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ABSTRACT In this paper, we propose a novel seismic time-frequency analysis method via the
time-reassigned synchrosqueezing transform (TSST), in which the time-frequency coefficients are
reassigned in the time direction rather than in the frequency direction as the short-time Fourier-based
synchrosqueezing transform (FSST) does. Such a technique can not only produce a highly concentrated
time-frequency representation (TFR) for a wide variety of strongly frequency modulated signal, but also
allow for the reconstruction of the modes with a high accuracy. Numerical experiments on synthetic signal
and field data demonstrate the effectiveness of this new method, and show that the proposed method is more
suitable for extracting seismic time-frequency feature and identifying the thin layers compared with the
traditional FSST, which offers the potential in highlighting subtle geological structures.

INDEX TERMS Time-reassigned synchrosqueezing transform, time-frequency representation, time local-
ization, frequency slice.

I. INTRODUCTION
Extracting useful information from large amounts of recorded
data is important for a large number of real-world applica-
tions [1]–[3]. Time-frequency analysis (TFA) method can be
applied to characterizing the non-stationary and nonlinear
seismic signal [4]–[8]. Traditional TFA approaches can be
roughly divided into two categories. The first one is the
linear transform based methods such as short-time Fourier
transform (STFT) [9], [10] and continuous wavelet transform
(CWT) [11], [12]. Although both transforms are invertible
and allow one to cope with the non-stationary signal, they
suffer from the Heisenberg uncertain principle, which limits
the adaptivity of the method itself [13]. The second type is
based on quadratic transform, e.g. Wigner-Ville distribution
(WVD) [14], [15]. Such method is characterized by high
time-frequency resolution, however, the strong interference
reduces the readability of TFR and theWVD is not invertible.

To solve those problems, many efforts have been made.
Auger and Flandrin (1995) provided a means of improv-
ing the TFR readability, termed as reassignment method
(RM) [16], which transforms the time-frequency coefficients

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei-Wen Hu .

to their corresponding center of gravity along both the time
axis and the frequency one. Unfortunately, the reassigned
transform is no longer invertible and does not allow for
mode reconstruction. Matching pursuit (MP) improves the
time-frequency resolution greatly by decomposing a seismic
trace into a series of wavelets which belong to a compre-
hensive dictionary of functions [17], [18]. However, the high
resolution is achieved at the cost of increased computational
burden. Han and van der Baan (2013) illustrated the suit-
ability of EMD-based algorithms for seismic time-frequency
analysis [19]. However, a lack of solid mathematical foun-
dation still limits the wide application of such methods.
Daubechies and Maes [20] developed a phase-based tech-
nique, called synchrosqueezing transform (SST) [20], [21].
It aims at improving the TFR by combining CWT and reas-
signment technique, and allowing for mode retrieval [22].
Meanwhile, Thakur and Wu (2011) proposed an extension
of SST to the STFT setting, i.e., so-called FSST [23],
which yields an excellent TFR and mode reconstruction,
and is proven to be robust to noise [24]. Subsequently,
several similar synchrosqueezing transforms based on dif-
ferent frameworks are emerging, such as synchrosqueezing
S-transform (SSST) [25], [26] and synchrosqueezing gen-
eralized S-transform (SSGST) [27], [28], which have been
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successfully used to analyze seismic data. However, it is
worth noting that the aforementioned techniques mostly reas-
sign the time-frequency energy in the frequency direction,
so that the strongly modulated multicomponent signal with
fast varying instantaneous frequency (IF) may not be satis-
factorily dealt with [29], [30].

In this paper, we proposed a new seismic TFA method
based on the TSST, in which the reassignment operation
is implemented in the time direction [31], rather than fre-
quency direction as the SST and FSST do. This results in
the perfect energy concentration on the TFR for the sig-
nal with fast varying IF. Meanwhile, the proposed method
allows for reconstruction of each component making up of
the input signal and the computation complexity remains
the same as the FSST. In addition, it is noteworthy that our
motivation is different from that presented in [32], where
the key idea is to only hold the time-frequency information
most related to time-varying features of the signal and to
remove most smeared time-frequency energy. We mainly
focus on the time-frequency coefficients reassignment in the
time direction. The contributions of the paper can be sum-
marized as below: (1) we first investigate the time-reassigned
property of TSST and achieve seismic time-frequency fea-
ture extraction via the TSST, (2) our method shows the
excellent potential in subtle geological structures charac-
terization compared to the conventional STFT and FSST
approaches.

