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ABSTRACT Cyber-Physical Systems (CPSs) play a critical role in our modern infrastructure due to
their capability to connect computing resources with physical systems. As such, topics such as reliability,
performance, and security of CPSs continue to receive increased attention from the research community.
CPSs produce massive amounts of data, creating opportunities to use predictive Machine Learning (ML)
models for performance monitoring and optimization, preventive maintenance, and threat detection. How-
ever, the ‘‘black-box’’ nature of complex ML models is a drawback when used in safety-critical systems
such as CPSs. While explainable ML has been an active research area in recent years, much of the work has
been focused on supervised learning. As CPSs rapidly produce massive amounts of unlabeled data, relying
on supervised learning alone is not sufficient for data-driven decision making in CPSs. Therefore, if we are
to maximize the use of ML in CPSs, it is necessary to have explainable unsupervised ML models. In this
paper, we outline how unsupervised explainable ML could be used within CPSs. We review the existing
work in unsupervised ML, present initial desiderata of explainable unsupervised ML for CPS, and present a
Self-Organizing Maps based explainable clustering methodology which generates global and local explana-
tions.We evaluate the fidelity of the generated explanations using feature perturbation techniques. The results
show that the proposed method identifies the most important features responsible for the decision-making
process of Self-organizing Maps. Further, we demonstrated that explainable Self-Organizing Maps are a
strong candidate for explainable unsupervised machine learning by comparing its model capabilities and
limitations with current explainable unsupervised methods.

INDEX TERMS Explainable artificial intelligence, self-organizing maps, interpretable machine learning,
unsupervised machine learning.

I. INTRODUCTION
Cyber-Physical Systems (CPSs) are capable of seamlessly
integrating computing and physical resources [1], [2]. Inte-
gration of physical components with cyber components
allows resizing and reconfiguration of CPS, resulting in better
scalability and flexibility than traditional standalone systems.
Computing resources allows better information flow within
CPSs, resulting in production efficiency (decreasing the
production downtimes, increasing product quality, adjusting
production planning) while reduced building and operations
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system costs [2]. Due to the various advantages of CPS,
modern critical infrastructure has become heavily reliant on
them. Therefore, it is important to research on building more
efficient, reliable, and safe CPSs with innovative capabilities
to address the needs of humans. Many independent agencies
and national institutes such as the National Science Founda-
tion (NSF), U.S. Department of Homeland Security (DHS),
U.S. Department of Transportation (DOT), National Institute
of Health (NIH), National Institute of Biomedical Imag-
ing and Bio-engineering (NIBIB), National Cancer Institute
(NCI), and European Commission (E.C.) have recently put
their attention towards the advancements of CPS. Their inter-
ests include Internet of Things, Industrial Internet, Smart
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Cities, Smart Grids, and ‘‘smart’’ anything (Manufacturing,
Cars, Buildings) [2]–[6].

Due to the widespread usage and economic benefits of
CPSs, ensuring the secure, reliable, resilient, and consis-
tent performance of CPSs is crucial. One solution is to
apply data-driven machine learning methods to the massive
amount of data generated through these CPSs to improve
their operation reliability, improve their performance (in
terms of production capacity and cost), performance opti-
mization, preventive maintenance, and threat detection [2],
[3], [7]. Despite the tremendous benefits of machine learning
(AI), many people hesitate to trust AI-based systems due
to their black-box nature, which makes it difficult to get
insight into the internal decision-making process of AI mod-
els [8]. Especially for human-in-the-loop systems, humans
need to understand these algorithms such that they can trust
these models. By addressing this question, the explainable
machine learning (XAI) research area has been received a
lot of attention. The goal of XAI is to provide reasoning
for ML model outputs, allowing humans to understand and
trust ML models’ decision-making process. Currently, many
entities have put their attention to XAI. DARPA is one of
the first organizations that initiated XAI programs focus-
ing on developing explainable models [9]. Their program
is interested in developing a toolkit library consisting of
machine learning and human-computer interface software
modules that could be used to develop future explainable
AI systems. Currently, many entities have put their atten-
tion to XAI such as European Commission, NSF, NIST, and
IBM [10]–[12].

While XAI has become a trendy research topic, the major-
ity of the work has been focused on supervised machine
learning methods. However, real-world settings such as CPSs
bring the challenge of dealing with high volumes of unla-
beled data at a rapid pace. The manual labeling process is
expensive, time-consuming, and requires the expertise of the
data [13]. It has been found that the 25% of time allocated
to machine learning projects is for data labeling. Further,
supervised feature learning is not only unable to take advan-
tage of the abundance of real-world unlabelled data, but it
also can result in biases by relying on labeled data. These
limitation has gained the focus towards unsupervised ML
algorithms and is predicted to be far more important in the
long term [14]. Given the abundance of real-world unlabelled
data, it is important to focus on developing explainable unsu-
pervisedMLmethods. However, in the current literature, very
little work has been performed focusing on explainable unsu-
pervised ML. Therefore, this paper focuses on unsupervised
explainable ML.

In this paper, we explore Explainable Unsupervised
Machine Learning on different aspects. Further, we pro-
pose a novel Explainable Unsupervised Machine Learn-
ing (XUnML) approach using the Self Organizing Map
(SOM) algorithm, a widely used unsupervised algorithmwith
various Visual Data Mining (VDM) capabilities.

This paper has the following contributions:

• Brief overview of SupervisedMachine Learning (SML),
Unsupervised Machine Learning (UnML), and Explain-
able Machine Learning (XAI)

• Exploring initial desiderata towards Explainable UnML
(XUnML), defining XUnML terminology based on the
terminology used for XAI, and exploring the necessity
of XUnML for CPSs

• Propose a novel methodology for explaining Self Orga-
nizing Map algorithm and exploring its advantages for
specific requirements of CPSs

The rest of the paper is organized as follows. Section II
provides the background and related work on Supervised
Machine Learning (SML), Unsupervised Machine Learn-
ing (UnML), and Explainable Machine Learning (XAI);
Section III presents the initial desiderata towards Explainable
UnML (XUnML); Section IV presents the Explainable SOM
approach; Section IV presents the experimental setup and
results, and finally, Section V concludes the paper.

II. BACKGROUND
In this section, we discuss relevant literature briefly. We dis-
cuss SML, UnML, and different application areas of using
them. Further, we discuss current literature on XAI and its
terminologies.

A. SUPERVISED MACHINE LEARNING
Supervised Machine Learning (SML) algorithms require
prior knowledge of data to train them and make predictions.
SML is frequently used in data science due to its high pre-
dictive performance. However, the major drawback of these
algorithms is that they cannot be trained with unlabelled data.
SML algorithms can be categorized into main areas, namely
classification algorithms and regression, which are briefly
explained below [15].

• Classification: Classification algorithms require class
labels as categorical variables. Therefore, it limits the
number of possible prediction outcomes to a finite
set of categorical variables. Widely used classification
algorithms includes Support Vector Machines, Decision
Trees, Random Forest, Neive-Bayes, K Nearest Neigh-
bor, and Supervised Neural Networks [16], [17] These
algorithms can be further categorized into binary clas-
sification and multi-class classification. Binary classi-
fication algorithms categorize data samples into two
classes, whereas multi-class algorithms can categorize
data samples into more than two classes.

• Regression: Regression algorithms can take data labels
as real value and predict real value as an output. Hence,
the outcomes of regression algorithms can have an infi-
nite number of values. Widely used regression algo-
rithms include linear regression, logistic regression, and
polynomial regression [16], [17].

