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ABSTRACT Accurate electricity consumption forecasting in the power grids ensures efficient generation
and distribution of electricity. Keeping this in mind, the paper introduces a novel deep learningmodel, termed
Gated-FCN, for short-term load forecasting. The key idea is to introduce an automated feature selection and
deep learning model for forecasting. The model includes an eight-layered Fully Convolutional Network
(FCN-8) in which the hand-crafted feature selection that requires expert domain knowledge is avoided.
Furthermore, the model also reduces noise as it learns internal dependencies and the correlation of the time
series. Enhanced Bidirectional Gated Recurrent Unit (EBiGRU) is used in combination with FCN-8 to learn
long-term temporal dependencies of the time series. Moreover, a weighted averaging mechanism of multiple
snapshot models is adopted in the proposed model to assign optimized weights to BiGRU. At the end of
FCN-8 and BiGRU, a fully connected dense layer is used that gives final prediction results. Gated-FCN
is an end-to-end forecasting model that does not require any other model for enhancing its forecasting
efficiency. Different activation functions are initially analyzed to determine how the proposed model learns
complex patterns from the time series data. Later, the activation function having the best accuracy is used
for forecasting. The proposed model extracts both spatial and temporal features from the data. Furthermore,
this paper also provides predictive and exploratory data analyses to assist policymakers in making optimal
decisions regarding power production and dispatch. In order to demonstrate the applicability of the proposed
technique, the simulations are performed using nine years’ load consumption data taken from Independent
System Operators New England (ISO-NE). The comparison with five state-of-the-art techniques is also
provided to prove the fact that Gated-FCN gives the best forecasting accuracy as compared to other
benchmark techniques in terms of two performance metrics: Mean Absolute Percentage Error (MAPE) and
Root Mean Square Error (RMSE).

INDEX TERMS Deep learning forecasting technique, enhanced BiGRU, electricity consumption forecast-
ing, gated FCN, smart grid, weighted averaging technique.

NOMENCLATURE
ANN Artificial Neural Network
ARIMA Autoregressive Integrated Moving Average
BiGRU Bidirectional Gated Recurrent Unit
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BiLSTM Bidirectional Long Short Term Memory
CNN Convolutional Neural Network
DANN Deep Artificial Neural Network
DLSTM Dilated Long Short Term Memory
DR Demand Response
EBiGRU Enhanced Bidirectional Gated Recurrent Unit
ELU Exponential Linear Unit
FCN-8 Fully Convolutional Network-8
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GA Genetic Algorithm
Gated FCN Gated Fully Convolutional Network
GRU Gated Recurrent Unit
ISO-NE Independent System Operators New England
LSTM Long Short Term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MSE Mean Square Error
MLP Multi Layer Perceptron
MLR Multi Linear Regression
PReLU Parametric Rectified Linear Unit
RBM Restricted Boltzmann Machine
ReLU Rectified Linear Unit
RES Renewable Energy Source
RMSE Root Mean Square Error
RNN Recurrent Neural Network
SANN Shallow Artificial Neural Network
SELU Scaled Exponential Linear Unit
SMI Smart Metering Infrastructure
SMA Simple Moving Average
SVM Support Vector Machine

I. INTRODUCTION
The importance of load forecasting cannot be overlooked in
the modern power management system. Electricity infras-
tructure planning and power system operations are supported
by long-term, mid-term and short-term load forecasting.
In the last couple of decades, enormous efforts have been
made to ensure the power systems’ sustainability. The pen-
etration of Renewable Energy Sources (RESs) in the power
systems is also on the rise to fulfill the increasing demand for
energy. The uncertainty in the power systems increases due
to the intermittent nature of RESs (inconsistent availability
of wind and solar resources) [1]. Moreover, the Electricity
Consumption (EC) pattern also shows variations. Both these
factors directly affect the balance of electricity demand and
supply. Therefore, accurate short-term EC load forecasting
is necessary. It allows the power distributors to plan the
operations of energy generation from different sources while
maintaining the reliability and sustainability of the power
system. In the case of surplus energy generation from RES,
the power distributors can use EC load forecasting informa-
tion to decide how much energy is generated by RESs should
be stored for later use. On the other hand, in the case of energy
deficit, they can plan the fuel-based energy generation tomeet
the additional demand. Efficient load forecasting also helps in
intelligent usage of storage devices and load shaving through
Demand Response (DR) system. Thus, load forecasting can
be used by the utilities for DR programs to handle power
deficiency and to ensure load balancing at an optimal level.

The authors in [2] introduce an ensemble and deep
learning-based short-term forecasting model. The proposed
approach is the combination of Light Gradient Boosting
Machine (LGBM), Extreme Gradient Boosting (XGB) and
Multi-Layer Perceptron MLP) models. The MLP first learns

the hidden features’ representation from the electricity load
profile and then ensemble boosting techniques are used to
efficiently deal with the huge electricity load dataset. The
ensemble techniques perform well as compared to traditional
machine learning techniques because of the combined inte-
gration of several weak learners. The result is finalized by
considering the outcomes of all weak learners. That is the
reason for adopting the boosting machine in the proposed
methodology for efficient short-term forecasting of EC load
profile. However, the proposed scheme lacks while captur-
ing the temporal dependencies from the electricity load data
because the MLP or ensemble models are unable to main-
tain the context of electricity load profile for a long period.
Recently, a KNN and deep learning-based hybrid model is
introduced in [3] for short-term load forecasting. The KNN
is exploited to capture the uncertainty and fluctuations from
the electricity load consumption data. Meanwhile, the deep
belief network is employed to obtain the prediction inter-
val. However, the proposed scheme performs poorly while
forecasting electricity load consumption because the KNN
is a lazy learner. It does not capture the temporal correlated
features from the long-term electricity load profile properly.
Furthermore, the study of [4] presents an enhanced CNN by
utilizing the neuroevolution algorithm as a hyperparameter
tuning algorithm. However, the standalone CNN does not
accurately forecast the electricity load profile. It does not
have enough memory to maintain and store the long-term
context of the electricity load profile. After critically review-
ing the recent literature, it is observed that there is still
room for an accurate EC load forecasting model. Keeping
the above concerns in view, we propose a hybrid deep learn-
ing model, which is the combination of FCN and BiGRU.
The problems of long-term dependency and high targeting
features are resolved by BiGRU and FCN, respectively. The
BiGRU intelligently captures the temporal correlation from
the electricity load data by using the memory gates and then
forecasts an accurate short-term load profile.

