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ABSTRACT The increasing number of electric vehicles (EVs) in today’s transport sector is gradually leading
to the phasing out of petroleum-based vehicles. However, the rapid deployment of EVs largely depends
on the coordinated and fast expansion of EV charging stations (EVCSs). The integration of EVCSs in the
modern distribution network characterized by increased penetration of randomly distributed photovoltaic
(PV) systems is challenging as they can lead to excessive power losses and voltage deviations beyond
acceptable limits. In this paper, a hybrid bacterial foraging optimization algorithm and particle swarm
optimization (BFOA-PSO) technique is proposed for the optimal placement of EVCSs into the distribution
network with high penetration of randomly distributed rooftop PV systems. The optimization problem
is formulated as a multi-objective problem minimizing active and reactive power losses, average voltage
deviation index, and maximizing voltage stability index. The IEEE 69 node distribution network is used as
the case network. The simulation is done using MATLAB to integrate the EVCSs in five cases of randomly
sized and placed PV systems in the distribution network. For all five cases, a minimal increase in power
losses is recorded with minor changes in the voltage deviation and stability indices due to the placement of
the EVCSs. But for the voltages of nodes 29 to 48, the other node voltages remain unchanged upon placement
of the EVCSs. The largest increase in power losses due to the EVCSs being brought into the network with
PVs was noticed in case 3 (from 142.27kW, and 62.90kVar to 147.65kW, and 72.48kVar).

INDEX TERMS Electric vehicle, charging station, photovoltaic, hybrid BFOA-PSO, optimal placement.

I. INTRODUCTION
Modern power systems are fast changing with the intro-
duction of photovoltaic (PV) systems and electric vehicle
charging stations (EVCSs). Distributed PV penetration is
increasing in many countries as the prices of PVmodules and
their accessories continue to decrease [1]. The penetration
of PV systems and other distributed generation (DG) tech-
nologies has led to the introduction of the term prosumers
that describes the simultaneous production and consumption
of electricity [2]. PV technology has not only proven to be
beneficial to the environment as green energy, but has also
been demonstrated to be essential to the electrical distribution
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network in terms of reduced power losses, and network volt-
age profile improvement [3]. To the consumers (prosumers),
they lead to a reduction in electricity bills paid to the utility
company [4].

On the other hand, the rapid proliferation of electric
vehicles (EVs) in the transport sector is revolutionary and
the integration of this technology together with DGs is the
most promising way to cut down the dependency on fossil
fuels and reduce greenhouse gases (GHG) emissions [5].
Furthermore, as crude oil keeps being depleted in addition
to its environmental impact, the future of petroleum-based
vehicles around the world is becoming darker following the
uprise of EVs [6]. Moreover, EVs come with advantages
such as being noiseless, fuel-saving, in addition to being
emission-free [7].
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The fast adoption of EVs heavily depends on the rapid
expansion of charging facilities [8]. There are three categories
of EV chargers; Level 1, Level 2, and Level 3, and these
could be onboard or offboard. Level 1 and level 2 chargers are
onboard chargers with level 2 being faster, having an average
efficiency of 89.4%, and this is higher than that of their
counterpart [9]. Both chargers are limited by power density,
weight, and size, while level 3 chargers are usually offboarded
and are the fastest [10]. Level 1 chargers supply the EV with
a current between 12-16A maximum from the mains, level
2 with 32-70A, and level 3 with 167A [11]. Level 3 chargers
make use of AC/DC power electronics converters. Level
1 and 2 chargers require a longer time to fully charge an EV,
while level 3 chargers require less than an hour [12]. In the
attempt of saving EV charging time, EV battery swapping sta-
tions (EVBSS) are being developed wherein the flat battery
of the EV is replaced with a fully charged battery. Compared
to charging the EV at the charging stations, EVBSS offers
quick and effortless power solutions to EV users as the battery
replacement is done automatically at the EVBSS [13]. A few
EV manufacturing companies such as Tesla have already
begun utilizing battery swapping and this shows to be faster
than even refueling a petroleum-based vehicle [14].

Just like PV systems, the fast integration of EVs into
the transport sector will not only be helpful to the environ-
ment but will also benefit the electrical distribution network
as they could help provide frequency and voltage support
while being used as spinning reverses to carter for sudden
load increase or loss in some generators [15]. Nonetheless,
the installation of EV charging stations (EVCSs) into the
distribution network has to be carefully done because they
can result in excessive loading of the distribution network
leading to increased power loss [16]. The issues of power
quality degradation and increased voltage deviation beyond
acceptable limits could also be experienced as well [17]. The
situation becomes even more complicated when integrating
the EVCSs in a distribution network with high penetration
of randomly placed photovoltaic (PV) systems. This calls for
optimal placement of the EVCSs in the distribution network
to limit the negative impact of EVCSs on the network power
losses and voltage stability.