B. UNSUPERVISED MACHINE LEARNING
Unsupervised Machine Learning (UnML) has gained sig-
nificant attention during the last decade. The main reason
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for this is the large amount of unlabelled data generated to
the public. To use these data effectively and efficiently, it is
crucial to analyze these unlabeled data (exploratory data anal-
ysis) to identify hidden patterns within them and reduce the
amount of data for high-level tasks such as labeling through
dimensionality reduction [18]. In this way, UnML provides
initial insight into data allowing domain experts to use them
appropriately.

The traditional concept of UnML was mainly limited to
the idea of exploratory data analysis and dimensionality
reduction. The expansion of deep learning methods and data
mining, combined with this era of big data, has given a
much broader perspective to traditional unsupervised learn-
ing. Therefore, unsupervised learning is used not only for
clustering and dimentionality reduction [18], but also for
generative modelling [19], [20], auto-regressive modelling
[21], [22] and represntation learning (unsupervised feature
learning) [23]. Some of the widely used application areas of
UnML techniques are discussed below.
• Clustering: Clustering is one of the most common uses
of UnML, where it organizes data into sensible groups
based on similarities and characteristics of data [24].

• Pre-trained models in transfer learning: This is the
process of learning a machine learning model from a
substantial amount of unlabeled data and using these
pre-trained models for similar problem domains. These
learned representations, have shown improved perfor-
mance on downstream tasks for which the amount of
data is limited, e.g., deep neural networks. [25].

• Unsupervised feature learning: This is the process of
learning useful representations of data without manual
annotations [26]. When the learned representation has a
lower dimension than the input dimension, it is referred
to as dimensionality reduction [27].

• Dimensionality reduction: This is the process of learning
a low dimensional representation of the data set while
preserving topological properties of data [28]. This low
dimension can be either in the number of data points or
the number of features in each data point.

• Association Rule Mining: This is the process of finding
interesting associations (relationships, dependencies) in
large sets of data items [29].

• Generative modeling: This is a typical use of unsuper-
vised learning that models the probability distribution
of data for generating new samples from the learned
distribution [30]. These learned distributions are used
to find good representations for large data sets and deal
with missing data.

• Auto-regressive modeling: This is a process of time
series modeling that uses previous observation from the
previous timestamp as input to predict the value of the
next timestamp [21].

C. EXPLAINABLE MACHINE LEARNING
As we discussed in Section I, the effectiveness of AI systems
was limited by the inability to explain its decision-making

process to human users (black-box behavior) [31]–[33].
This has triggered a new research area named Interpretable
Machine Learning or Explainable Artificial Intelligence
(XAI). XAI focuses on making machine learning models
with the ability to explain their rationale, characterize their
strengths and weaknesses, and convey an understanding of
how they will behave in the future. It allows to produce AI
models with high-performance levels while allowing users to
understand, trust, and effectively manage machine learning
algorithms [8], [31]. Explainable AI research can take two
main approaches: 1) developing novel explainable machine
learning algorithms, 2) modify the existing machine learning
algorithms to make them understandable to humans.

Based on the literature, the need for XAI consists of
four somewhat overlapping reasons [8]; Explain to Jus-
tify, Explain to Control, Explain to Improve, and Explain
to Discover. Explain to justify refers to the need for rea-
sons/justifications for a particular outcome, rather than pro-
viding a description of the inner workings or the logic of
reasoning behind the decision-making process in general.
It ensures that the AI-based decisions were not made erro-
neously. Explain to Control protect models from making
wrongful outcomes by providing visibility of unknowns vul-
nerabilities, flows, and help to identify and correct errors
through debugging. Explain to Improve refers to the fact
that explainable and understandable models are easier to
improved. Since the user knows why the model produces
certain outcomes and flows, users can make models smarter
through continuous improvements. Explain toDiscover refers
to explaining to learn new facts, gather information, and
gain knowledge. The learned pattern from machine learn-
ing models can result in some new and hidden knowledge
revealed through explanations. Explainable machine learning
is a diverse research area that consists of many components.
Figure 1 presents a taxonomy of XAI and a list of common
terms used in XAI. They are briefly described below.

• Intrinsic or Extrinsic (post hoc): This distinguishes
whether the model itself is interpretable or needs to
apply methods that analyze models after training to
achieve interpretability [34]. Intrinsic refers to simple,
explainable models such as short decision trees. Extrin-
sic refers to the use of an interpretation method after
training to achieve interpretability.

• Model Specific or Model Agnostic: This distinguishes
whether the interpretation method is limited to a specific
model or not [34]. Model-specific refers to methods
and tools which are specific to a model (Ex: regression
weights in a linear model, tools only work for neural
networks).Model agnostic refers tomethods that can use
on any machine learning model to achieve interpretabil-
ity. These models do not have access to internal model
details such as weights or structural details.

• Local or Global: This distinguishes whether the inter-
pretation method explains a specific data record or the
entire behavior of a model [34]. Local refers to methods
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FIGURE 1. XAI concept and taxonomy.

that explain specific prediction, whereas global refers to
methods and tools which provide interpretation for the
entire model.

• Result of the interpretation method: The various inter-
pretation methods result in various interpretation out-
comes [34]. Some of them are listed below,

– Feature summary statistic: Interpretation methods
can result in feature summary statistics for a single
feature or multiple features together. For example,
it can be a feature importance score for each feature
or pair-wise feature importance [34].

– Feature summary visualization: Some feature
statistics are meaningful only when presented visu-
ally. For example, partial dependence plots show the

dependence between the output of the model and a
set of input features. If this result is presented in
tabular format, it is difficult to see the dependency
between features and the model outcome [34].

– Model internals (e.g., learned weights): Typically,
intrinsic interpretable models result in model inter-
nals such as learned weights in linear models and
tree structure of decision trees [34].

– Data point: Some models’ output already exists or
newly created data points to make the model inter-
pretable. For example, counterfactual explanation
methods change the feature values of a data point
to flip the class label of the data point [34].

– Intrinsically interpretable model: Some black box
models can be interpreted using interpretable
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models. The result of this approach can be feature
summary statistics or visualizations of the inter-
pretable model [34].

Today, many companies such as Amazon, Google,
NVIDIA Fiddler lab, IBM, and national institutes focus on
adding explainability to the AI life cycle to ensure ethical and
fair algorithms for their users. They point out that many peo-
ple working within companies have no idea how to explain
the inner workings of AI to customers. They are working
towards bridging the gap between hardcore data scientists
who are building the models and the business teams using
these models to make decisions. Figure 1 present the idea
of incorporating XAI into AI workflow. The idea here is to
incorporate explainable techniques to different stages in the
AI life cycle.

III. EXPLAINABLE UNSUPERVISED MACHINE LEARNING
As we discussed in the Introduction section, existing work
on XAI is mainly concentrated on supervised learning algo-
rithms. For domain areas such as CPSs, UnML is essential for
assisting human decisions in building effective ML models.
These systems generate a massive amount of unlabelled data
at a rapid speed. Therefore, relying on SML alone is not
sufficient for data-driven decision-making for CPSs. Further,
unsupervised learning has a wide range of application areas,
including model pre-training, auto-regressive modeling, and
generative modeling. This section explores what XAI would
look like in an unsupervised context, the need for unsuper-
vised XAI methods, current literature on unsupervised XAI,
and how unsupervised XAI can be used within the domain of
CPSs.

