV used for domain reg-
ularization using the test dataset.
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Ill. RESULTS

Figure 3 shows (a) the receiver operating characteris-
tic (ROC) curve and (b) the Bland-Altman plot between
actual vs predicted PAD severity associated with our
CNN-based PWA approach to PAD diagnosis. Figure 4 com-
pares the PAD detection accuracy associated with the CNN
trained with (i) CPAR, (ii) conventional learning without
CPAR, and (iii) multi-task learning. Figure 5 compares the
PAD detection accuracy of the CNN trained with CPAR
applied to (i) height only, (i) PWV only, and (iii) both height
and PWV. Figure 6 compares the PAD detection accuracy of
the CNN trained with (i) PWYV and (ii) arterial stiffness used
for domain regularization, respectively. TABLE 1 summa-
rizes the PAD severity assessment accuracy associated with
the ABI technique as well as CNN trained with (i) CPAR,
(ii) conventional learning without CPAR, and (iii) multi-task
learning.

IV. DISCUSSION

Current PAD diagnosis requires imaging-based methods not
suited to convenient screening and surveillance purposes.
In addition, the ABI technique suffers from poor diagnostic
accuracy. DL-based PWA has the potential to make a leap in
PAD diagnosis by virtue of its ability to automatically exploit
the features indicative of PAD from readily measurable arte-
rial pulse wave signals. However, the morphology of arterial
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pulse wave signals are influenced by anatomical and arte-
rial mechanical characteristics as well as PAD. If combined
with only scarce dataset from a small number of patients
(who possibly encompass only a narrow range of anatomical
and physiological characteristics) available for training of
CNN, these confounding factors can deteriorate the training
of CNN by increasing the risk of the CNN overfitted only
to the individuals in the training dataset while deteriorating
its generalizability to unseen individuals who may exhibit
more diverse anatomical and physiological characteristics
beyond the training dataset. To enable robust diagnosis of
PAD against these challenges, we developed a novel CPAR
approach and applied it to the development of a CNN-based
PWA approach to PAD diagnosis. Below we demonstrate the
potential of CPAR in enabling robust PAD diagnosis against
confounding anatomical and physiological disturbances.

A. EFFICACY OF CPAR

The CNN trained with CPAR exhibited adequate PAD detec-
tion and assessment accuracy (Figure 3). It showed AUC
consistently higher than 0.9 across all the detection thresh-
olds considered in this work, and achieved nearly unbiased
severity assessment (bias <0.1%).

Comparing the CNN trained with CPAR against the CNN
trained without CPAR and another CNN trained with multi-
task learning ascertained the role of CPAR in robustifying
the CNN against anatomical and arterial mechanical distur-
bances (Figure 4 and TABLE 1). The CNN trained with
CPAR was superior to the CNN trained without CPAR and
the CNN trained with multi-task learning in both detection
and severity assessment aspects. Specifically, the CPAR-
trained CNN exhibited superior sensitivity while maintain-
ing specificity comparable to its competitors (by virtue of
its unbiased estimation of PAD severity, in contrast to its
competitors in which PAD severity was underestimated on
the average), thereby achieving superior accuracy and AUC
characteristics. It is noted that the CNN trained without CPAR
was superior to the CNN trained with multi-task learning.
Noting that (i) the CNN trained without CPAR does not
enforce any action against domain disturbances, and that
(ii) multi-task learning fosters the extraction of latent features
indicative of domain disturbances in performing PAD diag-
nosis, the results suggest that regularizing the latent features
with CPAR can improve the performance of the intended
task susceptible to domain-induced disturbances by making
them independent of (or at least less dependent on) domain
disturbances.

The advantage of CPAR may also be ascertained from the
fact that the efficacy of CNN-based PWA approach to PAD
diagnosis was improved as CPAR was applied simultaneously
to multiple domain-induced disturbances than to one domain
disturbance at a time (Figure 5). The CNN trained with CPAR
to regularize against height and PWV exhibited consistently
higher sensitivity than those trained to regularize only against
height or PWYV, despite slightly lower specificity than the
height-regularized CNN (which, again, appears to be due to
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its unbiased estimation of PAD severity, in contrast to its
competitors in which PAD severity was underestimated on the
average). The CNN regularized against both height and PWV
was persistently superior to the one regularized only against
PWYV in terms of accuracy and AUC. In terms of accuracy and
AUC characteristics, the CNN regularized against both height
and PWV was not consistently superior to its competitor
regularized only against height. However, considering all the
performance aspects (sensitivity in particular), we contend
that the CNN regularized against both height and PWV may
still be superior to the ones regularized only against height
or PWV.

All in all, our results strongly demonstrate the potential
of CPAR in realizing CNN-based PWA approach to PAD
diagnosis. CPAR can derive a CNN robust against anatomi-
cal and arterial mechanical properties altering the morphol-
ogy of arterial BP pulse signals, by virtue of its ability to
foster the exploitation of latent features independent of the
domain-induced disturbances in performing PAD diagnosis
task even when the dataset available for training is scarce and
non-longitudinal.

B. POTENTIAL FOR CLINICAL APPLICABILITY

A few critical questions arise regarding the potential of the
CNN-based PWA approach to PAD diagnosis for real-world
clinical application: (i) is it superior to the current state-of-
the-art; and (ii) does the use of PWYV as a surrogate of arterial
stiffness drastically impact the PAD diagnosis efficacy?

The CNN-based PWA approach to PAD diagnosis was
much superior to the ABI technique in terms of both detection
and severity assessment (TABLE 1). One implication is that
the exploitation of the entire arterial pulse signals is more
efficacious than the use of isolated fiducial points therein in
diagnosing PAD. This implication justifies the complexity in
the measurement and analytics required for PWA. Another
implication is that the CNN-based PWA approach can lever-
age CPAR to improve its robustness against domain-induced
disturbances due to the anatomical and arterial mechanical
characteristics, whereas the ABI technique is inevitably prone
to those disturbances.

The use of PWYV instead of (practically unmeasurable)
arterial stiffness did not largely compromise the efficacy of
CNN-based PAD diagnosis (Figure 6). Indeed, the former
exhibited only a marginal drop in the sensitivity, accuracy,
and AUC characteristics relative to the latter, while the speci-
ficity was more or less maintained. This implies that, although
PWYV is not a perfect surrogate of arterial stiffness due to its
reliance on other arterial mechanical properties, it may still
be a viable choice to enable real-world implementation of the
CNN-based PWA approach to PAD diagnosis in conjunction
with CPAR-augmented learning with regularization.

All in all, our results suggest that CPAR-trained
CNN-based PWA approach to PAD diagnosis may open up
unprecedented opportunities for improving the convenience
and accuracy of PAD screening and surveillance.
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V. CONCLUSION

In this paper, we proposed CPAR, an enabling methodology
for robust training and generalization of a DNN to detect
and assess the severity of PAD against continuous property-
induced disturbances arising from anatomical and arterial
mechanical characteristics. The results demonstrated the abil-
ity of the CPAR to promote the extraction of latent features
independent of domain disturbances, thereby robustifying
the performance of PAD diagnosis against a wide range
of IIV in height and arterial stiffness. Given the proof-of-
concept nature of this work based on virtual in silico dataset,
future work must investigate the in vivo efficacy of the pro-
posed PAD diagnosis approach based on CPAR-trained CNN.
In addition, it may be worth investigating the potential of
CPAR-trained deep learning in the diagnosis of diseases other
than PAD.
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