The conventional metering infrastructure is gradually
being replaced by Smart Metering Infrastructure (SMI). This
massive change drives the utility to rely on load forecast-
ing for power management and operations. Several forecast-
ing techniques are introduced in the literature to efficiently
perform electricity load forecasting. Artificial Neural Net-
work (ANN) was firstly introduced in 1943. The concept
was based on biological neurons. ANN-based learning tech-
niques include Shallow ANNs (SANNs) and Deep ANNs
(DANNs). Besides, the Convolutional Neural network (CNN)
is also used for classification purposes. It was introduced
for the first time in 1980. It is based on the concept of
neurons that are connected together in the form of a multi-
layer hierarchy [5]. Deep learning techniques provide better
results than shallow learning techniques because the latter
face training and gradient diminishing issues. Thus, deep
learning techniques are being used in many fields, such as
computer vision, speech recognition and natural language
processing [6]. A DANN stacks multiple layers of neural

131366 VOLUME 9, 2021



A. Naz et al.: Electricity Consumption Forecasting Using Gated-FCN With Ensemble Strategy

networks in different sequences and uses stochastic optimiza-
tion methods to perform the machine learning tasks. More-
over, it does not require hand-crafted features like machine
learning techniques. All layers in the network are jointly
trained, which is one of the challenges being faced by deep
learning models [7]. Many variants of DANN have been pro-
posed in the literature for electricity load forecasting, such as
Restricted Boltzmann Machine (RBM) [8] and Multi-Layer
Perceptron (MLP) [9]. However, the increase in the number
of layers increases the complexity of the network in terms of
execution time and memory requirement.

Long Short Term Memory (LSTM) is an advanced and
powerful version of Recurrent Neural Network (RNN).
It consists of three memory gates that save historical infor-
mation [10]. These memory gates include input, output and
forget gates. Several flavors of LSTM have been proposed
in the literature, such as Dilated LSTM (DLSTM) and
Bidirectional LSTM (BiLSTM). CNN learns the correlation
between spatial features. Whereas, LSTM learns temporal
dependencies [5]. Researchers have combined the benefits of
both models and proposed an end-to-end forecasting model.
Convolutional LSTM was firstly used in 2015 for image
recognition [11]. The prediction is made by learning the
movements of pixels from previous frames. Various studies
have been conducted in different fields to perform both fea-
ture extraction and forecasting tasks, simultaneously. In natu-
ral language processing, emotions are studied using text as an
input [12]. In speech recognition, various voice search tasks
are performed using CNN and LSTM. Combined CNN and
LSTMmodel shows flexibility and gives good results despite
the presence of noise. These forecastingmodels are also in the
limelight in the image recognition field. In video processing,
a deep learning model using CNN and BiLSTM is proposed
to detect various human gestures in video frames [13]. Sim-
ilarly, in the medical domain, arrhythmia disease is detected
in ECG using a CNN-LSTM model [14].

In [1], the authors use LSTM for learning temporal trends
in time series data. However, the correlation of exogenous
and dependent variables plays a vital role in learning the time
series data, which is not considered in this paper. The fully
Convolutional Network (FCN) learns the correlation between
exogenous variables, extracts important features and passes
them as inputs for forecasting future EC. Hence, manual
crafting of features is avoided while filtering the data as
it is labor extensive. Furthermore, LSTM uses three gates:
input, output and forget, which increase the execution time
of the proposed model. To tackle the aforementioned issue,
Gated Recurrent Unit (GRU) was proposed in 2014, which
is an advanced version of LSTM. GRU has only two gates.
It combines the input and the forget gate of LSTM into an
update gate. The remaining mechanism does not change and
is the same as that of LSTM [15]. It takes less memory as
compared to LSTM, yet produces good results. GRU is imple-
mented on statistical machine translation. Many different
flavors of GRU have been introduced in literature [16]. Bidi-
rectional GRU (BiGRU) is also one of the variants. It learns

temporal dependencies in the data both from the past and
future.

In the proposed work, EC is predicted using a combined
FCN-8 and Enhanced BiGRU (EBiGRU) model, named
Gated-FCN. FCN-8 acts as an encoder and reduces data
dimensionality. It extracts spatial features from the data to
decrease its complexity. Moreover, it neither requires manual
handcrafting of the exogenous features nor the preprocess-
ing of data. EBiGRU is effective in modeling the temporal
information hidden in irregular data trends and learning the
long-term historical dependencies. EBiGRU uses an ensem-
ble strategy to increase the generalization capability of the
model. Gated-FCN is different in its structure because it is an
end-to-end forecasting model that learns both the correlation
between exogenous variables and the long-term dependencies
in the data. Independent System Operators New England
(ISO-NE) dataset [47] is used to forecast short-term electric-
ity consumption data. The simulation results prove that the
proposed model outperforms the benchmark deep learning
and shallow machine learning models.