II. RELATED WORKS
Several related works have been published on the optimal
placement of EVCSs while considering the challenges of
power systems, urban traffic, EV battery state of charge,
among others. The authors in [18], did the optimal placement
of EVCSs in the distribution network using Harries Hawk
Optimization (HHO) and Teaching-Learning Based Opti-
mization (TLBO) techniques to minimize the multi-objective
function of the problem that aimed at minimizing real power
loss and average voltage deviation index while maximiz-
ing voltage stability index. They went further to optimally
size and place DGs so as to minimize the effects of the
EVCSs on the network. In [19], R. Mehta et al. proposed
the optimal placement of EVs into the distribution network

based on a double-layered intelligent energy management
approach. This strategy was based on two layers: one for real
power management at the nodes to minimize the daily total
cost incurred in EV charging/discharging, and the other layer
for reactive power management at the level of the system that
was to minimize the power loss in the system using the capac-
ity of the reactive power of the EVs. The authors in [20] pro-
posed a method to optimally locate EV fast-charging stations
considering drivers, operators, vehicles, the power grid, and
traffic flow. Nash bargaining theory was proposed in [21] for
the optimal allocation of EV fast-charging stations with the
theory used for the analysis of the interaction between the dis-
tribution companies and the owners of the fast-charging sta-
tions. UsingGuwahati city in India as a case study, the authors
in [22] formulated a multi-objective optimization problem
for the optimal planning of charging infrastructures while
considering power loss, voltage stability, economic factors,
random road traffic, the convenience of the EV user, and eco-
nomic factors. A hybrid chicken swarm optimization (CSO)
and TLBO were used to solve the problem. Non-dominated
sorting genetic algorithm II (NSGA-II) was used in [23] to
solve a multi-objective optimization problem for the simul-
taneous siting and sizing of fast-charging stations and DGs
in the distribution network. The number of EVs, and the
number of fast-charging stations on the road, and the distri-
bution network were considered as constraints. The authors
in [24] used a hybrid multi-objective CSO and TLBO for the
allocation of EVCSs to minimize the cost of the EVCSs while
guaranteeing adequate grid stability, and accessibility of the
EVCSs by the EVs. The authors in [25] proposed the use
of an improved CSO to optimally place EVCS in an IEEE
33 node test distribution network. They first investigated the
impact of the predicted EV load demand at the EVCSs on the
network in terms of voltage profile, average voltage deviation
index, voltage stability index and power loss; and using a
feed-forward neural network they evaluated the solar power
needed to power the EVCSs. In [26], the authors proposed an
optimization scheme for the optimal placement of all three
types of EV chargers to efficiently manage EV loads while
keeping the installation charging stations cost, loading of
distribution transformers, and losses minimal.

This paper proposes a novel hybrid bacterial foraging opti-
mization algorithm and particle swarm optimization (BFOA-
PSO) that was developed by W. Korani in [27] to optimally
place EVCSs in a distribution network with randomly dis-
tributed rooftop PV systems. The PV systems are randomly
sized and distributed at the load nodes of the IEEE 69 test
network feeder which is used as the case study network. The
contributions of this paper are:
- The use of the hybrid BFOA-PSO for the optimal place-
ment of EVCSs in the distribution network. To the best of
our knowledge, the hybrid BFOA-PSO has never been used
for the placement of EVCSs.

- Considering the distribution network to have ran-
domly sized and sited PV systems that represent
real-life consumer-based distributed PV penetration.
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Most researches incorporate PV systems after having
placed the EVCSs in the network to compensate for the
effects of the EVCSs on the distribution network. Whereas
this research places the EVCSs in the distribution net-
work with the PVs already randomly scattered across the
network.
The rest of this paper is organized as follows; the next

section is the methodology and this is followed by the results
and discussions, and then the conclusion and recommenda-
tions.

III. METHODOLOGY
This section describes the methodology used in this research.

A. EVCS MODEL, STUDY AREA, AND EV POPULATION
ESTIMATION
From the power systems point of view, EVs according to [28]
are seen as:
i. Simple loads that absorb constant power when charging.

This is known as the grid to vehicle (G2V).
ii. Complex loads with the possibility of adjusting their

charging period.
iii. Storage devices that are charged (G2V) and discharged

(vehicle to grid (V2G)) based on the condition of the
network.

In this research, the EVs are considered as per the first
option above. Thus, the EVCSs are seen by the distribu-
tion network as loads (G2V). V2G is not considered in this
research.

The IEEE 69Node Test Feeder is used as the study network
in this research work. This distribution network is large and
balanced at a voltage of 12.66kV as shown in figure 1.

FIGURE 1. IEEE 69 node test feeder.

