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ABSTRACT A huge amount of research has been done in the field of speech signal processing in recent
years. In particular, there has been increasing interest in the automatic speech recognition (ASR) technology
field. ASR began with simple systems that responded to a limited number of sounds and has evolved
into sophisticated systems that respond fluently to natural language. This systematic review of automatic
speech recognition is provided to help other researchers with the most significant topics published in
the last six years. This research will also help in identifying recent major ASR challenges in real-world
environments. In addition, it discusses current research gaps in ASR. This review covers articles available in
five research databases that were completed according to the preferred reporting items for systematic reviews
and meta-analyses (PRISMA) protocol. The search strategy yielded 82 conferences and articles related to
the study’s scope for the period 2015–2020. The results presented in this review shed light on research trends
in the area of ASR and also suggest new research directions.

INDEX TERMS Speech recognition, automatic speech recognition, ASR systematic review, ASR
challenges.

I. INTRODUCTION
In recent decades, researchers have been increasingly inter-
ested in automatic speech recognition (ASR) since speech
is a method of communication between people [1]. ASR
beganwith simple systems that responded to a limited number
of sounds and has evolved into sophisticated systems that
respond fluently to natural language. Because of the desire
to automate simple tasks that require human-machine interac-
tion, there has been increasing interest in ASR technology [2].
ASR can be defined as the process of deriving the transcrip-
tion of speech, known as a word sequence, in which the
focus is on the shape of the speech wave [1]. In actuality,
speech recognition is difficult because of the diversity in
speech signals [1]. Currently, ASR is widely applied in many
functions, such as weather reports, automatic call handling,
stock quotes, and inquiry systems [2].

Communication can be divided into human-human com-
munication and human-machine communication. Human-
to-human communication may be limited depending on the
language used, as speakers may need a third party to
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translate speech, such as in unified messaging systems [1].
More recently, human-machine communication has improved
greatly by using speech techniques, for example, voice
search, games, and interaction systems in the context of a
household living room [1]. According to [1], ASR studies are
affected by the following:
• Number of Speakers. To train a system, speech from a
large number of users is needed.

• Nature of the Speech. The user’s voice is more easily
recognized in an isolated recognition system by having
the speech uttered word for word with pauses in between
them.

• Vocabulary Size. Speech recognition systems vary
based on the number of words that they can recognize.

• Spectral Bandwidth. If bandwidth decreases, the per-
formance of the trained ASR system will be worse, and
vice versa.

In this research, we aim to help other researchers by making
a systematic literature review of automatic speech recogni-
tion that will provide them with the most significant topics
published in the last six years. Also, this research will help to
specify the recent major challenges and the research gaps in
automatic speech recognition. Moreover, it will provide them
with future research directions in this area.
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FIGURE 1. PRISMA flow chart.

The rest of the paper is organized as follows. In Section II,
the research methodology is described. This is followed
by a primary review of important articles in Section III.
In Section IV, the selected articles are then reviewed based
on their characteristics. In Section V, the research questions
are answered. The limitations of this research are stated in
Section VI. Finally, Section VII provides the conclusion.

II. METHODOLOGY
In this section, the method used to conduct this research is
described. First, the research questions are described, fol-
lowed by the search strategy. The inclusion criteria are then
stated; finally, the quality assessment process is presented.
The systematic review of the literature was conducted by
applying the preferred reporting items for systematic reviews
and meta-analyses (PRISMA) protocol [3]. The PRISMA
flow chart is shown in Fig. 1. The detailed search and selec-
tion process is illustrated in Fig. 2, which was created using
Lucidchart [4] (as were the rest of the figures in this section).

A. RESEARCH QUESTIONS
The first step of this systematic review was the identification
of the research questions. The goal of this study was to
provide a review of the recent studies in ASR with a focus on
English language speech. Therefore, five research questions
were defined as follows:

• RQ1: What research topics have been addressed in
recent ASR research?

• RQ2: What are the major challenges in ASR?
• RQ3: What are the current research gaps in ASR?
• RQ4: What are future research directions in ASR?
• RQ5:What are the datasets used in the reviewed papers?