The remaining paper is organized as follows. Section II
presents the related work of the EC forecasting models.
Section III briefly explains the working of BiGRU and
FCN-8, and presents the complete methodology of the
proposed model. Section IV elaborates simulation results.
Section V concludes the paper.

II. RELATED WORK
Many studies are conducted in literature for EC forecast-
ing, which are based on statistical, machine learning and
deep learning models. There are several techniques based
on these models that are proposed by researchers in the
course of time. These techniques include Auto-Regressive
Integrated Moving Average (ARIMA) [17], LR [18],
SVM [19], ANN [20], sequence to sequence learning [21],
DANN [22], etc. Table 1 presents the main findings of lit-
erature review in terms of proposed schemes, contributions,
performance metrics, results and limitations. According to
the statistics provided in [23] regarding the application of
these forecasting techniques in research, ANN is being used
up to 47%, SVM 25%, Decision Tree (DT) 4% and the rest of
the techniques are employed up to 25% in the literature. The
forecasting of residential electricity load is performed using
ANN in [24]. However, the effectiveness of ANN increases
as per the availability of different exogenous variables like
weather data, temperature, wind speed and humidity. The
nonavailability of dependent variables adversely affects the
performance of ANN. RNN resolves this issue with the
help of BP in the network. It yields promising results while
forecasting sequence-based time series. However, long-term
dependencies are hard to learn by traditional RNN as it
faces vanishing gradient issues due to time depth and single
hidden layer. In order to overcome these issues, the LSTM
forecasting technique was proposed in 1997 [10]. It combines
short-term memory with long-term memory by incorporating
three memory gates, which save the long-term dependencies
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TABLE 1. Literature review findings.

in them. In [25], LSTM is combined with GA in order to opti-
mize themodel’s parameters. The comparison between differ-
ent deep learning and machine learning models is performed
in [26], which proves that the performance of deep learning
models is reasonably better as compared to the machine
learning models. DANN is used as the forecasting technique
in [27]. It is a multichannel deep convolution network, which
uses variables’ data to detect latent features. The extracted
latent features are fed to MLP for forecasting the time series
data. However, MLP performs poorly when detecting tem-
poral dependencies. In [28] and [29], deep LSTM is used in
order to perform forecasting.

Various variants of LSTMare proposed in the literature that
include DLSTM. It uses skip connections that are extracted
from the concept of ResNet [6]. Moreover, DLSTM enhances
the efficiency of the network by reducing the vanishing gradi-
ent issue [30]. BiLSTM is used in literature to learn two-way
dependencies of the data: past and future [31]. GRU is an
advanced version of LSTM that combines the input gate and
forget gate of the network into one gate, termed as an update
gate [15]. Multi GRU is also a variant of GRU that is used
to optimize the electricity dispatch plan [16]. In [32], GRU
is used in order to forecast PV power generation. Apart from
time series sequence data, there are other high dimensional
information as well like spatiotemporal matrix that exists in
the time series, which cannot be learned by GRU. Therefore,
it is required to add such features in GRU that can optimally
learn the high dimensional temporal data. In deep learning
methods, feature extraction is ideally performed by CNN.

It is widely used in the field of image and pattern recognition.
It also learns local features that are based on a strong relation-
ship between nearby points [33]. Researchers in the fields of
image recognition, speech recognition and emotion recogni-
tion frequently use CNN. It is an end-to-end learning model
that simultaneously covers spatial and temporal trends [34].
Moreover, CNN-LSTM is used in speech recognition to learn
global and local emotion-based features. Multiple blocks are
used in the network, comprising of convolution block and
pooling block that learn the local correlation in the data.
LSTM learns long-term dependencies of the extracted local
features with incredible learning precision [35]. CNN-LSTM
is also used in the field of natural language processing by
taking the text as an input. The authors in [12] combine
three deep learning models that include CNN, LSTM and
DNN. These models provide the best results in emotions’
recognition from voice [36]. Similarly, the authors perform
action recognition from the video, which involves frame
extraction for data processing. The proposed CNN-LSTM
model is used for learning the users’ actions [13]. Both image
recognition from videos and emotion recognition from voice
are performed using end-to-end forecasting frameworks that
provide high forecasting precision. The forecasting of energy
consumption time series is performed to learn temporal trends
without handling high dimensional features. Furthermore,
feature extraction plays an important role in noise and dimen-
sionality reduction. It also reduces the computational time
of the forecasting model and improves forecasting accuracy.
In [37], the authors use a Multiple Linear Regression (MLR)
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FIGURE 1. Gated-FCN architecture.

model for forecasting the electricity load data for South
Sulawesi Electrical System. The proposed model performs
efficient forecasting and provides an optimal electricity load
forecast for rainy and dry seasons with a minimum MAPE
of 4.34% and 3.52%, respectively. However, the EC load
data contains long-term periodicity and fluctuations, which
limit the performance of MLR in some cases. Similarly,
in [4], an enhanced deep learning architecture is proposed for
short term electricity load forecasting. In the proposed work,
a deep CNN is built for extracting the complex non-linear
patterns from the historical EC load profile and providing an
optimal short-term electricity load forecast. The performance
of CNN is enhanced by employing an evolutionary Enhanced
Grey Wolf Optimizer (EGWO) technique for parameter tun-
ing. The simulation results depict that the proposed model
outperforms the other schemes. However, due to the pres-
ence of strong temporal correlation in the EC load profile,
the CNN lacks in providing an optimal forecast because
of short-term dependency issues. In [38], it is argued that
some external factors like weekdays or weekends, weather
conditions, seasonal changes, etc., also have an effect on
short-term electricity load forecasting. In this regard, a novel
model equipped with a signal decomposing technique, named
Improved Empirical Mode Decomposition (IEMD), is pro-
posed. IEMD decomposes the high dimensional time series
signal into low-frequency components for better interpreta-
tion of EC load data. Moreover, for handling the effects of
external variables, a correlation analysis is performed using
T-Copula. Finally, the outcomes of both IEMD and T-Copula
are passed as input to a deep belief network for increasing
the model’s efficiency. The proposed model outperforms the
other baseline models in terms of achieving minimumMAPE
and RMSE. The authors in [39] present a study for short
term electricity load forecast. Four different statistical and
ensemble learning models are used to forecast the day-ahead
electricity load consumption. The simulation results prove
that the ensemble model, named Gradient Boosting
Regression Trees (GBRT), outperforms other methods in