To estimate the EV population in the study area, the num-
ber of households in the area is needed. The network is
considered to be a residential/commercial network with 85%
of the load being residential loads. The power demand of
the IEEE 69 node network is shown in table 1 while the
power demand of residential loads is calculated and shown
in table 2.

TABLE 1. Network power demand.

TABLE 2. Residential power demand.

Assuming each household has a power demand of 12.7kVA,
the number of households in the community is calculated to
be 312 households using equation (1).

Nh =
STh
Sh

(1)

where Nh is the number of households in the study area
STh is the total power demand of residential loads
Sh is the power demand of a single household
Considering a percentage EV integration of 59%, the num-

ber of EVs in the community is calculated using equation (2)

%EV =
NhEV
Nh
∗ 100 (2)

From equation (2), the number of EVs in the study area
is 184.

Five models of EVs are considered in this work. The
characteristics and charger specifications of the five models
of EVs are shown in table 3 including the quantities. These
EVs can be charged using level 1 or level 2 chargers.

TABLE 3. Selected EVs and their charging characteristics [26].

B. EVCSs CHARACTERISTICS
A total of seven EVCSs are optimally placed in the network
to service the 184 EVs. Both level 1 and level 2 chargers are
used, but having a different number of charging points (CPs)
shown in table 4. Out of the seven EVCSs, three are made
up of level 1 chargers, and four are made up of level 2
chargers.
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TABLE 4. Repartition of level 1 and level CPs in the EVCSs.

C. PV SYSTEMS PENETRATION; RANDOM SIZING, AND
PLACEMENT
The PV systems are modeled in MATLAB in negative PQ
modes at a power factor of 0.95 so as to incorporate the
reactive power injecting capabilities of the voltage source
inverters used in grid-connected PV systems. The PV sys-
tems have a 60% penetration level. Although several ways of
calculating PV penetration levels exists, the PV penetration
percentage could be obtained as the ratio of [27]:

- The total production of the PV systems to the total
generation

- The peak PV capacity to the loads’ peak apparent power
- The PV rated power to the loads’ active power demand

The last option of calculating the percentage PV penetra-
tion is used to calculate the total PV rated power required
at 60% penetration which is 2274.72kW. Therefore, with a
power factor of 0.95, the PV systems inject a reactive power
of 747.66kVar into the network.

The random sizing and siting of the distributed PV sys-
tems are done using Microsoft Excel. It should be noted
that, since the study considers randomly distributed rooftop
PV systems, only the load nodes of the study network are
randomly assigned PV systems. Nodes without loads are not
considered. Every PV system consists of 280W PV modules.
With this, it is possible to randomly size and site the PV
systems across the network. The rand() function is used to
generate random numbers between 0 and 1 which are used to
determine the number of 280W PV modules to be placed on
each target nodes using equation (3) such that the total PV
power rating across the network equals 2274.72kW.

na =
rand(a)∑69
a=6 rand(a)

∗ k (3)

where: - na is the number of PV modules on node a

- a is the load node number, with a= 6 being the first load
node in the network

- rand(a) is the random generation function in charge
of generating random numbers between 0 and 1 and
assigning to node a

- k is a carefully chosen number such that the network’s
total PV capacity equals 2274.72kW

From equation (3), the PV capacity on each load node is
obtained using equation (4)

PPVa = na ∗ PPVm (4)

where:
- PPVa is the PV capacity at node, a
- na is the number of PV modules on node a
- PPVm is the rating of a single PV module (280W)
Therefore, the total power rating, PT of the distributed PV
systems is given by

PT =
69∑
a=6

PPVa (5)

D. OPTIMAL PLACEMENT OF THE EVCS USING HYBRID
BFOA-PSO
The problem is to optimally place the 7 EVCSs into the test
distribution network penetratedwith randomly distributed PV
systems at 60%.

1) PROBLEM FORMULATION
The objective of this optimization problem is to minimize the
network’s active and reactive power losses, and the average
voltage deviation index, while maximizing the network aver-
age stability index as the EVCSs are allocated in the network.

a: OBJECTIVE FUNCTION
i) ACTIVE AND REACTIVE POWER LOSS MINIMIZATION

The active and reactive power losses (Ploss(a,a+1) and
Qloss(a,a+1)) in a branch a− a + 1 of the network are given
by

Ploss(a,a+1) =

(
P2a+1 + Q

2
a+1

|Va+1|2

)
∗Rbr (6)

Qloss(a,a+1) =

(
P2a+1 + Q

2
a+1

|Va+1|2

)
∗Xbr (7)

wherePa+1 andQa+1 are the receiving end active and reactive
powers respectively, Va+1 is the receiving end voltage, Rbr is
the branch resistance, and Xbr is the branch reactance.