The outline of this paper is as follows: in Section II,
some fundamental definitions on STFT and FSST are firstly
recalled. Then, we introduce the TSST and Rényi entropy,
and describe the practical implementation of the proposed
method. Section III delivers numerical results on both syn-
thetic and real examples, comparing the proposed method
with standard STFT and FSST. Finally, a discussion of the
results is given in section IV, and conclusions are drawn in
Section V.

II. THEORY
A. SHORT-TIME FOURIER TRANSFORM
The (modified) STFT of a given signal f is defined as follows:

Vf (t, η) =
∫
R
f (τ )g (τ − t) e−2iπη(τ−t)dτ, (1)

where g is a real-valued and symmetrical window function,
and

∣∣Vf (t, η)∣∣2 is called the spectrogram of signal f . Further-
more, the original signal f can be reconstructed from its STFT
by the following equation:

f (τ ) =
∫ ∫

R2
Vf (t, η)g (τ − t) e2iπη(τ−t)dtdη. (2)

B. STFT-BASED SYNCHROSQUEEZING TRANSFORM (FSST)
The purpose of FSST is to sharpen the blurry STFT rep-
resentation by reassigning the time-frequency coefficients
of Vf (t, η) from the (t, η) to

(
t,
∧
ωf (t, η)

)
, so that the

energy-concentrated TFR is obtained.

The local instantaneous frequency estimation at time t
and frequency η based on the (modified) STFT,

∧
ωf (t, η),

is defined by:

∧
ωf (t, η) = R

{
∂tVf (t, η)
2iπVf (t, η)

}
. (3)

where ∂t is the partial derivative with respect to t , R {•}
denotes the real part of a complex number.

The FSST using the synchrosqueezing operator is defined
as follows:

Tf (t, ω)=
1

g (0)

∫
|Vf (t,η)|>γ

Vf (t, η) δ
(
ω −

∧
ωf (t, η)

)
dη,

(4)

where δ is the Dirac distribution, ω is the frequency variable,
and γ is some threshold.

The ith mode can be approximately retrieved by:

fi (t) =
∫
|ω−ϕi(t)|<d

Tf (t, ω)dω, (5)

where ϕi (t) is an estimate ofϕ′i (t), in whichϕi (t) is the phase
function of the ith mode of an AM-FM signal defined by:

f (t) =
M∑
i=1

Ai (t)e2iπϕi(t). (6)

where Ai (t) and ϕi (t) are the instantaneous amplitude and
instantaneous phase of the ith mode, respectively.

It’s important to note that the FSST squeezes the
time-frequency coefficients along the frequency direction,
which is suitable for a class of weak frequencymodulated sig-
nals. However, for strong frequency modulated ones, it usu-
ally does not give a satisfactory result. Thus, a more advanced
TFA method is required.

C. TIME-REASSIGNED SYNCHROSQUEEZING
TRANSFORM (TSST)
Unlike FSST, the TSST reassigns the time-frequency energy
in the time direction, and preserves the invertible proper-
ties [31]. Now, we consider an impulse signal defined as
follows:

fδ (τ ) = Aδ (τ − τ0) . (7)

The standard STFT of signal fδ (τ )with the real symmetric
window g (τ ) is described as:

V g
fδ (u, η) =

∫
fδ (τ )g (τ − u) e−iητdτ

= A
∫
δ (τ − τ0)g (τ − u) e−i2πητdτ, (8)

where u and η are the time variable and the frequency vari-
able, respectively.

Then we have

∂ηV
g
fδ (u, η) = −i2πτ0 · V

g
fδ (u, η) . (9)
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Thus,

τ0 = −
∂ηV

g
fδ (u, η)

i2πV g
fδ (u, η)

. (10)

Note that Eq. (10) is different from the conventional group
delay (GD), in which the (modified) STFT is used. Herein,
we define the (generalized) GD estimator of the impulse
signal fδ (τ ) is defined as:

∧

tf (u, η) = −R

[
∂ηV

g
fδ (u, η)

i2πV g
fδ (u, η)

]
. (11)

The TSST is defined as:

Tf (t, η) =
∫
ψ(η)

V g
fδ (u, η) δ

(
t −
∧

tf (u, η)
)
du, (12)

where ψ (η) =
{
u ∈ R;

∣∣∣V g
fδ (u, η)