terms of load forecasting. In [40], a Bayesian neural
network-based model is presented. The Bayesian network
model is a type of probabilisticmodel, which tries tomap con-
ditional dependencies. The simulation results demonstrate
that the Bayesian model provides an optimal load forecast
as compared to other baseline models.

In [14], the authors extract spatial and temporal features in
the time series using an end-to-end forecasting model. Mul-
tidimensional data consists of complex features, which affect
the time series trends. CNN is used to learn complex spatial
features. Whereas, LSTM is used to learn temporal-based
features of the data. There are several irregular trends and
long-term dependencies in the EC data that can easily be
learned using LSTM. However, there are certain drawbacks
of LSTM, which are tackled by a variant of LSTM, known
as GRU. As alreadymentioned, GRU combines the input gate
and the hidden gate, which reduces the computational time
without compromising its efficacy. The variant of GRU that
is used in the proposed work is termed EBiGRU. It learns
long-term dependencies of the data both from the past and
future. An eight-layered FCN (FCN-8) is used in the pro-
posed work to extract spatial features from the time series
data. Details of the proposed end-to-end forecasting model,
Gated-FCN, are given in Section III.

III. PROPOSED DEEP LEARNING MODEL
The novel architecture that is proposed in this paper is
based on two levels. At the first level, multiple exogenous
features are taken as inputs without applying any manual
feature crafting technique. The processing of data is per-
formed using FCN-8 in order to extract important spatial
correlation of the features and reduce noise. The output is
flattened and is given as an input to BiGRU for the regres-
sion purpose. A multi-model ensemble technique is used to
perform averaging of multiple snapshot models of BiGRU
in order to increase the robustness and generalization capa-
bility of the model. The proposed architecture is illustrated
in Fig. 1.
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A. FULLY CONVOLUTIONAL NETWORK-8
CNN has been used in literature for pattern recognition in the
image processing field [41]. It uses weights’ sharing strategy
while learning the time series data. Therefore, it does not
require classic feature crafting methodologies or manual fea-
ture crafting capabilities. It quickly learns complex features
from the data. Recently, CNN is used in electricity-related
problems, such as forecasting RES generation. There are
primarily three layers that are used in CNN: convolution,
pooling and activation. The convolution layer takes a number
of output activations of the previous layer as input. It has
the size of filter and stride. In the proposed CNN, there are
8 convolution layers, which is why it is termed FCN-8. Filter,
which is taken in the network is of small size as compared to
the actual size of the time series window. It moves on small
parts instead of the entire activation map. FCN-8 extracts the
feature’s correlation in the load consumption time series and
reduces noise. The details of the layers involved in CNN are
provided below.

1) CONVOLUTION LAYER
In convolution operation, a filter is applied to the input vectors
and a featuremap is obtained.ϕ shows the activation function.
ϕ(W n

⊗x+bn) is the convolution operation,W represents the
weighting factor and n is the number of filters. x depicts the
input vector and b shows the bias vector. There are multiple
activation functions that are being used in literature, such
as Rectified Linear Unit (ReLU), Leaky ReLU, Parametric
ReLU (PReLU) [42], Exponential Linear Unit (ELU) and
Scaled ELU (SELU) [43]. These are explained below.

• ReLU : it is used in deep learning models to solve numer-
ous real-world problems. Due to its efficient learning
power, it becomes one of the frequently used activation
functions, which reduces both the vanishing gradient
issue and the overfitting problem in the network. It is
defined in Equation 1, [42].

f (x) = max(0, x), (1)

where x denotes the input data and max() picks the
maximum value. There are various issues that ReLU
may encounter, such as dying ReLU. It happens when
the output of ReLU is always zero regardless of the
input because weights or biases are updated to be neg-
ative during the training phase. It causes the ReLU to
be dead, which makes the learning of the model slow.
In order to solve its inherited issues, many other activa-
tion functions have been introduced over the course of
time that include Leaky ReLU, PReLU, ELU and SELU,
as shown in Fig. 2.

• Leaky ReLU : it allows a small and positive gradient
when unit is not active. In ReLU, neurons are not acti-
vated, which leads to poor results. In order to alleviate
the problem of ReLU, non negative gradient is used,
which improves the network accuracy. It is defined in

FIGURE 2. Activation functions.

Equation 2, [42].

f (x) =

{
x, if x ≥ 0,
0.01x, otherwise.

(2)

• PReLU : it also helps in reducing dying neuron issue
by taking substitute of non zero gradient from the
parameter a like Leaky ReLU. It takes a variable rather
than taking the constant value of 0.01, as shown in
Equation 3, [42].

f (x) =

{
x, if x ≥ 0,
ax, otherwise.

(3)

• ELU : it is also based on ReLU. It has taken the good
part of ReLU while reducing dying neuron problem.
It improves the learning curve and solves the vanishing
gradient problem. It is given in Equation 4, [43].

f (x) =

{
a(ex − 1), if x ≥ 0,
x, otherwise,

(4)

where a is the scaling parameter and e denotes the
exponential function, which calculates the small decay
in input x.