Therefore, the total power loss minimization function is
given by

f1 (j) = min
br∑
b=1

[
Ploss(b) + Qloss(b)

]
(8)

where br is the number of branches.

ii) MINIMIZATION OF AVERAGE VOLTAGE DEVIATION
INDEX (AVDI)
TheAVDI is the voltage deviationwith respect to 1.0puwhich
is the reference voltage. It is defined in terms of the voltage
magnitudes at all the nodes and it is given by;

f2 (j) =
1
Na

Na∑
a=1

|1− Va|2 (9)

where Na is the number of nodes in the network, Va is the
voltage at node, a.
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iii) MAXIMIZATION OF THE VOLTAGE STABILITY INDEX
(VSI)
At a receiving node, b, the VSI is given by

f3 (j) = [|Vb|4 − 4 (Pbxab + Qbrab)2

− 4(Pbrab + Qbxab) |Vb|2 (10)

where Vb is the voltage at node b, Pb is the active power
demand at node b, Qb is the reactive power demand at node
b, rab is the resistance branch a-b, and xab is the reactance of
branch a-b.

Therefore, converting equation (10) into a minimization
function and combining it with the former two equations give
a multi-object function shown in equation (11).

F (j) = min
{
w1f 1 (j)+ w2f 2 (j)+ w3

(
1

f3 (j)

)}
(11)

where w1,w2,w3 are weights assigned to the individual
objective functions.

b: CONSTRAINTS
The multi-objective function for this optimization problem is
subject to the following constraints.

i) EQUALITY CONSTRAINTS
- Power balance constraints

Pst +
Npv∑
j=1

Ppv=
Nal∑
j=1

Pload+
NEVCS∑
j=1

PEVCS+
Nbr∑
j=1

Ploss (12)

where Pst is the active power from the grid, Ppv is the active
power from a single PV system, Pload is the active power
demand of the load on a said node, PEVCS is the active
power demand of a single EVCS, Ploss is the active power
loss in the jth branch, Npv is the number of PV systems
in the network, Nal is the number of load nodes, NEVCS is
the number of EVCSs, and Nbr is the network’s number of
branches.

Qst +
Npv∑
j=1

Qpv=
Nal∑
j=1

Qload+
NEVCS∑
j=1

QEVCS+
Nbr∑
j=1

Qloss (13)

where Qst is the reactive power from the grid, Qpv is
the reactive power from a single PV system, Qload is the
reactive power demand of the load on a said node, QEVCS
is the reactive power demand a single EVCS, and Qloss is
the reactive power loss in the jth branch

ii) INEQUALITY CONSTRAINTS
- Voltage constraints: The voltage magnitude at every node
has to be kept within acceptable margins.

Vmin
a ≤ Va ≤ Vmax

a

0.95 ≤ Va ≤ 1.05 (14)

- Current constraints: The distribution feeder’s capacities
must not be exceeded.

Ir ≤ Imaxr (15)

- Charging power constraints: The EVCS power must be
within margins

PminEVCS ≤ PEV ≤ P
max
EVCS (16)

PEV = PminEVCS = PmaxEVCS as the power rating of each EVCS
is fixed.
The hybrid BFOA-PSO is used to solve this optimization

problem.

2) BACTERIAL FORAGING OPTIMIZATION ALGORITHM
(BFOA)
Bacterial foraging optimization was developed by
K. M. Passino inspired by the ‘‘chemotaxis’’ activity exhib-
ited by foraging bacterial behaviors such as E. Coli [29].
E. Coli present in the human intestine forage in four
processes; chemotaxis, swarming, reproduction, and elimi-
nation dispersal [30].
i. Chemotaxis: It is the swimming and tumbling action

of the bacteria through the movement of the flagella.
If θ i (j, k, l) represent a bacterium at jth chemotac-
tic, k th reproductive, and l th elimination-dispersal step,
the run-length unit parameterC(i) represents the chemo-
tactic step size during each run, then the computation
chemotactic movement of the bacterium is given by

θ i (j+ 1, k, l) = θ i (j, k, l)+ C (i)
1 (i)√

1T (i)1 (i)
(17)

where:1 is a vector in the random direction with its elements
lying in [−1, 1].
ii. Swarming: The bacteria communicate with each other

in an attractive or repulsive manner. The signal between
bacteria cells in E. Coli is given by

Jcc (θ,P (j, k, l))

=

S∑
i=1

Jcc
(
θ, θ i (j, k, l)

)
=

S∑
i=1

[−dattractantexp(−wattractant
P∑

m=1

(θm − θ im)
2
)]