A. DESIDERATA OF EXPLAINABLE UNSUPERVISED
MACHINE LEARNING
As we discussed in the previous section, UnML offers a
solution to analyze the large amount of real-world unlabelled
data generated at a rapid speed. However, most of the existing
UnML methods do not provide a way for people to under-
stand their underlying decision-making process. Especially
for non-domain experts, these models act as black-boxes.
This black-box behavior leads to many drawbacks, including
limiting the user’s involvement with model improvement,
limiting user input integration for model debugging, and
harming the user trust in these models, making humans not
deploy them in real-world environments [35]–[39]. Inter-
pretable models are essential for high-risk environments
where the model outcomes can result in severe consequences.
For example, one use case is anomaly detection systems in
critical infrastructures. On these systems, it is not enough
to get the predictions (anomaly or not) of UnML models.
It is crucial to produce an explanation of why it is an
anomaly. This information is essential to identify where the
anomaly occurred, possible catastrophic effects and make
decisions to recover the system. Therefore, it is essential to

analyze and explain the result obtained through these UnML
models [35]–[39].

Analyzing and interpreting the results obtained through
UnML is a very challenging process. This process often
requires expert-based sophisticated manual inspection, which
takes a significant amount of time [35], [37]. Further, com-
plexities, high-dimensionality, and real-world data volume
make it impossible to use manual expert-based data analysis.
Existing unsupervised quality metrics such as Silhouette or
Rank Index do not provide any explanations on why data
record belongs to a specific cluster [35]. They only provide
a structural insight that is not perceivable to non-domain
experts. Further, many available methods are hard to explain,
partially because they depend on all the data features in a
complicated way, making it difficult to explain in a per-
ceivable manner [38]. Other supervised quality metrics such
as cluster purity requires labeled data, requiring expensive
manual labeling. This approach is expensive and can result
in partial, incorrect, or biased results [35]. Therefore, there
is a crucial need to develop explainable UnML methods or
develop methods to explain existing UnML methods.

B. MAPPING OF EXISTING EXPLAINABLE MACHINE
LEARNING TERMS TO EXPLAINABLE UNSUPERVISED
MACHINE LEARNING
As we described in the previous section, existing explainable
AI mainly concentrates on supervised algorithms and is com-
posed of many overlapping terms and concepts discussed.
Therefore, it is essential to explore how these existing con-
cept of XAI fits the unsupervised learning domain. Here we
discuss our view on mapping from existing XAI concepts to
the unsupervised domain.

The Intrinsic or Extrinsic model concepts can be used
as it is in the domain of unsupervised learning. For exam-
ple, unsupervised models like Principle Component Analysis
visualized with two or three dimensions can be considered
as an Intrinsic interpretable model. Association rule mining
techniques can be considered as intrinsic models as they
generate rules based on the conditions specified by the user.
These conditions can utilize for generating interpretations.
Unsupervised models like Mean Clustering go under Extrin-
sic interpretable models as they need external interpretation
models after training to achieve interpretability.

The terms Model Specific and Model Agnostic can also
be used as it is in the unsupervised domain. Small decision
trees are one such example of Models Specific interpretable
model as the splitting criteria used to explain decision trees
are restricted to decision tree algorithms. Some existing
agnostic models can be used to explain existing unsuper-
vised clustering approaches. Typically, model agnostic mod-
els require labels on data records to achieve interpretability.
We can use the cluster labels generated through unsupervised
clustering algorithms as dummy labels to existing model
agnostic methods. However, this area of research is still at
a primitive stage.
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In the unsupervised domain, Local Interpretability can
be used to explain how a specific data point belongs to a
given cluster or how to change the cluster label of a data point
by changing its feature values. In auto-regressive modeling,
we can present what features of the previous data records lead
to predicting future data records. The Global interpretation
can be defined as generating explanations on why a set of data
points belongs to a specific cluster, the important features that
decide the similarities between points within a cluster, and the
feature value differences between different clusters.

Methods used in the supervised domain to present the
result of interpretation models can also be mapped to the
unsupervised domain. For example, important feature sum-
mary statistics can be presented using different visualization
mediums such as bar charts, tabular format, and linguistic
explanations for clustering tasks. Model internal values such
as cluster centers of K-Means clustering can be used as a
general representation for the data distribution.

It is important to notice that qualitative and quantitative
analysis in unsupervised explainable models can be prob-
lematic. The main reason for this is, many existing model
evaluation methods require some prior knowledge/labels of
data. In the unsupervised domain, prior knowledge of data is
not available. Further, described in previous section, available
unsupervised quality metrics are not explainable. Therefore,
the new evaluation mechanisms should be developed for
explainable UnML methods.

One classic approach is to perform a human study, where
machine learning experts apply the UnML method into an
actual world application and provide global/local expla-
nations to domain experts using appropriate visualization
methods (Application-level evaluation). Domain experts can
qualitatively evaluate explanations on whether the learned
clusters represent some important similarities (human-level
evaluation). Another approach is to use model fidelity which
evaluates how truthfully the explanation represents the under-
lying model [40]. Model fidelity of UnML can evaluate by
using the information on important subsets of features [41]s.
These features can be perturbed, removed, or weighting can
be used to get some notion of the truthfulness of features for
the decision-making process on a model. For example, model
faithfulness of clustering can be evaluated by checking how
the cluster label changes when changing the feature values of
data samples (quantitative).

C. CURRENT LITERATURE ON EXPLAINABLE
UNSUPERVISED MACHINE LEARNING
Principle Component Analysis (PCA) has been used for inter-
preting the clusters by visualizing them across two or three
dimensions [37]. However, it limits the number of dimensions
that can be used for explaining the clusters, as visualizing
is not possible when the number of dimensions increases.
In [35], researchers have used existing supervised XAI meth-
ods for interpreting UnML approaches (EXPLAIN-IT). First,
they cluster the input data using existing clustering methods
such as K-Means or DBSCAN. A classifier is then trained on

input data using the generated cluster labels as class labels for
the classifier. Finally, the classifier is explained using existing
model agnostic methods such as LIME. However, these can
result in model biases, and the current research on this is at a
primitive stage.

Interpretable tree-based clustering models have gained
much attention recently as the decision tree model itself is
an explainable model [42], [43]. In [42], [43], an explain-
able decision tree method was introduced by generating the
smallest binary tree possible (threshold tree) with k leaves.
Each node in the tree iteratively divides the input data into k
clusters. By restricting to k leaves, they ensure that each such
path accesses at most k − 1 features. The explanations were
generated using k−1 features. Also, in [36], researchers have
proposed an explainable decision tree model (eUD3.5) where
they have use compactness and separation of data clusters
when evaluating feature splitting in the tree.

Deep Neural Networks (DNNs) have shown state-of-the-
art performance in many areas such as computer vision
and natural language processing. However, many DNNs are
used as black-boxes. There are a couple of initial attempts
toward explaining unsupervised DNNs such as Autoen-
coders. In [44]s, interpretable Variational AE has been
presented. This is performed by analyzing the gradient con-
tributed by each feature of a data record. Another inter-
pretable VAE is presented in [45], and [46] by changing
the decoder to embody explicit expert knowledge. Therefore,
these architectures result in a latent space that has semantic
meaning. Fuzzy logic combined with ML has also been used
for achieving interpretability There are some initial attempts
towards developing interpretable systems combining fuzzy
logic systems with DNNs and clustering algorithms. How-
ever, majority of these system has some degree of the super-
vised learning process within their pipeline.