• SELU : It is similar to ELU. The only difference is that
it uses two parameters in order to reduce vanishing
gradient issue, which improves the learning speed of the
model. It is given in Equation 5, [43].

f (x) =

{
λ(aex − 1), if x ≥ 0,
x, otherwise,

(5)

where the value of α is 1.6733 and λ shows a stochastic
variable, whose value is 1.0507.

2) POOLING LAYER
In FCN-8, the convolution layer is followed by a pooling
layer. It is interposed between convolution layers after nonlin-
ear activation functions. It is applied on the convolution layer
and its main purpose is to reduce the size of data and avoid
overfitting. Max(.) operation is used in order to spatially
reduce the data, as illustrated in Fig. 3.

B. ENHANCED BIDIRECTIONAL GATED RECURRENT UNIT
ANNs are broadly used in literature to solve nonlinear
real-world problems. RNN is used to learn the forward and
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FIGURE 3. Max pooling and average pooling.

backward direction of the time series. BiGRU is one of
the advanced versions of RNN and is used in the proposed
work. It consists of two layers. The first layer learns the
forward temporal sequence while the second layer learns the
backward sequences. Both hidden layers’ feature maps are
concatenated and given as an input to the fully connected
layer [44]. BiGRU encodes the temporal sequence of the
features extracted through FCN-8. The previous layer depen-
dencies are based upon the update gates, which control the
flow of information from the previous hidden layer to the
current hidden layer. On the other hand, the reset gate controls
the information that is required to be neglected and not to be
passed to the next hidden layer. The architecture of BiGRU is
illustrated in Fig. 4.

FIGURE 4. BiGRU architecture.

In machine learning, ensembles of different models
increase the generalization capability of the ensemble model
as compared to the individual model [45]. In the proposed
model, a multimodel ensemble strategy is used to increase the
generalization of the proposed Gated-FCN model, as shown
in Fig. 5. In EBiGRU, an ensemble of 10 snapshot mod-
els is used. Furthermore, the Adaptive Moment Estima-
tion (ADAM) optimizer is used to optimize EBiGRU because
its performance is up to the mark in terms of efficacy. The
algorithm performs adaptive learning by first and second
moments estimation of the gradients. The speed of con-
vergence is proven to be the fastest as compared to other
optimizers. It is computationally fast and less memory-
hungry [22]. Furthermore, the cycling learning rate in the case

FIGURE 5. Ensemble strategy illustration - The number of snapshot
models are selected on the basis of minimum loss.

of Stochastic Gradient Descent (SGD) adversely affects the
performance of the forecasting model. Therefore, ADAM is
used in our work as an optimizer, which iteratively adapts
the learning rate. Moreover, it does not need to set the
learning rate initially. The weights of the model, given as
W0(1),W0(2),W0(3), . . . ,W0(n) are trained multiple times.
EBiGRU keeps the rest of its parameters the same, such as
hidden layers and the number of neurons. Each snapshot
model trains the weights differently because of the initial
random values of the weights. The final weights of themodels
are then averaged in order to increase the robustness of the
model.

C. CASCADED FCN-8 AND BiGRU
Gated-FCN is a combination of FCN-8 and EBiGRU. The
core reason for using FCN-8 as an encoder is to extract spatial
features and reduce noise from the multivariate dataset. Sub-
sequently, EBiGRU is used in order to learn encoded local
temporal features and long-term dependencies. It learns in
a bidirectional order so that trends from the past as well as
from the future can be learned. It also takes fewer learn-
ing parameters as compared to LSTM, which further takes
less computational time. There are several steps involved in
Gated-FCN. In the first step, spatial features and local trends
are extracted. Noise is also removed using 8 layered FCN.
Electricity load consumption time series is given as an input
to FCN-8, unlike image processing where the 2D image is
given as an input. Basically, the FCN is a variant of CNN.
Therefore, all the mathematical formulation is derived from
CNN [48]. The mathematical equation of convolutional layer
is given as follows.

yi := σi(wi ∗ xi + bi), (6)

where yi denotes the output of ith convolutional layer. Simi-
larly, σ represents the sigmoid function, wi shows the weight
factor, bi is the bias factor and x represents the input of ith

convolutional layer. After the convolutional layers, the max
pooling layers are integrated for the sake of dimensionality
reduction. The mathematical equation of max pooling layer
is given below.

ym := maxi,j∈R(yi,j). (7)

In Equation 7, ym shows the output of max pooling layer.
i and j represent the ith convolutional layer and jth neuron,
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respectively. The finalized outcome of Equation 6 is fur-
ther passed to Equation 7 for picking the potential features
through max pooling operations. After applying the spec-
ified convolutional and pooling operations, the final result
is devised in a 1D vector by using a flatten later. Finally,
a fully connected layer is used to get the desired result.
The mathematical equation of fully connected layer is given
below.

yf := gi(w
f
i ∗ y

m
+ bfi ). (8)

where yf shows the final outcome of fully connected layer
and gi denotes the activation function. The mathematical
formulation of EBiGRU [49] memory gates are given below.

rt = σ (xt ∗ wr + ht−1 ∗ wr + br ). (9)

ut = σ (xt ∗ wu + ht−1 ∗ wu + bu). (10)

where rt and ut denote the reset and update gates, respec-
tively. xt represents the input at time step t , wr is the weight
of reset gate, weight of the update gate is denoted by wu.
Whereas, br and bu indicate the bias term of reset and
update gate, respectively. The extracted local features and
spatial correlation features are concatenated and fed to the
enhanced version of EBiGRU, which learns long term tempo-
ral dependencies both from past and future. Moreover, it also
represents the time series of electricity load consumption.
L represents local features’ trends of the time series data
and I represents the input feature vector. LCt represents
concatenated local features and spatial correlation is repre-
sented as St . These concatenated features are used for sepa-
rating temporal trends Tt based on long term dependencies.
Ot represents a combined representation of spatial and tem-
poral trends, as given in Equations 11 - 15, [49].