+

S∑
i=1

[hrepellantexp(−wrepellant
P∑

m=1

(θm − θ im)
2
)] (18)

where Jcc (θ,P (j, k, l)) is the objective function value to
be minimized to present a time-varying objective function,
S is the total number of bacteria, p is the number of vari-
ables present in each bacterium to be optimized, θ =
[θ1, θ2, . . . , θp]T is a point on the p-dimensional search
domain, dattractant ,wattractant are parameters of depth and
width of attraction and hrepellant ,wrepellant are parameters of
height and width of repulsion (repellent).
iii. Reproduction: This is the process wherein the healthier

bacteria reproduce asexually, which is split into 2 while
the less healthy bacteria die due to insufficient nutrients
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hence keeping the swarm constant. This occurs after NC
Chemotaxis steps and it is given mathematically by

J ihealth =
Nc+1∑
j

J (i, j, k, l) (19)

iv. Elimination and Dispersal: This occurs after Nre steps
of reproduction wherein a situation may come up and
cause the sudden elimination of the bacteria or disper-
sal of the bacterial to a new location. The probability
Ped is the probability for a bacterium to be subjected
to elimination and dispersal wherein some bacteria are
killed based on a probability Pe and others dispersed to
a new environment where the process starts all over. The
number of elimination and dispersal is given by Ned .

The dependence of the BFOA on random search directions
to find the global best solution makes the optimization prob-
lem take a long time to converge [31].

3) PARTICLE SWARM OPTIMIZATION (PSO)
PSO is ametaheuristic optimization algorithm that was devel-
oped by Kennedy and Eberhart in 1995, inspired by the
behavior of animals like birds and fish, and is very much
adapted to solving nonlinear optimization problems [32]. It is
an evolutionary algorithm that is based on swarm intelli-
gence. Since its development, PSO has been used for many
engineering applications and it has also undergone tremen-
dous mutations due to the tuning of the PSO parameters and
has led to variants of the algorithm such as Binary PSO,
Stochastic inertia weight (Sto-IW) PSO, Hierarchical PSO
(HPSO), Self-organizing hierarchical PSO with time-varying
acceleration coefficients (HPSO-TVAC), amongst other [33].
These new variants of PSO have been developed to solve the
technique’s problem of being trapped in the local optimum
solution instead of obtaining the global best solution [34].
That notwithstanding, PSO has been successful in solving
optimization problems due to its [35];
- Few parameters that need to be tuned
- Fast convergence
- Convergence not roughly being affected by the initial
solution

- Simple concept and ease of coding
There are two concepts in PSO equations; the global opti-

mum gbest and the local optimum pbest . The former is the
optimum solution gotten by the particle swarm, while the
latter is the optimum solution acquired by each particle in
the swarm. For a swam of P particles, there is a position
vector X tj = (xj1xj2xj3 . . . xjn)T as well as a velocity vector
V t
j = (vj1vj2vi3 . . . vjn)T at iteration t , for every particle j,

constituting the swarm. These vectors are updated at every
iteration through k dimension as per the following equations;

V t+1
jk = wV t

jk + c1r
t
1

(
pbest jk − X

t
jk

)
+ c2r t2

(
gbestk − X

t
jk

)
(20)

X t+1jk = X tjk + V
t+1
jk (21)

where:
j = 1, 2, 3, . . . ,P, k = 1, 2, 3, . . . , n, c1 and c2 are the
acceleration factors, r t1 and r

t
2 are random numbers between

0 and 1, w is an initial weight constant whose purpose is to
balance the global and the local searches

Optimization with PSO is begun by a set of potential
solutions being initialized randomly and then performing the
search for the optimum solution. The velocities and positions
of the particles keep being updated using equations (20) and
(21) respectively.

4) HYBRID BFOA-PSO
The hybrid BFOA-PSO was developed in 2008 by Korani to
make use of PSO’s ability to exchange information between
particles and the ability of BFOA to look for new solutions
through elimination and dispersal [36]. The hybrid BFO-PSO
uses the strength of both BFOA and PSO to solve each of the
optimization technique’s limitations. The problem of BFOA
taking a long time to achieve the global optimum is solved by
giving the bacteria (E. Coli) the ability to communicate with
each other which is obtained from PSO, while on the other
hand, PSO’s limitation of being stuck in the local optimum
is solved by utilizing the chemotaxis steps of BFOA [37].
The inheritance from BFOA and PSO makes the hybrid
BFOA-PSO robust and effective in obtaining the optimum
solution. In the hybrid BFOA-PSO, the global best position
and the local best position of each bacterium can be used
to decide the unit length direction of tumble behavior [38].
During chemotaxis, equation (22) is used to determine the
update of the tumble direction.

∅ (j+ 1) = w.∅ (j)+ c1.r1 (Plbest − Pcurrent)

+ c2.r2 (glbest − Pcurrent) (22)

where Plbest is the best position of each bacterium, glbest is
the global best bacterial.

The basic flowchart of the hybrid BFOA-PSO obtained
from [39] is shown in figure 2 below.