∣∣∣ > γ
}
. Eq. (12) shows

that the TSST reassigns the information from the (u, η) plane

to the
(
∧

tf (u, η) , η
)
instead of the

(
u,
∧
ωf (u, η)

)
plane in the

traditional FSST.
Finally, the signal reconstruction from TSST is achievable

by:

f (τ ) =
1

2π
∧
g (0)

∫ ∫
R2Tf (t, η)e

i2πητdtdη. (13)

D. Rényi ENTROPY
In the paper, we employ the Rényi entropy to assess the
distribution concentration of a TFR [33].

The α-Rényi entroy with regard to a nonzero function s is
described as follows:

Rα (s) :=
1

1− α
log2

(
‖s‖2α
‖s‖2

)2α

. (14)

where ‖s‖α :=
(∫
|s (x)|αdx

)1/α and α > 0. Generally
speaking, α > 2 is recommended for TFR measure [34], and
we choose α = 3 in this paper. A lower Rényi entropy means
the more concentrated TFR.

The measure of distribution concentration is defined as:

Cσ,d (u) :=
1

1− α
log2

A
B
, (15)

and,

A =
∫∫

Iu

∣∣Tf (t, η)∣∣2αdtdη, (16)

B =
(∫∫

Iu

∣∣Tf (t, η)∣∣2dtdη)α. (17)

where u denotes the time instant, d is the size of the neighbor-
hood, and Iu := [u− d, u+ d]×[0,∞). Herein, the parame-
ter d is set to 0.12 by several trials because of its insensitivity
to the final result.

FIGURE 1. The time-frequency feature extraction flow chart.

FIGURE 2. A synthetic signal (a) composed of two components (b) and
(c), and its noisy version with a SNR of 2 dB (d).

E. PROCEDURE OF THE PROPOSED METHOD
Figure 1 illustrates the proposed seismic time-frequency fea-
ture extraction workflow, and the detailed implementation
steps are summarized as follows:

Step 1: Determine the window duration parameter and the
threshold applied on window value.

Step 2: Perform TSST on the input signal to calculate time-
frequency coefficients.

Step 3: Obtain the TFR.
Step 4: Select the characteristic frequency within the fre-

quency band of seismic signal.
Step 5: Repeat steps (1) through (4) for all traces in the

seismic data.
Step 6: Extract different frequency slices.
In the TSST algorithm, the window duration parameter

(σ ) and threshold (γ ) are two key parameters. The σ is
often related with the time-frequency energy concentration,
while the γ controls the computation accuracy with mode
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FIGURE 3. Time-frequency maps of the synthetic signal (Figure 2(a)). (a) STFT, (b) FSST, and (c) TSST. The STFT exhibits the poorer
time-frequency resolution, the FSST displays smearing along the IF trajectories and the TSST delineates the IFs corresponding to
individual components well.

FIGURE 4. Enlarged time-frequency maps from Figure 3. (a) STFT, (b) FSST, and (c) TSST. The TSST achieves a highly
concentrated TFR than STFT and FSST.

retrieval. It could result in a blurred TFR and the inaccurate
signal reconstruction if the parameters are not appropriately
selected. In practice, the σ and γ can be obtained by several
trials.

III. EXAMPLES
A. SYNTHETIC DATA
First, we investigate the performance of the proposed method
using a synthetic signal (Figure 2(a)), which is composed of
two components:

s = sin
(
2π
(
330

/√
1000t + 16 cos

(
3
/√

1000π t
)))

+ sin
(
2π
(
190

/√
1000t + 9 cos

(
3
/√

1000π t
)))

t ∈ [0, 1] . (18)

We calculate the time-frequency maps using the STFT,
FSST and TSST, respectively. We select the window dura-
tion parameter for the proposed method to σ = 18, and a
threshold parameter γ is set as 0.00001. The results are shown
in Figure 3. It can be observed that the STFT suffers from a
poor time-frequency resolution due to its fixed window (see
Figure 3(a)), the FSST further improves the time-frequency
energy concentration of the STFT, but the time-frequency
coefficients still spread out along the IF trajectories, which
result in a blurred TFR (see Figure 3(b)). By contrast,
the TSST achieves the best TFR result (see Figure 3(c)). This
is because the TSST reassigns the time-frequency energy in
the time direction, which is more beneficial to characterizing
the signal made up of strongly modulated modes. For a better

view, we enlarge a local area from Figure 3 (see the pink rect-
angle), which is plotted in Figure 4. As illustrated in Figure 4,
the time-frequency energy is perfectly concentrated by the
use of TSST in comparison with STFT and FSST, and the
TSST can better delineate each component constituting the
synthetic signal.