Li = FCN (I ), (11)

LCt = Concatenate(L1, . . . ,Li, . . . ,Ln), (12)

St ,Tt = EBiGRU (LCt ), (13)

Ot = Concatenate(St ,Tt ). (14)

In the second step, there are fusion layers for fusion of
spatio-temporal features.

Mn = F((Ot )Wi, bi), i = 1, 2, . . . , n. (15)

Mn indicates the joint fusion of the learned spatial and
temporal features. Whereas i represents ith time window of
input time series. To sum up the above-mentioned process,
one dimensional FCN-8 extracts spatial correlation and local
features. The concatenated spatial features are first used
to capture temporal dependencies. Then, a fully connected
dense layer is used for performing regression, which gives
pointwise forecasting results [46]. Finally, the learned results
are passed to the fully connected dense layer for predict-
ing point values. The working of Gated-FCN is given in
Algorithm 1. First of all, input features are corrupted by
adding Gaussian noise in them. Then the corrupted features
are input to FCN-8 for feature extraction. Afterward, the sub-
sets of extracted features are created using Equation 16 in

order to train snapshot models (demonstrated by the function
BiGRU(.)) of EBiGRU. The prediction results are obtained
using Equation 17. In the last, the average is taken for the
results of all the snapshot models to obtain the final prediction
results, as given in Equation 18. The simulation results are
provided in Section IV.

(I ′1,Y1), . . . , (I
′
N ,YN ) (16)

Predictioni = BiGRUi(I ′i ,Yi,XTest) (17)

EBiGRU-Prediction =

∑n
i=1 Predictioni

N
(18)

Algorithm 1Working of Gated-FCN
1: Begin
2: Inputs: Input features X , Input targets Y , Test features
XTest

3: Output: Predicted EC Y ′

4: Add Gaussian noise to inputs I = X + σ
5: Extract features by FCN-8 as I ′

6: Make N subsets of extracted features using Equation 16
7: For (i = 1 to N)
8: Make predictions using Equation 17
9: End For
10: Make final predictions using Equation 18
11: Y ′ = EBiGRU-Prediction
12: Return Y ′

13: End

IV. SIMULATION RESULTS AND DISCUSSION
In this section, the simulation results and their discussion
are given. The simulations are performed using the freely
available Google Colab Repository. It allows easy access to
write and execute Python codes using a web browser. It is
a cloud server-based repository where the necessary hard-
ware configurations are provided by Google cloud. Typically,
16 GB RAM and core i5 processor are available to perform
experiments. Moreover, premier access is also available when
more resources are required than the free version. In our
scenario, all the experiments are conducted using the standard
hardware resources. Moreover, a laptop having a core i5 pro-
cessor with 8 GB RAM and 500 GB hard disk is used. All
the code is written in Python language. Prior to the detailed
discussion of simulation results, the dataset description is
provided.

A. DATA DESCRIPTION
ISO-NE is an independent state organization that ensures
region-wise electricity transmission. It ensures reliable trans-
mission of energy in six states of North Eastern United States:
Massachusetts, Maine, Connecticut, New Hampshire, Rhode
Island and Vermont. Massachusetts is further divided into
three load zones. Other states make their own load zone.
In ISO-NE, every year approximately $400 million trans-
actions are performed by 7 billion customers. In order to
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verify the applicability of the proposed model, the ISO-NE
dataset is used. It is a uni-variant dataset that comprises
the load consumption data of 9 years, recorded from
January 2011 to December 2019. The dataset is comprised of
77,760 samples [47]. It contains the dimensions of Date, Hour
ending and consumed Load. In the date column, the date
of EC is given, the Hour ending column demonstrates the
specific hour of the day when energy is consumed and the
consumed Load depicts the amount of load being consumed
in an hour. The load is calculated in Megawatt per hour
(MWh). The Date and Hour variables help in analyzing the
patterns of consumed Load on weekdays and weekends.
The analysis helps in efficient short-term load forecasting on
the basis of users’ past EC data. Using the data, simulations
are performed.

B. VALIDATION SETTING OF THE PROPOSED SYSTEM
MODEL
This section describes the validation setting of our proposed
model. Table 2 describes the hyperparameters and layering
structure of FCN model. Whereas, the validation setting of
BiGRU is presented in Table 3.

TABLE 2. Validation setting of FCN model.

TABLE 3. Validation setting of BiGRU model.

C. EXPLORATORY DATA ANALYSIS
In this study, the time horizons considered for forecasting
and performing simulations are hourly, daily and weekly
(short-term forecasting). Moreover, the presence of missing
values is handled through the strong capabilities of convolu-
tional and max-pooling layers of CNN. In convolving oper-
ation, the max-pooling layers pick up the maximum values
and then discard the missing or zero values. Meanwhile,
the abnormal values are tackled through BiGRU, which

captures the long-term temporal correlation from users’ load
profiles. So, when an abnormal value appears, it is discarded
by the reset gate of BiGRU. Furthermore, our model has
the capability to learn non-linear complex relationships and
temporal correlation from EC load data, which enable it to
capture any uncertain change that occurs in the EC load
profile. By having these properties, we claim that ourmodel is
consistent against any change that occurs in the older dataset.
Fig. 6 represents load consumption of 9 years’ hourly data
from January 2011 to December 2019. Fig. 7 illustrates EC
of weekdays and weekends. The results show that consump-
tion on weekends is higher as compared to consumption on
weekdays. Analysis of data is performed on daily basis in
order to analyze the day-wise trends within the week. The
consumption of a weekday: Monday, 7 January 2019, and a
weekend: Sunday, 6 January 2019, is shown in Fig. 7. The
graphical representation demonstrates that there exists a large
difference between the EC of a weekend and a weekday from
04:00 to 16:00 hours.