The Optimal placement of the EVCSs using the hybrid
BFOA-PSO is done using the following steps,

Step 1: Input the network data
Step 2: Run load flow calculation and record the results

(power losses, node voltage, AVDI, VSI)
Step 3: Randomly sizing and place PV systems at load

nodes
Step 4: Run load flow calculation and record the results
Step 5: Initialize BFOA parameters

- The search space dimension, d
- Total number of bacteria, s
- Number of chemotaxis steps, Nc
- number of swarming, Ns
- Number of reproduction steps, Nre
- Number of elimination-dispersal occasions, Ned
- Elimination-dispersal probability, Ped
- Step size, C (l)
- Inertia weight, ω
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FIGURE 2. Flowchart of hybrid BFOA-PSO.

- Position vector, θ i (j, k, l) of ith bacterium, at jth chemotac-
tic, k th reproductive, and l th elimination-dispersal step

- The velocity, V i of ith bacterium

Step 6: Update

- The fitness function J (i, j, k, l) of ith bacterium, at jth

chemotactic, k th reproductive, and l th elimination-dispersal
step

- The best position vector θ_gbest found by all the bacteria

- The best fitness function based Jbest (θ,P (j, k, l)) based on
the best position found so far
Step 7: Reproduction loop, k = k + 1
Step 8: Chemotaxis loop j = j+ 1
For every bacterium, i, in the search space,

(a) Compute the fitness function J (j, k, l)
(b) Save the computed fitness function, Jfinal = J (j, k, l) as

there is the possibility of finding a better one as through
the run
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(c) Tumble: Generate a random vector 1(i) in such a way
that 1 ≤ 1(i) ≤ −1

(d) Move: Let

θ i (j+ 1, k, l) = θ i (j, k, l)+ C (i) ∗
1(i)√

1T (i) ∗1(i)

(e) Compute J (i, j+ 1, k + 1) and J (i, j+ 1, k + 1) =
J (i, j+ 1, k + 1)+ Jcc

(f) Swim: It is considered that only the ith bacterium is
swimming while the others are static Initialization of
swim length counter, m that is m = 0

1) While m < Ns
2) Let m = m+ 1
3) If J (i, j+ 1, k + 1) < J (i, j, k)+ Jcc

Let Jfinal = J (i, j+ 1, k + 1) and
θ i (j+ 1, k, l) = θ i (j, k, l) + C (i) ∗ 1(i)

√
1T (i)∗1(i)

θ i

(j+ 1, k, l) is used to compute the value θ i (j, k, l) as
depicted in step 8(e).
Else m = Ns (End of the while loop)

Step 9: Alteration with PSO
For d = 1, 2, 3, 4, . . . , S

- Update θgbest and Jbest (θ,P (j, k, l))
- Update the velocity and position of the ith bacterium in the
qth coordinate as per the following equations

V new
iq =wV

new
iq +C1ϕ1

(
θbest iq−θ

old
q (j+ 1, k, l)

)
θoldq (j+ 1, k, l)= θoldq (j+ 1, k, l)+V new

iq

Step 10: Let Sr = S/
2. The Sr bacteria with the largest

cost functions die and the other half bacterial population
reproduce (split into two) and new bacteria are placed at the
same position as their parent.

Step 11: If m < Nre, meaning the number of specified
reproduction steps has not yet been reached, go back to step
5 and restart the process with the new generation of bacteria.
Else

Step 12: Output load flow results (power losses, node
voltage, AVDI, VSI) and the optimal locations for the
EVCSs.

The BFOA-PSO parameters used in the simulation are
shown in table 5. The parameters are an adjustment of the

TABLE 5. Hybrid BFOA-PSO parameter values.

empirical values of the hybrid BFOA-PSO parameters aiming
at ensuring speed and accuracy of the solution process as
employed in [36].

E. SIMULATION CASES
Since the study is concerned with randomly sized and placed
rooftop PV systems, five cases of randomly sized and sited
PV systems are considered for the optimal placement of
the EVCSs. For each case, the EVCSs are optimally placed
using the hybrid BFOA-PSO optimization technique, and the
results are recorded. Also, for each case, the EVCSs are
optimally placed using BFOA and PSO separately. This is
essential to validate the effectiveness of the proposed hybrid
BFOA-PSO in finding the best locations for the EVCSs in
the distribution network with randomly sized and placed
distributed rooftop PV systems.

IV. RESULTS AND DISCUSSIONS
The optimal placement of the EVCSs in the distribution
networkwith randomly distributed PV systemswas simulated
using MATLAB 2019a. Load flow analysis is performed
without PV systems and EVCS for the base case and with PV
systems and EVCSs for other cases. The simulation results
are shown in figures 3 to 11.