D. EXPLAINABLE UNSUPERVISED MACHINE LEARNING
FOR CYBER-PHYSICAL SYSTEMS
As discussed in the Introduction, CPSs generate a high vol-
ume of unlabeled data at a rapid pace. Unsupervised machine
learning is a viable solution to mine these data meaningfully,
maintain and improve desired functionalities, and improve
these systems’ safety. In recent years, unsupervised learning
has been used in CPSs mainly for three application areas of
unsupervised leaning: clustering, unsupervised feature learn-
ing, and model pre-training. This section discusses these
areas in brief and discusses the need for explainability. The
main reason for this is, it is not possible to discuss explainabil-
ity and the advantages of XAI in general without specifying a
domain. Depending on the domain and application, the XAI
models and mechanisms should be adapted to use them effec-
tively. Therefore, we selected CPSs and above three UnML
application areas for our discussion.

Clustering is the most commonly use of unsupervised
learning method within CPSs. It groups samples based on
some similarity criteria such that samples in the same group
are similar to each other compared to samples in another
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group. It has been applied to the abundance of unlabelled
real-world CPS data for revealing hidden patterns and knowl-
edge extraction. Clustering has been successfully used for
many areas of CPSs including optimization the intelli-
gent driver system performance [47], [48], prevention and
detection of malicious activities [49], power consumption
optimization [50], anomaly detection [51], [52], and perfor-
mance degradation diagnostics and prognostics in CPSs [53].
Explainable clustering algorithms can have multiple advan-
tages. Main advantage of explainable clustering is to sum-
marize the input behavior patterns in the clusters allowing
users to understand underlying commonalities of clusters.
This is essential for domain experts to perform exploratory
data analysis on unlabeled data, allowing them to understand
the hidden patterns in data and outleirs within data. Further,
clustering can be the first stage of identifying necessary data
from large quantities of complex data in order to build ML
systems for CPS. Meaningfully clusters data can be effec-
tively use downstream ML tasks such as data labeling and
applying supervised ML models. It also improve user trust
in ML models allowing users to deploy them in real world
applications.

Reliable and efficient modeling of high-dimensional data
collected through CPSs require extracting only relevant and
robust features through unsupervised feature learning tech-
niques [27]. In the presence on unlabelled data, unsupervised
feature learning techniques can be used. I.e., the process
of converting a high-dimensional feature spaces into new
embedded representation without using any prior knowledge
or labels on data. Preferably, the learned new embedded
representation will have lower dimension compared to the
original dimension [13], [54]. Once relevant features are
learned, these features are used for ML model training. Fea-
ture learning has been successfully used in CPSs for various
tasks such as anomaly and threat detection [52], [55], mobile
edge computing [56], heterogeneous data clustering [57], and
intelligent manufacturing [58]. Widely used unsupervised
feature learning techniques include variant of autoencoders
(Stacked Autoencoder, Convolutional Autoencoders, ResNet
Autoecoders), PCA, Locally Linear Embedding, and Singu-
lar Value Decomposition [27], [59], [60]. When looking at
the need for explainability of unsupervised feature learning,
the domain experts needs an explanations on why set of fea-
tures are extracted, what is the linear or non-linear relation-
ship between original feature space and the new embedded
feature space, does learned features are actually important to
some downstream task. This help domain experts and ML
experts to perform meaningful feature learning and dimen-
sionality reduction.

Pre-training is the process of learning a general represen-
tation using a substantial amount of labeled or unlabeled data
and use the learned representation to improve performance
on a downstream task where the data is limited [61], [62].
When the general representation is learned from unlabeled
data, it is known as unsupervised pre-training [61]. Unsuper-
vised pre-training has shown significant improvements across

wide range of areas in CPSs including attack detection, secu-
rity risk management, natural language processing, computer
vision, and transfer learning [61]–[65]. It has been found that
these pre-trained models perform better and can be efficiently
re-trained to downstream tasks. Explainability is essential for
these pre-trained models to understand what these models
have actually learned so that domain experts can use improve
these models by removing unwanted bias and to use these
pre-trained models effectively in relevant applications.

IV. EXPLAINABLE SELF-ORGANIZING MAPS
This section discusses the Self Organizing Map (SOM) algo-
rithm, advantages, and visual data mining capabilities of
SOMs, and presents a novel explainable method for SOMs.

A. SELF-ORGANIZING MAPS
The Self-Organizing Map is a widely used unsupervised
learning algorithm capable of mapping a high-dimensional
data distribution onto a low-dimensional grid while preserv-
ing important topological, and metric relationships of the
input data [66]–[68]. It consists of a topological neuron
grid (typically 2D or 3D), with each neuron consisting of a
weight vector. It adapts its neuron weight vectors to represent
topological properties of input data using the unsupervised
‘‘winner-take-all’’ learning algorithm [69], [70]. Since SOMs
can represent topological properties of input data, they have
been widely used for visual data mining and dimensionality
reduction [71], [72]. Other advantages of SOMs include ease
of optimization [73], the better capability of revealing over-
lapping structures in clusters compared to other traditional
clustering methods, and suitability for visualizing and mining
high dimensional data [67]. SOMs have been successful in
many areas, including speech recognition, robotics, telecom-
munication, and process optimization [69], [73]–[75].

The algorithm of SOM is presented in Algorithm I
(Table 1). Each neuron in SOM maintains a weight vector
W = w1,w2, . . . ,wm of m dimension, wherem is the dimen-
sion of input feature vector. Input dataset can be represented
as X = x1, x2, . . . , xn, where n is the number of records in the
training set. For ith input data record (xi), the algorithm finds
the closest neuron based some distance measurement calcu-
lation method (euclidean, Manhattan). This closest neuron is
called as the Best Matching Unit (BMU). Then, the SOM
neuron network updates the weights of the neurons in the
neighborhood of the BMU so that the neighboring neurons
move close to BMU (line 14-18 in Algorithm I). Figure 2
illustrates the structure of 2-D SOM architecture in the output
space and the input space. The learning rate and the radius of
the BMU neighborhood are used as the controlling hyperpa-
rameters. Typically, the neighborhood radius is halved and
learning rate is decayed at each epoch.

η(t) = 0.49
(
1−

e
epochs

)
+ 0.01 (1)

where e is the current epoch and epochs is the total number
of epochs. The most crucial hyper-parameter of the SOM is
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FIGURE 2. Self-Organizing Map displayed in the output space (a) and in the input space adapted to 2D distribution of
input points (b).

TABLE 1. Algorithm for self-organizing map training.

the size of the neuron map. The map size should be adequate
enough not to over-fit or under fit to train data.

The following items outline exploratory data analysis capa-
bilities of SOM.

• Histograms: These neuron histograms shows the data
distribution of the 2D data topology of SOMs. It can be
used as a visual indication for identifying whether the
network can cluster the input data correctly. A properly
trained network topically shows data grouped in some
regions of the map (high data distribution density), mak-
ing clear boundaries between clusters.

• T-distributed Stochastic Neighbor Embedding (t-SNE):
This is a dimensionality reduction technique that is
widely used for visualizing high-dimensional data. For
SOMs, this can be used to represent the input data points
and neuron weight together. It indicates to users that the
network weights can represent the distribution of input
data. Therefore, it is a clear indication to visually explore
whether the trained network represents the trained data.

• Heat Maps: These are intensity representations of SOM
network properties. Several types of heat-maps can
be generated using cluster labeled or data labeled if
available.