FIGURE 6. 2011-2019 ISO-NE hourly load consumption.

FIGURE 7. Weekend and weekday load consumption.

D. PREDICTIVE DATA ANALYSIS
The Gated-FCN deep learning model is validated by com-
paring its performance with different benchmark techniques.
A detailed analysis of activation functions is performed in
order to validate their impact on forecasting results. Multi-
ple activation functions, such as ReLU, PReLU, ELU and
SELU are used in the proposed model, as shown in Table 4.
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TABLE 4. Exploring activation functions.

Among multiple activation functions, SELU performed the
best for different state-of-the-art techniques. In order to vali-
date Gated-FCN, two performance metrics are used: MAPE
and RMSE. In the literature numerous Key Performance Indi-
cators (KPIs) are available for performing accurate and reli-
able forecasting such as Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), Mean Squared Error
(MSE), Root Mean Square Error (RMSE), etc. Among these,
MAPE and RMSE are considered better than other KPIs. It is
because RMSE emphasizes the most significant error whilst
the MAE assigns equal importance to each error. Moreover,
RMSE defines the square root of the average squared error.
Hence, it is a better representative of the error as compared
to MAE. In addition, MSE is easier to manipulate than
RMSE but it is not representative of the original error as
the error is squared. Whereas, the error is not squared in
RMSE. In contrast, MAPE is easy to interpret and under-
stand because it provides the error in terms of percentages.
For instance, if MAPE is 5%, then it means the average
difference between actual and forecasting value is 5%. That
is the reason why MAPE is preferred over MAE. Hence,
it is proved that RMSE and MAPE are better and sufficient
measures for forecasting as compared to other traditional sta-
tistical measures. That is why most researchers use these two

measures for evaluating the forecasting model [38]– [40].
The proposed model is compared with the state-of-the-art
shallowmachine learning and baseline deep learning models:
FCN-8, LSTM, CNN-LSTM [14], BiGRU and Gated-FCN.
The results demonstrate that the SELU activation function
gives the best results when it is used in the Gated-FCN
forecasting model with 2.87% RMSE and 3.01% MAPE.
Whereas, ReLU activation function gives the worst accuracy
with 4.87% RMSE and 5.02% MAPE. Hence, the SELU
activation function is used for simulations. The simulation
results are supported using both tabular and graphical repre-
sentations. In this study, smaller values of MAPE and RMSE
indicate better and accurate forecasting. It means that there
is a high degree of precision in forecasting. In Fig. 8, it is
observed that the proposed Gated-FCN model has the lowest
MAPE for all days of the week as compared to existing
models. The proposed model efficiently captures the hidden
patterns and potential features through convolutional and
pooling layers, respectively. Meanwhile, BiGRU learns the
temporal correlations from the electricity load profile for
efficient forecasting. Moreover, FCN-8 has high MAPE as
compared to Gated-FCN, which means that a single model
has weak forecasting precision. The performance of the pro-
posed model over existing models is as follows. LSTM is
vulnerable to overfitting issues as it becomes tedious to use
the dropout mechanism to fix the issue. Moreover, the poor
performance of LSTM happens when a number of memory
cells are connected to the weights of the recurrent matrices.
Also, LSTM is unable to learn patterns from arrays and
memory indexing. CNN-LSTM has multiple layers that are
time-consuming during operation. Also, CNN-LSTM loses
its internal information as it sends the information to the
neurons that are not fit to handle such information. Moreover,
BiGRU also has a slow convergence issue, which needs to be
tackled.

FIGURE 8. Load forecasting using MAPE.

Figs. 9 and 10 show forecasting results of 24 hours from
the first Monday of January 2019 and the first week of
January 2019. Results demonstrate the following trend of
precision-accuracy: Gated-FCN > FCN-8 > CNN-LSTM >

BiGRU > LSTM > MLP. It is analyzed that there are
different trends of EC on different days of the week.
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FIGURE 9. Daily load consumption forecasting.

FIGURE 10. Weekly load consumption forecasting.

The tremendous feature learning abilities of CNN and the
effective gated configuration of BiGRU make the proposed
model superior in terms of efficient load forecasting as com-
pared to other baseline models. In Fig. 9, the daily load
forecasting is shown. It is seen from the figure that the actual
data has the same pattern for both the proposed model and
the existing models. It signifies that the proposed model
not only memorizes the data but also learns the actual data.
Unlike Gated-FCN, other existing models have problems of
underfitting and overfitting. Moreover, the irregular patterns
of data show the behavior of consumers during the winter
season as they use heating appliances. It implies that load
consumption is low at some hours of the day and vice versa.

Similar to Fig. 9, it is observed in Fig. 10 that other
existing models are unable to learn the time series data as
compared to the proposed Gated-FCN model. As the time
series data changes from daily to weekly, the existing models
become incapacitated to predict the data due to their inherent
limitations. The same effect is seen in Figs. 11 - 17. The
forecasting results of weekdays are shown in Figs. 11 - 15
and that of weekends are shown in Figs. 16 and 17.Moreover,
fromFig. 17 it is observed that the proposedmodel has similar
pattern with the actual data. It means that the model is able
to address the vanishing gradient problem and preserve more
historical information for accurate forecasting.