A. OPTIMAL EVCSs LOCATIONS
For every simulation case, the optimal locations for the
7 EVCSs found by the hybrid BFOA-PSO are shown in
table 6.

TABLE 6. Optimal locations of the EVCSs for each simulation case.

B. NETWORK VOLTAGE PROFILE
The network voltage profiles for all five cases of simulations
are shown from figure 3 to figure 7. It is observed that the
introduction of the random introduction of the PV systems at
60% penetration level into the distribution network leads to
a general improvement in the voltage profile of the network.
The improvement is noticed in all five cases of random pen-
etration of the PV systems. This improvement in the network
voltage profile is a result of the PV systems being connected
at load centers. Hence supplying part of the loads that were
otherwise suppose to be supplied by the grid. It is required to
allocate the EVCSs in such a way that the improved voltage
profile is not dramatically degraded by the EVCSs. It is
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FIGURE 3. Network voltage profile (case 1).

FIGURE 4. Network voltage profile (case 2).

noticed that for all five cases of random sizing and siting
of the PV systems, the BFOA-PSO algorithm successfully
determines the best positions for the EVCSs that will not
much affect the network node voltages as a result of the
additional loads from the EVCSs. For all cases, only the node
voltages between nodes 29 and 48 are slightly affected by
the EVCSs as they experience slight drops compared to when
there are no EVCSs.

C. AVERAGE VOLTAGE DEVIATION INDEX (AVDI)
The voltage deviation index (VDI) of a node in the network is
the difference between the actual voltage of the node and the
reference voltage (1p.u). The AVDI is the average of the VDI
of all nodes in the network. The lower the value, the more
stable the voltage of the network is. From the simulations
results in figure 8, the AVDI of the base case is significantly
reduced at 60% PV penetration from 0.02665 in the base
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FIGURE 5. Network voltage profile (case 3).

FIGURE 6. Network voltage profile (case 4).

case to 0.01208 in case 1, 0.01242 in case 2, 0.01444 in
case 3, 0.01294 in case 4, and 0.01426 in case 5. The results

shown in figure 7 indicate the AVDI of the network is not
affected much by the introduction of the EVCSs in all the
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FIGURE 7. Network voltage profile (case 5).

FIGURE 8. Average voltage deviation index.

FIGURE 9. Minimum voltage stability index.

simulation cases with it slightly increasing to 0.01271 in case
1, 0.01268 in case 2, 0.01484 in case 3, 0.01351 in case 4,
and 0.01434 in case 5.

FIGURE 10. Total active power loss.

D. VOLTAGE STABILITY INDEX
The voltage stability index (VSI) is another indication of net-
work stability. It is driven based on themagnitudes of the volt-
age and current of the network in order to obtain the distance
between the operating point of the current and the collapse
point of the voltage [40]. The smaller the value, the more
sensitive the network is to voltage collapse. Unlike VDI,
the larger the value of VSI, the more stable the network. The
MinimumVSIs from the simulation of all the cases are shown
in figure 9. The introduction of the PV systems increases the
minimum VSI of the network with the poorest increase being
in case 3, that is from 0.68276 to 0.73673 (case 3) compared
to 0.75068 in case 1, 0.75033 in case 2, 0.74935 in case 4,
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FIGURE 11. Total reactive power loss.

and 0.74553 in case 5. The placement of the EVCSs in all
cases does not significantly affect the VSI of the network.
This demonstrates the effectiveness of the hybrid BFOA-PSO
in placing the EVCSs while ensuring the maximization of the
VSI of the network.

E. ACTIVE AND REACTIVE POWER LOSSES
In all the simulation cases, the introduction of the PV systems
leads to a considerable decrease in total active power loss
from 225.06kW in the base case to 127.99kW in case 1,
128.43kW in case 2, 142.27kW in case 3, 129.23kW in case 4,
and 133.75kW in case 5 as shown in figure 10. There is a
decrease in total reactive power from 103.85kVar in the base
case to 56.27kVar in case 1, 56.98kVar in case 2, 62.90kVar
in case 3, 57.51kVar in case 4, and 58.89kVar in case 5 as
seen in figure 11. The judicious placement of the EVCSs in
all cases leads to a slight increase in both total active and
reactive power losses. The largest increase in power losses
is in case 3 where the active power loss is incremented by
3.78% (from 142.27kW to 147.65kW), and the reactive power
loss is elevated by 15.23% from 62.90kVar to 72.48kVar.
The smallest increase in active and reactive power losses
are observed in case 5 with the active power increasing by
1.35% from 133.75kW to 135.55kWwhile the reactive power

increased from 58.89kVar to 62.29kVar giving an increase
of 5.77%. It is clear, that the resulting active and reactive
power losses due to the EVCSs are still lower than those in
the base case.