– Class hits: This is a different visualization of Neu-
ron Hit Histogram. This will represent the number
of classes where each neuron fired for the whole
SOM network topology. If majority of data fired a
neuron belong to one class label, then it can be used
as an indication for a well-trained SOM network.

– Data hits: This represents the number of data points
where each neuron fired for. If many neurons do
not fire for any data point, then network size can
be reduced. Therefore, this can be used to decide
the SOM network size.

– Class Percentages: This will represent the percent-
age purity of each neuron. Percentage purity can
be used to ignore neurons with low purity allow-
ing users to increase the quality of the network
by retraining, redesigning, expanding the network.
In case of tie, neighboring neurons are used to
decide the class/cluster label.

• U-Matrix: Unified Distance Matrix (U-Matrix) is the
standard visualization for SOMs representing the infor-
mation regarding the distances between neighboring
neurons. These maps are used to identify the naturally
existing clusters and to identify well-separated clusters
from overlapping clusters.
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• Component Planes: This visualization shows the value
of a single feature in each SOM neuron. A single com-
ponent plane represents how a specific feature value
changes across clusters. Further, by comparing multiple
plans, it is possible to identify correlated features.

• U-Map: Similar to t-SNE, this also use to visualize
high dimensional data. This builds a high dimensional
graph representation of the input data then optimizes a
low-dimensional graph to be as structurally similar as
possible. For SOMs, this can be used to represent the
input data points and neuron weight together. It indicates
to users that the network weights can represent the dis-
tribution of input data.

As described above, SOM has many visual data mining
capabilities which allows domain experts and non-domain
experts to interact with SOM, making SOMs good candi-
dates for exploring application in CPSs. Further, there have
many improvements have been proposed that can be done on
SOMs to improve it’s capabilities. However, to the best of out
knowledge, there is no efforts done towardsmaking themodel
interpretable. Therefore, in the next section, we propose an
approach toward developing an explainable SOM algorithms.

B. EXPLAINABLE SOMs
As we discussed above, SOM algorithm has many visual
data mining capabilities. SOM is a unsupervised clustering
method which is trained to produce a low dimensional repre-
sentation of a large training dataset. U-Matrix of SOMneuron
weights can represent any natural clusters available within
training data. Component planes of SOM neuron weights
can be used to visualize how the feature values change
across clusters (feature summary visualization). In this paper,
we used SOMs training approach (winner-take-all algorithm)
together with the above discussed visual data mining capabil-
ities of SOM to make the algorithm explainable. We propose
a model-specific, post-hoc interpretable method for SOMs.
The result of this method consists of feature summary statis-
tics, model internals, and feature summary visualizations.
The proposed approach is able to provide both global and
local explanations. Further, we will discuss how each of
these generated explanations can be used for CPS operations.
Here we will discuss the steps for identifying most important
feature list using SOM algorithm, model fidelity evaluation
method, and generating interpretations.

1) Training of the SOM with dim dXd :
Trained the SOM with the winner-take-all algorithm
presented in Algorithm 1.

2) Calculating the order of important features for each
neuron (Algorithm II, line 1-13):
After training SOM with the training dataset,
the trained SOM acts as a set of data points which
represent the entire training dataset. Therefore, each
neuron is a generalized representation of a set of train-
ing data records.We use the training data set and extract
a set of data points (X ′i ) that selected i

th neuron as their

TABLE 2. Proposed approach for explainable SOM.

BMU to calculate the ordered list of important features
for ith neuron. The importance of a feature is decided
by calculating the standard deviation. We calculate the
standard deviation for each feature j in x ′i .

σ fj =

√∑n
j=0(X

′
i,j − X̄

′
i,j)

n− 1
(2)

3) Calculating the ordered list of important features for
neuron i (Algorithm II, line 1-13):
Then the indices of features are ordered from low-
est standard deviation to the highest standard devi-
ation, representing the ordered list of feature from
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highest importance to lowest feature importance. Each
neuron in SOM represents a set of data points, and
low standard deviation of a feature represents low
variation of a feature values, indicating that many
data points have that feature value within a small
range. The domain expert/user can decide on a thresh-
old (th) standard deviation value so that any fea-
ture with equal or less standard deviation value is
considered as the most important (active) feature.
These ordered important features were used to achieve
interpretability.

4) Cluster SOM neurons (Algorithm II, line 14):
To achieve interpretability, we clustered the trained
SOM neurons. In this experiment, we used K-Means
clustering. The number of clusters (K ) was decided
based on two cluster quality metrics: Silhouette
Coefficient and Davies-Bouldin Index. Further, cluster
quality metrics together with U-matrix and other visu-
alization capabilities of SOM allows the domain expert
to visually analyze the natural clusters of training data
and evaluate the quality ofK clusters to decide whether
the results are reasonable.

5) Model fidelity evaluation:
We designed two experimentation to evaluate whether
the identified features for each neuron are actually
important for the decision-making process of SOM
(fidelity test). This is performed by performing two
experiments on the test data-set.

• Changing the feature values of identified important
features and checking whether the cluster labels
(model outcomes) changes (Algorithm III, Experi-
ment I). Through this experiment, we calculate the
percentage of data points where the cluster label
can be changes by changing their feature values of
important features.

• Calculating the percentage of important features
which are included in identified important fea-
tures (Algorithm IV, Experiment II) Through his
experiment, we check whether the calculated order
of importance feature lists are valid for the test
data-set.

These are discussed in detail in the next section.
6) Results interpretation: Once we identified the most

important features and evaluated the features, we gen-
erated local and global explanations using SOM.

• Local interpretability: Once an ordered set of
important features are calculated for each neuron;
it is used to generate local interpretation for a
specific input record by providing the user a subset
from important features and its value range (very
low, low, medium, high, very high). It has to be
noticed that the feature value granularity can be
defined by users based on their preferences.

• Global Interpretability: For each feature, we can
visualize how the feature value is different across

clusters and what features are active within
clusters. Ordered important feature summary (fea-
tures and values(range) of important features) for
a set of neurons belonging to a particular cluster is
used as a global interpretation.

V. EXPERIMENT SETUP AND RESULTS
In this section we discuss the five data sets we used for this
experiment, the design of the evaluation methods, results, and
discussion on results. First we will discuss the data sets used
for this experiment.

KDD: This is a commonly used benchmark dataset for
network intrusion detection and anomaly detection. It has
around 2 million records divided into train and test sets.
It consists of 41 features, and all the records are labeled
into two classes, attack or normal. The attack data represent
four categories, namely, Denial of Service (DOS), User to
Root Attack (U2R), Remote to Local (RTL), and Probing
Attack. For this experiment, we used normal records and
DOS records (attack). This choice was made as other types
of attacks have subcategories that do not include the test set.
SOM algorithms, in general, does not handle huge variation
in new data. This dataset has both categorical and numerical
feature values.

German Credit: This dataset has 1000 data records with
20 features. It has both categorical and numerical feature
values. Each record represents a person who takes a credit
from a bank. Each person is labeled as good or bad credit
risks.

Bank marketing: This dataset is derived from a marketing
phone call campaign of a Portuguese banking institute. This
data set has 45211 records, eachwith 12 features. Features are
only numerical values. This has two classes, yes and no. The
classification goal is to predict if the client will subscribe to
a term deposit or not.