Fig. 18 and 19 show loss values of training and validation
on the data. The results demonstrate the convergence progress

FIGURE 11. Load consumption - Monday.

FIGURE 12. Load consumption - Tuesday.

FIGURE 13. Load consumption - Wednesday.

of the Gated-FCN. It is observed that the benchmark fore-
casting technique, i.e., CNN-LSTM, has comparatively less
convergence. In Fig. 18, the loss function of training and
validation sets is presented. From the figure, it is observed
that loss value diminishes as the number of epochs increases.
It means that the number of variations of the actual and
predicted values is negligible.Moreover, it is seen that there is
a spike at the 49th epoch of the validation set. This is because
of overfitting as the model tries to memorize the actual data.
Nevertheless, the proposed model maintains its precision
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FIGURE 14. Load consumption - Thursday.

FIGURE 15. Load consumption - Friday.

FIGURE 16. Load consumption - Saturday.

during forecasting. Similar effect is shown in Fig. 19. How-
ever, at the 120th epoch, there is an issue of underfitting,
which is resolved as the proposed model is further trained.

Tables 5-9 show forecasting errors fromMonday to Friday.
Whereas, Tables 10 and 11 show the forecasting errors for
Saturday and Sunday, respectively. The RMSE of weekdays
from Monday to Friday is 3.12, 3.37, 2.03, 3.14 and 2.82,
respectively. Whereas, RMSEs for weekends, i.e., Saturday
and Sunday are 3.96 and 2.04, respectively. The results
show that Gated-FCN performed the best as compared to the

FIGURE 17. Load consumption - Sunday.

FIGURE 18. Loss of CNN-LSTM.

FIGURE 19. Loss of Gated-FCN.

other benchmark techniques because it learns both the global
and the local characteristics optimally. The tabular results
show that MAPE values of Gated-FCN and other state-of-
the-art techniques: CNN-LSTM [14], FCN-8, LSTM, MLP
and BiGRU. The results demonstrate that Gated-FCN gives
the best precision accuracy a compared to other techniques.
MLP, CNN and LSTM perform better than statistical tech-
niques while forecasting EC load. To prove the nobility of
the proposed forecasting technique, the statistical techniques,
ARIMA, Simple Moving Average (SMA) and MLR, are
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TABLE 5. Performance results - Monday.

TABLE 6. Performance results - Tuesday.

TABLE 7. Performance results - Wednesday.

used and compared with the proposed technique. However,
metaheuristics and mixed linear integer programming based
techniques are not considered because they cannot learn

TABLE 8. Performance results - Thursday.

TABLE 9. Performance results - Friday.

TABLE 10. Performance results - Saturday.

temporal correlation and complex relationship from long term
EC load data. The above-mentioned statistical techniques
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TABLE 11. Performance results - Sunday.

TABLE 12. Comparison of Gated-FCN with existing models using noise
added consumption.

also perform poorly due to the long term dependencies.More-
over, these techniques do not have any memory module to
memorize the essential patterns, trends and correlation of the
electricity load profiles. As a result, these techniques produce
inefficient EC forecast. From tabular results, it is seen that all
of the statistical techniques have higher RMSE and MAPE as
compared to other techniques.

Furthermore, in order to validate the robustness of Gated-
FCN, the Gaussian noise is added to data with mean 0 and
standard deviation 1. The results show that the proposed
model outperforms existing models, as given in Table 12.
The reason behind the efficient performance of Gated-FCN is
the combination of the features of two deep learning models,
which focuses on both temporal and spatial feature extraction
and removal of the noise from the data. The results are also
validated by graphical representation of loss function.

Tables 13 and 14 show the computational time and
accuracy of Gated-FCN and other benchmark techniques,

TABLE 13. Computational time (sec).

TABLE 14. Accuracy of forecasting techniques.

respectively. The computational time of Gated-FCN is rel-
atively lower than other techniques, such as BiGRU, CNN-
LSTM, LSTM, FCN-8, MLP, ARIMA, SMA and MLR.
The statistical techniques have relatively high computational
times because they are based on probability. In case of high
dimensional data, they take longer time. Moreover, the exis-
tence of complex patterns in load profile slow down their
performance while forecasting. Moreover, the accuracy of
Gated -FCN is higher than other benchmark techniques.

V. CONCLUSION AND FUTURE DIRECTIONS
This paper proposes a novel hybrid Gated-FCN model
for efficient EC forecasting. It is a combination of two
robust forecasting models: FCN-8 and EBiGRU. The for-
mer extracts spatial features from the data, identifies the
variable that affects the EC forecasting and removes noise.
Whereas, the latter extracts temporal features and predicts
long-term temporal dependencies. It is also used to increase
the network’s robustness by averaging the weights of dif-
ferent training models. Moreover, the visual analysis of the
data is performed, which shows different trends of EC on
weekdays and weekends. The trends unveil consumers’ con-
sumption behavior patterns that help in producing electricity
accordingly. To prove the efficacy of the proposed model,
extensive simulations are performed. The proposed model is
also compared with the existing models in terms of precision
accuracy, MAPE and RMSE. The comparison results prove
that Gated-FCN has the best precision accuracy and the least
values of MAPE and RMSE as compared to FCN-8, BiGRU,
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CNN-LSTM, LSTM and MLP. Despite the proposed scheme
being an ideal solution for efficient EC forecasting, it is
computationally intensive because of using two deep learning
models in a sequential manner. In the future, we will use
different hyperparameter tuning techniques to enhance the
performance of the proposed scheme in terms of efficient
EC load forecasting. Furthermore, a multivariate data set will
be considered to evaluate the importance of temperature in
forecasting electricity demand and improve the forecasting
accuracy.

.
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