F. VALIDATION OF THE PROPOSED HYBRID BFOA-PSO
The results of the proposed hybrid BFOA-PSO for the place-
ment of the EVCSs in the distribution network with ran-
domly sized and sited rooftop PV systems are compared with
results obtained when using BFOA and PSO separately for
the same task. These results are shown in table 7, table 8,
and table 9. For all five cases of PV penetration, it is seen
that the proposed hybrid BFOA-PSO performs better than the
individual techniques used standalone. Firstly, it is seen that
when using PSO, the resulting locations for the EVCSs are
mostly clustered on the same network nodes especially the
level 2 chargers which have a higher power rating. This can
be as a result of PSO being trapped in the local optimum and
hence never obtain the global best solution. Indeed, hybridiz-
ing BFOA and PSO solves this problem and the results are
better locations for the placement of the EVCSs. Secondly,
the minimum node voltage obtained after placing the EVCSs
using the hybrid technique in all five cases are 0.931p.u.
in case 1, 0.931p.u. in case 2, 0.926p.u. in case 3, 0.920p.u.
in case 4, and 0.929p.u. in case 5, which are higher than what
is obtained when using the individual techniques separately;
that is 0.927p.u. in case 1, 0.926p.u. in case 2, 0.925p.u.
in case 3, 0.925p.u. in case 4, and 0.924p.u. in case 5 for
BFOA, and 0.926p.u. in case 1, 0.926p.u. in case 2, 0.913p.u.
in case 3, 0.927p.u. in case 4, and 0.919p.u. in case 5 for
PSO. This means that the placement of the EVCSs using
both techniques hybridized results in a better network voltage
profile. Therefore, as will be expected the AVDI and the
minimum VSI of the network when the hybrid technique
is use are healthier than when BFOA and PSO are used
separately. This shows that the placement of the EVCSs using
the hybrid technique leads to a network with superior voltage
stability. Furthermore, the power losses as a result of the
EVCSs placed in the network using the hybrid technique
in cases are lower than the resulting power losses when
using the individual techniques separately. This shows the

TABLE 7. Comparison of the results obtained using the proposed (case 1 and case 2).
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TABLE 8. Comparison of the results obtained using the proposed (case 3 and case 4).

TABLE 9. Comparison of the results obtained using the proposed (case 5).

effectiveness of the proposed hybrid BFOA-PSO in finding
the best nodes for the EVCSs that will result inminimal power
losses.

In all, the proposed hybrid BFOA-PSO proves its effec-
tiveness in the placement of EVCSs in the distribution net-
work with randomly sized and placed rooftop PV systems
compared to using BFOA and PSO separately for the same
task. This also validates the ability of the proposed technique
to use the strength of one algorithm to solve the weakness of
the other.

V. CONCLUSION AND RECOMMENDATIONS
This study focused on the integration of electric vehi-
cle charging stations (EVCSs) into a distribution network
with randomly distributed rooftop photovoltaic (PV) systems
using a hybrid BFOA-PSO optimization technique. MAT-
LAB 2019a was used for the simulation of the optimization
problem. The objective was to optimally place the EVCSs in
such a way that they do not impede the quality of the network.
The objective function was formulated as a multi-objective
function that minimized active and reactive power losses
and the average voltage deviation index while maximizing
the voltage stability index. The random distribution of the
PV systems mimicked real-life consumer-based integration
of PV systems. The random sizing and siting of the PV
systemswere done usingMicrosoft Excel and transferred into
MATLAB. The simulation results showed the effectiveness
of the hybrid BFOA-PSO in finding the best positions for the
installation of the EVCSs across the network in all five cases
of randomly sized and sited PV systems. Small voltage drops
on some nodes and a minimal increased in power losses were

noted following the integration of the EVCSs. The effective-
ness of the hybrid BFOA-PSO was validated by comparing
its results with the results obtained when using BFOA and
PSO separately for the placement of the EVCSs in the dis-
tribution network with randomly sized and sited PV rooftop
PV systems. The results from the simulation demonstrate that
the proposed hybrid BFOA-PSO is an effective optimization
technique for the placement of EVCSs in modern distribution
networks that are characterized by randomly distributed PV
systems. As the distribution service operators plan to provide
long-range, cost-effective, reliable, and affordable services to
consumers in the short and long term future, while maintain-
ing adequate power quality and voltage within boundaries,
the effectiveness of hybrid BFOA-PSO for EVCSs placement
will be further enhanced. This is because the algorithm’s con-
straints are much in line with the constraints of the planning
horizon.

The future scope of this research will consider the daytime
variation of PV production, the driving pattern of EV users,
the distribution network uncertainties, as well as the charging
time of the EVs for the optimal allocation of the EVCSs in the
distribution network. These will be used to test the robustness
of the hybrid BFOA-PSO algorithm.
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