Adult Income: This dataset has 48842 records, each with
14 features. Features have both categorical and numerical
features. The data set is labeled into two classes, representing
whether the salary exceeds 50k or not based on the fea-
tures. This dataset has missing values. In this experiment,
we removed records with missing values.

DoHBrw-2020: Canadian Institute for Cybersecurity
provides a set of datasets for building intrusion detection sys-
tems. For this experiment, we used the CIRA-CIC-DoHBrw-
2020 dataset, which consists of benign and malicious records
for DoH (DNS over HTTPS protocol) traffic along with non-
DoH traffic. It consists of roughly around 250k records with
28 features. It has both categorical and numerical feature
values. Benign and malicious records were considered as two
classes.

Since these datasets have categorical variables, we used the
frequency encoding method to convert categorical variables
to nominal variables. Min-max scalar was used to scale the
data into the 0-1 range. When there are separate train and test
sets, they were used as it is for training and testing purposes.
If the original data set is not divided into train and test,
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70% of the data was randomly selected for training, and the
rest was used for testing.

To decide the optimal number of clusters and dimension of
the SOM, we used u-matrix together with two widely used
clustering performance metrics, namely Silhouette Coeffi-
cient and Davies-Bouldin Index. They do not require labels
to evaluate the clusters. They use different methods to cal-
culate the compactness(density) of a cluster and separation
(distance) between clusters.

• Silhouette Coefficient: This is calculated using the mean
intra-cluster distance and the mean nearest-cluster dis-
tance for each sample. The score is higher when clusters
are dense and well separated, which relates to a standard
concept of a cluster. The score is bounded between
−1 for incorrect clustering and +1 for highly dense
clustering. Scores around zero indicate overlapping
clusters.

• Davies-Bouldin Index: This index signifies the average
‘similarity’ between clusters, where the similarity is a
measure that compares the distance between clusters
with the size of the clusters themselves. A lower Davies-
Bouldin index relates to a model with better separation
between the clusters. Lower the better, Values closer to
zero indicate a better partition.

Figure 3 shows the change in cluster quality matrices
used for this experiment for the Bank Marketing data set.
It shows how these matrices change with respect to SOM
dimensions and the number of clusters. For a given SOM
size, we calculate cluster quality metrics for SOM neuron
weights (Blue) as well as for the training dataset (Orange).
This analysis is used to identify the optimal SOM dimension
and number of clusters. If the trained SOMneurons are a good
representation of the whole data set, then cluster analysis of
SOM weights and the whole data set should follow similar
trends. Figure 3 shows that they follow the same trends when
increasing the number of clusters. Based on the Silhouette
Coefficient and Davies-Boulding index value, 3 to 5 clusters
seem to be the best option for the tested SOM dimensions
(8,16,2,40).

A. MODEL FIDELITY
Once the ordered list of important features is calculated for
each neuron in trained SOM, it is necessary to evaluate
whether the identified ordered features are actually important
using the a data perturbation experiments discussed in the
previous section (Algorithm III). First, for each data point
x in the test set, we check its BMU index i and the cluster
label (m) of the BMU. Based on BMU index i, we have
a list of most important features f ′i . It has to be noticed
that different BMUs have a different number of important
features based on a user-specified threshold (th) on standard
deviation. To evaluate whether the identified ordered fea-
tures are actually important, we change the feature values of
important features of the test data record. First, we calculated
the average feature values for each cluster using the neurons

FIGURE 3. Cluster quality evaluation approach for K clusters using
Silhouette Coefficient and Davies-Bouldin Index for different SOM map
sizes.

belong to that cluster. Then, the feature values of important
features of x were replaced by the mean feature values of a
cluster k where k! = m. Then we check whether the BMU of
x is changed to another BMU, which does not belong to the
original cluster label of that data point (m). Our hypothesize
is that when we change the values of the most important fea-
tures, the cluster label of the data point should change.We did
this for the whole test data set and calculated the percentage
of data records where we can change the original cluster
label by changing the feature values of important features
(Swap percentage). If it does, it confirms our hypothesis that
the identified features decided the cluster label of that data
point.

It is also essential to identify the minimum number of
important features that define the cluster label of a data point.
Explanations should be generated using a small number of
features so that it is easy to perceive by the user rather
than explaining with a higher number of features. Therefore,
the cardinality of f ′i should be limited to a user-defined
value. In this experiment, we tested with different cardinal-
ities; 10%, 20%, 30%, 40%, and 50% of important features
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out-of the total number of features of the dataset, which
is also bounded by the threshold (th) of standard deviation
(total number of identified important features for neuron i).
To evaluate our hypothesis, we changed the feature values
of randomly selected features and unimportant features (con-
sidering highest standard deviation to lowest). I.e., given the
cardinality p%, we changed the values of p% number of
most important features (features with lowest std values), p%
number of randomly picked features, and p% number of most
minor important features. For each data record in the test
set, we checked whether it changes its cluster label when we
change the feature value under the three scenarios described
above. For each scenario, we checked the two cases; 1) What
is the percentage of test data records where the cluster label
can be swapped by at least one other cluster label, 2) What
is the percentage of test data records where all other clusters
can swap the cluster label. The reason for this is, for some
data points, feature value perturbation using a close-by cluster
features may be not strong enough to push it out of the
original cluster. Therefore, we checked whether the cluster
label of a given data point can be change by using the feature
values of at-least one other cluster. For example, assume we
have 4 clusters and a data point j, which belong to cluster 2.
We replace its feature values with average feature values of
clusters 1, 2, and 4 and check whether we can change its
cluster label from 2 to some other cluster label. It has to be
noted that lower cardinality n% and higher swapped percent-
ages are expected. The result of swap percentage calculation
for all the data sets is present in Figure 4. It can be seen
that the best results for swapped percentages (tallest bar)
were shown by important features (blue), and the second-best
was shown by random features (brown bar) for all the data
sets except for the second scenario (What is the percentage
of test data records where all other clusters can swap the
cluster label) of KDD dataset (second column, last raw).
The reason for this can be the highly imbalanced classes
of KDD data-set and higher differences between train data
and test data, resulting poor performance. However, KDD
also performce as expected for first scenario (What is the
percentage of test data records where the cluster label can be
swapped by at least one other cluster label). This empirical
results confirms our hypothesis that the identified important
features using the proposed approach for SOM decided the
cluster labels of data records.

Another experiment was performed to check the percent-
age of selected K number of features included in the most
important feature list of a BMU (Algorithm IV). For each data
record in the test set, we calculated the feature-wise l1 dis-
tance between the data record and its BMU. Then the features
were arranged based on the ascending order of l1 distances.
Our hypothesis was that the closest features are the most
important features of that data point, and theywill be included
in the identified important feature lists of its BMU. Once
features distances are arranged in ascending order, K features
are selected on three different strategies; 1) Closest, 2) Ran-
dom, and 3) Furthest. We then calculated the percentage of

FIGURE 4. Fidelity test, Experiment I: Changed the values of p% number
of most important (active) features, p% number of randomly picked
features, and p% number of least important (inactive) features and
calculated the percentage of data points where the cluster label changes
after changing %p feature out of all the feature. we checked the two
cases; 1) What is the percentage of test data records where the cluster
label can be swapped by at least one other cluster label (left), 2) What is
the percentage of test data records where all other clusters can swap the
cluster label (right).