RQ1 aims to provide the publication trends in ASR
research and the existing speech recognition issues that the
authors of the articles have tried to address. RQ2 aims to
review the major challenges in automatic speech recognition.
RQ3 aims to investigate the current research gaps in auto-
matic speech recognition. RQ4 aims to provide an overview
of the future directions for research in automatic speech
recognition. RQ5 aims to demonstrate the most applied
datasets in recent articles.

B. SEARCH STRATEGY
To gain an overview of the publications in the automatic
speech recognition field, the network analysis interface for
literature studies (NAILS) project software [5] was used.
It is free, open-source software that is used to analyze liter-
ature studies. It was used to analyze articles in ASR, from
2015 through 2020, which consists of about 4274 publica-
tions, as shown in Fig. 3. The NAILS software analyzes pub-
lication information from the Web of Science and provides
information about the timeline of publication. The literature
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FIGURE 2. Search and selection process.

in ASR has increased in 2018. The NAILS software also
provides insights about authors in the field, such as important
authors (as defined by most productive authors and most
cited authors) sorted by the number of articles published and
by the total number of citations. In addition, it shows the
important articles (as measured by the most popular articles
and most cited articles) sorted by the number of published
articles within a dataset and by the total number of citations.
Furthermore, it provides important keywords (e.g., the most
popular keywords and most cited keywords) sorted by the
number of articles in which the keyword is mentioned and
by the total number of citations for the keyword. Moreover,
it can sort the top 25 articles using three measures of impor-
tance: (i) in-degree in the citation network, (ii) citation count
provided by the Web of Science, and (iii) PageRank score in
the citation network.

After the overview analysis, the search process was
conducted by searching for journal articles through five
databases, which were:

• IEEE Xplore Digital Library
• ACM Digital Library
• Scopus
• The Web of Science
• Science Direct

The specific search in each database was by using
titles with keywords as in the following: ‘‘artificial

intelligence’’ AND (‘‘speech recognition’’ OR ‘‘automatic
speech recognition’’).

C. STUDY SELECTION AND INCLUSION CRITERIA
The results of the search were retrieved and stored using the
Mendeley ReferenceManagement Software R©. Inclusion and
exclusion criteria were identified for articles in the study,
as shown in Fig. 4. The inclusion criteria were:
• Article published during the period 2015–2020.
• The article was relevant to the topic of ASR.
• The language examined in the ASR article was English.
• The article focus was related to the RQs.
• Articles with a quality assessment grade of at least three
(as defined in this study).

These criteria were applied to filter the articles. The
research’s focus was on recent articles in ASR; therefore,
the first criterion was to include articles published during
the period 2015–2020. This criterion was applied using the
databases’ research boundaries. The second criterion was
to filter the articles by the speech language examined. The
focus was on articles in which the examined speech lan-
guage was English. This criterion was applied using the
Mendeley software. For ASR articles that examined English,
the article focus had to be related to the RQs. For this cri-
terion, Rayyan [5] was used, which is a web application that
shows an article’s publication information and abstract that
assisted the authors of this systematic review to collaborate

131860 VOLUME 9, 2021



S. Alharbi et al.: Automatic Speech Recognition: Systematic Literature Review

FIGURE 3. Summary of NAILS results for ASR publications for 2015–2020.

FIGURE 4. Search and selection process.

and vote on articles based on the RQ criteria. There were
three voting options: include, exclude, and maybe. Moreover,
Rayyan allows hiding individual voting decisions from other
team members. Eight writers used the Rayyan website for
this evaluation, and each article was voted on anonymously
by two individuals. Each criterion was applied separately,
as shown in Fig. 2. All the articles that fit the other criteria
and that received two ‘‘include’’ votes or one ‘‘include’’ and
one ‘‘maybe’’ were kept in the dataset. Articles with two
‘‘exclude’’ votes or one ‘‘exclude’’ and one ‘‘maybe’’ were
excluded. Articles that received two ‘‘maybe’’ votes and one
‘‘include’’ and one ‘‘exclude’’ were examined by a third
reviewer; in those cases, the third reviewer cast a deciding
vote on including or excluding the article.

D. QUALITY ASSESSMENT
The quality assessment process shown in Fig. 5 was based on
the following predefined quality questions [6]
• Are the aims of the research clearly stated?
• Does the article provide new techniques or contributions
in ASR?