To demonstrate the TSST’s robustness with respect to
noise, a series of noisy signals with the different signal-to-
noise ratios (SNRs) ranging from 0 to 30 dB are generated by
adding the white noise into the synthetic signal. Figure 2(b)
shows a result with a SNR of 2 dB, the time-frequency
maps obtained by using STFT, FSST, and TSST are present
in Figure 5, and the corresponding enlarged versions are
displayed in Figure 6. Our method is run with the same
parameters as that in Figure 3. It can be clearly seen that the
noise has a strong influence on time-frequency feature in the
STFT result (see Figures 5(a) and 6(a)). The FSST produces
a blurry TFR (see Figures 5(b) and 6(b)), which is not good
for IF estimation. However, the TSST still exhibits the better
time-frequency energy concentration (see Figures 5(c) and
6(c)), in which the local feature can be characterized well.
In this sense, the TSST has better noise robustness.

Then, we employ the Rényi entropy to evaluate the per-
formance of different TFA methods quantitatively. A lower
Renyi entropy value means a more concentrated TFR.
As reported in Figure 7, the TSST result has the lowest
Rényi entropy among all mentioned TFA methods, which
indicates that it can produce the most energy-concentrated
TFR.
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FIGURE 5. Time-frequency maps of the noisy signal (Figure 2(b)). (a) STFT, (b) FSST, and (c) TSST. In the results of STFT and FSST,
the noise has a greater impact on time-frequency feature compared to that from TSST.

FIGURE 6. Enlarged time-frequency maps from Figure 5. (a) STFT, (b) FSST, and (c) TSST. The TSST can better
describe the IFs corresponding to individual components in the presence of noise.

FIGURE 7. Rényi entropies of the TFRs obtained from different TFA
methods under different noise levels. The TSST result achieves the
minimum in each noise level.

B. FIELD DATA
In this section, a field data (Figure 8(a)) is employed to
test the proposed method and compare to the STFT and
FSST approaches. This data is composed of 150 traces with
500 samples per trace and a sampling interval of 2ms.Wefirst
take the seismic trace 75, which is plotted in Figure 8 (b),
and apply STFT, FSST, and TSST on the data, the results
are shown in Figure 9. For this example, the parameters
σ and γ are selected as 30 and 0.00005 in the proposed
method, respectively. As can be clearly seen, all TFRs exhibit
some similar features including the strong spectral energy
at 0.20s, 0.33s and 0.73s, and a decrease in spectral energy
with time. More specifically, the STFT produces a poorer
TFR owing to its intrinsic shortcoming. The FSST and TSST
present more detailed information than the STFT due to
the higher time-frequency resolution of both methods. How-
ever, the TSST is obviously superior to the FSST in time

FIGURE 8. Field data (a) and its trace 75 (b).

localization, which facilitates the accurate characterization
of transient spectral anomalies. The key reason is that the
reassignment operation is implemented along the time direc-
tion in the algorithm of TSST, rather than the frequency
direction as the FSST does. In addition, we also test the
reconstruction accuracy with regard to TSST, which is shown
in Figure 10. As illustrated, there is nearly no observable
difference between the original and reconstructed signals.
The TSST has a nearly perfect reconstruction with an overall
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FIGURE 9. TFR results of trace 75. (a) STFT, (b) FSST, and (c) TSST. All
results show a decrease in frequency content over time, but the FSST and
TSST results are least smeared.

FIGURE 10. Reconstructed signal (a) and reconstruction error (b). The
TSST provides a good estimation. There is no obvious difference between
the recovered signal and the original one, and the reconstruction error is
negligible.

MSE (Mean Squared Error) value of 0.0973 (Figure 10(a))
and a negligible reconstruction error (Figure 10(b)).