K features are included in the important feature list of the
BMU. The results are presented in Figure 5 where the X-axis
represents the K number of features, and Y-axis represents the
percentage of K features that were included in the important
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FIGURE 5. The percentage of closest K number of features included in the most important feature list of the BMU.

feature list. Blue color represents the closes feature, yellow
represents the random features, and the green represents the
furthest features. It can be seen that the blue bar shows the
highest percentage for all K features, whereas yellow shows
the second higher percentage. It infers that the closes features
are included in the identified important feature lists of each
BMU.

As described above, we identified the most important
ordered set of features for each neuron in the SOM network
and evaluated the model fidelity using two experimentations.
Then we used the identified ordered list of important features
to generate explanations.

B. LOCAL INTERPRETABILITY
For a given data point, a local explanation is generated based
on the important features of its BMU, which were identified
using Algorithm III. It has to be noticed that two different
data points with the same BMU can have different orders
of important features based on the l1 feature distance to the
BMU. We provide a set of most important features and their
feature values which are ordered based on the l1 feature
distance calculated between the data point and its BMU. All
the feature values are presented in several levels (very low,
low, medium, high, very high). Low l1 distance indicates
more important features specific to that data point. It has
to be noticed that two data points can have the same set

of important features, but the order of importance can be
different.

Figure 6 shows the local explanation for a single data point
of bank loan data set, generated using the proposed approach.
The features are ordered based on l1 distance in ascending
order (bottom to top) to its BMU. Thus, ‘Education’ is the
furthest feature indicating the lowest importance, whereas
the ‘loan’ is the closest feature indicating the highest feature
importance. The most important features of the BMU are
colored in green, whereas the rest is colored in red. It can
be seen that for the given data point, the closes features are
included in the set of the most important features of its BMU.
In this manner, we can generate a local explanation of the
important features that contributed to deciding the outcome
of the SOM algorithm.

C. GLOBAL INTERPRETABILITY
Using the experiments above, we identified the model behav-
ior of SOM, in terms or important features for each neuron
in SOM map. Once we identify important features, then we
can use them to explore and discuss how each feature behaves
within a cluster. In this experiment, we used the neuron-wise
important features and their value ranges for global inter-
pretability to explain the clusters.

For each feature, we checked whether it is important for
one cluster or multiple clusters. We observed that some
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FIGURE 6. Local Interpretability; Explanation for a single data record, features are ordered from ascending
order based on feature wise distance to BMU.

FIGURE 7. Global Interpretability; Feature behavior for ‘flag’ feature of KDD data set across clusters (SOM
neurons were clustered into three categories, U-matrix visualize the distances between clusters and how
well clusters are separated, the ‘flag’ feature value is different across clusters).

features are not important for any cluster, whereas some
are important for one or more clusters. The feature value
ranges of important features were visualized against the clus-
ter assignments. Further, u-maps were used to check the
separation between clusters. Figure 7 presents an example of
the ‘flag’ feature of the KDDdataset. First raw, the first image
shows the cluster separation of SOM neurons. The second
image of the first row represents the feature value of the ‘flag’
feature across 3 clusters (component plans). It can be seen
that the ‘flag’ feature value is different across 3 clusters. The
third image of the first raw shows that the three clusters are
well separated as there is a light color area that represents
the distance between neurons. Lighter the area, better the

separation between clusters. The second row of Figure 7
shows fine-grain visualization of feature value scale across
clusters. It has to be noticed that a given cluster contains a set
of neurons, and the feature value for a given feature can be
different from one neuron to another, even within the same
cluster. This information is essential for a domain expert to
check whether how a given feature behave within a cluster.
For the ‘flag’ feature, it shows a higher feature value (0.7-1.0)
for cluster 0; for cluster 1, it shows an intermediate feature
value range (0.45-0.52); for cluster 3, it shows a very low
feature value range (0.15). Further, it shows the probability
of having a specific feature value within a cluster as well. For
example, for cluster 0, 90
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D. USABILITY WITHIN CYBER PHYSICAL SYSTEMS
In previous sections, we described the need for XUnML in
general terms for three areas of UnML for CPSs; cluster-
ing, feature learning, and model pre-training. In this section,
we discuss how to use explainable SOMs for specific require-
ments of CPSs.

1) SAFETY AND SECURITY
One of the main challenges of CPSs is maintaining the
safety and security of CPSs. Many modern critical infras-
tructures have CPSs at their core. Therefore, these systems
are highly vulnerable to various attack vectors. Consequently,
maintaining the safety and security of CPSs is a primary
focus. One approach is to develop data-driven ML-based
Anomaly Detection Systems (ADSs) to ensure the security
of CPSs. For developing ADSs, data-driven ML algorithms
require collecting data that represents the normal behavior
of CPSs. SOMs can be trained with normal data records
for this task and identify possible natural clusters (differ-
ent normal behaviors) and interpretations for each cluster.
The domain expert can analyze SOM based explanation to
decide whether the collected data represent all status of the
normal behavior, what are the dominant natural status in
the system, what features are dominant in each cluster, and
the amount of data record distribution among identified nor-
mal status are good enough to train ML algorithms. This
initial information allows domain experts to take necessary
actions such as collecting more data, avoiding possible data
biases, initial ideas on important features, and reduce the
data dimension. For example, if the train data set is too
large for downstream tasks such as data labeling, then neuron
weights can be used as a data set representing the input data
distributions.

2) PROCESS OPTIMIZATION
CPSs such as Intelligent Transportation Systems focus on
improving the fuel efficiency of vehicles. It has been found
that driver behavior is one of the highly influential fac-
tors on fuel efficiency. One approach to achieve fuel effi-
ciency is developing data-driven Intelligent Driver Systems,
which develops for changing driver behaviors to follow
fuel-efficient velocity profiles. However, different drivers
have different driving behaviors. Therefore, it is necessary
to identify different driver patterns and develop optimal
velocities for different driver categories rather than develop
systems assuming that all drivers have similar capabilities.
SOM-based clustering can identify different driver clusters,
thus helping ML experts develop different velocity profiles
representing different clusters. Further, explanations on indi-
vidual clusters can be used to generate recommendations for
drivers, which improved user trust in ML systems. Domain
experts can use global feature behaviors to evaluate different
driver categories and their unique behaviors. Further, the local
explanations can be used to provide personalized recommen-
dations to a particular driver.

3) SALES STRATEGIES
Another main use of clustering is discovering customer
groups in companies. Many large companies today need sales
strategies targeting different customer groups. SOM can be
used to identify cluster groups; then SOM based explanations
can be used to identify why a set of customers belongs to a
specific cluster. Domain experts can use SOM-based global
explanations and evaluate whether the cluster explanations
are meaningful. These identified meaningful explanations
can be used towards building marketing strategies targeting
meaningful customer clusters. Further, SOM local expla-
nation allows to analyze individual customers and provide
customer-specific customization.

4) GENERALIZABILITY
Lack of generalizability is one main problem in CPS as
data-driven ML models mode for one system may not be
useful to other CPSs even when both have many similarities.
One approach is to retrain and re-purpose models used within
one CPSs to another by using pre-trained ML models. SOMs
can be used as pre-trained models as SOM can arrange their
neuronweights to represent the input data distribution. There-
fore, a trained SOM for one task can be used, retrained effi-
ciently for another similar task. However, to use pre-trained
models effectively, it is essential to evaluate whether the
trained SOMs represent meaningful clusters through explana-
tions. Therefore, domain experts can evaluate these clusters
using global explanations and decide whether the clusters are
meaningful and where to use these trained SOMs efficiently.
It allows domain experts to make meaningful reusing of
trained models.

5) REAL-TIME OPERATIONS
In CPSs, a large amount of high-dimensional data is gen-
erated at a rapid speed. For example, in power grids, large
volumes of readings come from physical components of the
system (voltages, currents) and cyber components (network
flow features such as packet rate, payload size, flag). When
it comes to high-dimensional data, training ML algorithms
can be very expensive, generating outcomes from real-time
high-dimensional data can be computationally expensive, and
storing data can be difficult due to large volumes. Further,
it can be impossible to perform real-time processing of these
vast volumes of data generated at a rapid speed. In such
situations, feature learning is beneficial as it reduces the
dimension of input feature space, reducing the number of
computations in downstream ML tasks. Further, it reduces
the storage requirements for storing data. SOM-based global
explanations can be used to identify feature correlations
in these situations as it shows how different features val-
ues change across clusters. This allows domain experts to
identify and remove highly correlated features, resulting in
low dimensional feature spaces. Consequently, reducing the
store requirements and computational cost of downstream
ML tasks. Especially when it comes to real-time operations,
faster interpretation (simple and easy to perceive) of data
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TABLE 3. Comparison between XUnML methodologies.

samples is essential to avoid catastrophic failures in CPSs.
The SOM-based global explanation can reduce the feature
space, and local explanations can be used to produce faster
interpretations for real-time data samples.

E. DISCUSSION
It has to be noticed that the desired outcomes and evalua-
tion methods for explainable machine learning methods are
different based on many factors, including domain areas,
applications, user groups, expected performance criterion,
and medium of explanation. Therefore, it is not easy to
establish a set of generalized requirements or outcomes of
explainable machine learning systems. Further, evaluating

explainable algorithms and their effectiveness is complicated
as there is no clear way of measuring it [34]. Especially in
the unsupervised domain, there was no clear way of mea-
suring and comparing the quality of the explanation meth-
ods. One classic approach for that is doing a human study
with existing unsupervised explainable ML approaches for
a specific problem domain, which is out of this paper’s
scope. However, we explore the model-specific features, lim-
itations, and usability of the proposed approach with other
existing explainable unsupervised ML approaches, presented
in Table 3.

When looking at Table 3, it can be noted that different unsu-
pervised XAI methods have different usability, features, and
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limitations. The current literature of XUnML is mainly con-
centrated on clustering and dimensionality reduction. When
looking at Explainable SOM, the main advantage of it comes
from its many Visual Data Mining capabilities, which are
described in Section III. All the other methods discussed
above have very limited visual data mining capabilities,
limiting their usage in tasks that require VDM capabilities.
A human study will be performed in future work to analyze
the above methods to explore the advantages and limitations
of the above methods.

Bias is a frequently addressed topic in the machine learn-
ing community. Bias in machine learning can exist in many
shapes and forms, such as data biases (ex: measurement
biases, representation biases, data processing biases), algo-
rithmic biases (ex: algorithmic design choices related biases),
and user biases (ex: user interaction biases and evaluation
biases). Interpretable unsupervised machine learning can be
used to address some forms of bias in ML models. Unsu-
pervised models that perform clustering and dimensionality
reduction can be used to eliminate data biases, revealing what
such data actually represents (data clusters), how clusters are
different, and how clusters are correlated/overlapped. Thus,
using the proposed SOM-based global and local explana-
tions, users can understand which features the model depends
on, feature behaviors on different clusters, and because of
which features the model decides the data point belongs to
a specific cluster. This information allows machine learning
experts and domain experts to understand what the train-
ing data represents, helping them preprocess data appro-
priately to improve the data quality, hence reducing data
biases.

It is also necessary to understand the difference between
SOM neural networks and typical Feed-Forward Neural Net-
works (FFNNs) in terms of the learning approach, visualiza-
tion capabilities, and global/local interpretability. SOMs use
the winner-take-all algorithm for training while preserving
the input space’s topological properties. Thus the trained set
of neurons in SOM represents the topological properties of
input data distribution. Whereas FFNNs use error-correction
learning (such as backpropagation with gradient descent) for
training which does not have the capability of representing
the topological properties of input data using trained neu-
rons. FFNNs are trained to perform classification and regres-
sion, whereas SOMs are trained to perform clustering tasks.
As discussed in the previous section, SOM has many in-build
visual data exploration approaches for visualizing feature
behaviors, whereas FFNNs have very limited inbuilt VDM
capabilities.

The difference between FFNNs and SOMs in terms
of global and local interpretability are: 1) The presented
interpretation technique for SOMs generates local/global
interpretations for clustering tasks, whereas the most popular
interpretation techniques for FFNNs generate local/global
interpretations for classification and regression tasks;
2) Local interpretability: Most popular local interpreta-
tion techniques used for FFNNs produce relative feature

importance scores, whereas the presented technique for
SOMs does not generate relative feature importance scores.
It only generates a sorted features list indicating the most
important features to the least important feature; 3) Global
interpretability: Most popular global interpretation tech-
niques used for FFNNs produce a set of IF-THEN rules for
explaining the model behavior for different classes, whereas
the presented technique for SOMs generates a set of com-
ponent planes and feature value distributions for explaining
how different features behave across different data clusters;
4) SOMs carry an inherent topological understanding of data
and clusters. This inherent topology directly reflects notions
of local and global belonging of data to clusters and addresses
local vs global interpretability, unlike FFNNs that do not have
the topological understanding of the data.

VI. CONCLUSION
The motivation for this paper is two-pronged: 1) Unsu-
pervised Machine Learning (UnML) has gained significant
attention due to large amounts of unlabelled data generation
at rapid speed, and 2) majority of the work on explain-
able/interpretable AI is focused on supervised machine learn-
ing, but real-world settings brings the challenge of dealing
with unlabelled data, making supervised machine learning
alone is not sufficient for data-driven decisionmaking. There-
fore, in this paper, we investigated the need for Explainable
Unsupervised Machine Learning (XUnML). We explored
and revealed that the current literature has limited work
on XUnML. We refined the terminologies in explainable
machine learning in the unsupervised domain, exploring cur-
rent terms in XAI towards achieving XUnML. We specifi-
cally focused on the Cyber-Physical Domain (CPS) domain
as these systems generate a large amount of unlabelled data
at rapid speeds. Therefore, unsupervised ML is a viable
option to extract knowledge from the data coming fromCPSs.
We observed from the recent literature that three unsuper-
vised approaches are beingwidely usedwithin CPSs: Cluster-
ing, Unsupervised Feature Learning, and Model pre-training.
Under each approach, we discussed the need for XunML and
explored the advantages.

We proposed a novel model-specific explainable method
for the Self-Organizing Map (SOM) algorithm, generating
local and global explanations. Through feature value per-
turbation, we evaluated the model fidelity and showed that
the proposed approach identifies the most important feature
used by the decision-making process of SOMs. We showed
that the changing of features values of important features
affects the model outcomes of SOMs. We presented the pro-
posed approach as a strong candidate as a XUnML method
by comparing it with current XUnML methods in terms
of model-specific features, limitations, and usability. Fur-
ther, we explored how to apply the proposed method for
specific requirements of CPSs such as safety and secu-
rity, process optimization, sales strategies, the generaliz-
ability of models, and real-time operations. We discussed
the usability and advantages of generated local and global
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explanations for each identified requirement, showing that
explainable SOMs are highly beneficial for distinct needs in
CPSs. In future work, the proposed approach will be further
evaluated through a human study.
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