Finally, we apply the three methods to all traces in the
field data and extract the 40Hz and 55Hz frequency slices.
Figure 11 shows the STFT, FSST, and TSST results. It can
be clearly seen that both of STFT and FSST show a set of
relatively blurred frequency slices (Figures. 11(a), (b), (d),
and (e)), and cannot effectively highlight the structural and
geological information. The STFT brings out a whole spectral
content with the poorer time-frequency resolution due to the
Heisenberg uncertainty principle (Figure 11(a)), while The
squeezing along the frequency axis heavily reduces the time
resolution of the FSST, so that it barely identifies the thin

TABLE 1. Computational costs of the STFT, FSST, and TSST.

layers between 0.2s and 0.35s (Figure 11(b)). By contrast,
The TSST depicts a cleaner spectral representation with
higher time-frequency resolution and better geological struc-
tures. Furthermore, the main reflectors located at 0.1s, 0.2s
and 0.35s (indicated by the arrows in Figures 11(c) and (f))
are well identified, which is very crucial in seismic
interpretation.

In addition, we also evaluate the computation costs of
the aforementioned methods operating on synthetic and real
examples, which are listed in Table I. As reported in Table I,
the STFT takes the shortest time, the FSST and TSST are
almost equivalent in time while the latter is a little shortern,
which means the TSST remains the same level of computa-
tion complexity as the FSST. All experiments are done on a
PC station equipped with an Intel Pentium Duo Core CPU
clocked at 2.53 GHz and 2 GB of RAM.

IV. DISCUSSION
TFA is one of widely used tools for characterizing the
time-varying feature of a non-stationary signal. The STFT
usually fails to produce a satisfactory result due to the Heisen-
berg uncertainty principle. The original SST and its extended
version such as FSST reassign the time-frequency coeffi-
cients in the frequency direction, thus, they are more suitable
for analyzing the weak frequency modulated signal. In the
TSST method, the reassignment operation is implemented
in the time direction and the GD estimator is employed to
replace the instantaneous frequency estimator in the original
SST, which enable it to generate a highly concentrated TFR
for a wide variety of strongly time-varying signal. From the
comparison with STFT and FSST methods, it can be clearly
seen that the TSST can better achieve the feature extraction
based on the temporal localization. In addition, it is worth
noting that the signal reconstruction is the main advantage
of TSST over RM, which means that we can make the most
of the invertible property of TSST for signal denoising and
mode retrieval.

In the algorithm of TSST, two parameters that need to
be predefined, window duration parameter σ and thresh-
old γ , usually play an important role. The window duration
parameter determines the energy concentration of a TFR,
the threshold parameter controls the signal reconstruction
accuracy. Now, we take the synthetic signal in Figure 2(a)
for an example to test the above-mentioned parameters.
In Figure 12, the effect of the window duration parameter
variations is shown on time-frequency energy concentration.
As can be observed from Figure 12, a larger value will result
in inaccurate IF estimation (see Figure 12(a)) while a smaller
value may reduce the energy concentration of a TFR (see
Figure 12(b)). Thus, a suitable compromise solution is often
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FIGURE 11. Constant frequency slices. (a) 40Hz STFT-based method, (b) 40Hz FSST-based method, (c) 40Hz TSST-based
method, (d) 55Hz STFT-based method, (e) 55Hz FSST-based method, (f) 55Hz TSST-based method. The TSST shows the higher
time-frequency resolution than STFT and FSST.

FIGURE 12. TFR results with different window duration parameter values.
(a) σ = 53, (b) σ = 12.

FIGURE 13. MSE versus different threshold parameter values.

required by several trials in practice. Then, we calculate
the MSE for various values of the threshold parameter. The
obtained result is shown in Figure 13. As can be clearly
seen, the MSE has a slightly increasing against the large
variations of the threshold parameter, hence, the TSST is not
very sensitive to the threshold parameter.

In terms of computational cost, experimental results indi-
cate that the TSST and the FSST are almost equivalent and
slightly higher than the STFT. Although the TSST shows
great advantage in characterizing strongly time-varying

signal, it does not seriously reduce the computational effi-
ciency. Therefore, the TSST can be applied to seismic pro-
cessing in the real world.

V. CONCLUSION
In this paper, we present a new approach for seismic
time-frequency analysis method based on the TSST. Such a
method allows us to better handle a wide variety of strongly
time-varying signal. The advantage of the proposed method
is demonstrated by numerical experiments both for synthetic
and real data. It successfully produces a highly concen-
trated TFR by reassigning the time-frequency coefficients
in the time direction compared with other methods such as
the STFT and FSST, while allows for better inevitability
of the TFR. Thus, the proposed method is more suitable
for characterizing the non-stationary seismic signals with
strongly time-varying feature, which could probably help
to better understand the subtle geological structures. Future
works include the behavior analysis of this method when
applied to seismic data with complex noise, and developing
new applications.
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