• Are there any challenges of ASR mentioned in the
article?

• Does the article provide answers to the formu-
lated RQs?

Each of these quality assessment questions answered in
the affirmative was worth one point toward the quality score.
All the authors were involved and assessed the articles
according to the quality questions and associated research
questions. The research article was selected if it had a quality
score greater than or equal to three. The evaluation process
was as follows: if the article answered the question fully,
it received one point; it received 0.5 points if it partially
answered the question; it received zero if it did not answer
the question. Because the fourth question was a composite,
it was divided into four sub-questions based on the individual
research questions. Each sub-question had a score, and at the
end, the result was divided by four to get one overall result
for that item. After the scoring, the points were summed for
all the quality questions. If the article received a non-integer
total score, it was rounded to the nearest digit (for example,
a 3.4 would be recorded as a three). Only articles with total
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FIGURE 5. Quality assessment process.

scores of three or more after this assessment were kept as
meeting this criterion.

III. CHARACTERISTICS OF THE ARTICLES
To cover the trends of the articles, an overview of those
selected for the research according to their year of publication
is presented in Fig. 6. The characteristics of the reviewed
articles are presented in Table 1.

A. CLASSIFICATION OF ARTICLES BASED
ON DOMAIN PROBLEMS

1) Noise and Reverberation Several techniques have
been developed to detect target speech in noisy environ-
ments. A very recent study [17] proposed a hybrid-task
learning system that frequently switches between multi
and single-task learning (depending on whether the
input is real or simulated data) to improve robust
speech recognition in noisy and reverberant envi-
ronments. In [22], the authors created an enhanced
power-normalized cepstral coefficients algorithm to
improve ASR in which there is real-world noise and
other acoustic distorting conditions.
The researchers in [28] proposed a front-end speech
parameterization technique that is robust with respect

to both noise and pitch variations. An ASR system was
trained on speech data collected from both adult and
child speakers, and testing was done on both clean and
noisy speech from children. The aimwas to enhance the
noise robustness of that ASR system. The effectiveness
of that approach has been verified on an ASR system
developed with DNN-HMM-based acoustic modeling.
In [100], the researchers examined an ASR systemwith
music in the background. They used two approaches.
The first was based on multi-condition training of the
acoustic models. The second one denoised autoen-
coders and then conducted acoustic model training on
preprocessed data. The results showed that all the tech-
niques they investigated could significantly improve
the recognition of speech that was distorted by music.
In [62], the aim was to combine speech enhance-
ment techniques and feature normalization methods.
The researchers transformed an estimate of the noise
power spectral density to the MFC domain, where they
subtracted it from the noisy mel-frequency cepstral
coefficients MFCCs. They showed that this process
was superior to the application of CMVN alone. The
improvement in performance was best in low signal-
to-noise ratios.
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TABLE 1. Classification-wise breakdown of the reviewed articles.

An approach in [63] extends a generative model-based
multi-channel noise reduction approach. It was
dominance-based locational and power spectral char-
acteristics integration (DOLPHIN), and it used
the generative-discriminative hybrid approach. The
researchers showed that a generative-discriminative
hybrid approach that incorporates a DNN-SME
into DOLPHIN was beneficial for a multi-condition
noise-reduction task, and it was superior to the con-
ventional approaches.
In another technique presented by [65], Discrete Cosine
Series (DCS) for noise robust ASR was proposed
as a feature set. The temporal and spectral modula-
tions were computed with only a few filters of DCS,
and they were based on a short frames spacing. This
reduced the effects of slowly varying noise typically
accounted for by long-term frames. The results showed
that individual components of the DCS algorithm were
highly accurate for both reducing additive noise and
reverberation.
The aim of [66] was to establish a new method for
weighting two-dimensional time-frequency representa-
tion of speech. The weighting was done using auditory
saliency to create maps. Then, they modeled the mech-
anism for grabbing human auditory attention. Before
extracting ASR, maps were used to weight the T-F
representation of the speech. Experimental methods
were used to determine the weight, and experiments
were done on the Aurora-4 corpus. In demonstrating

the effectiveness of the proposed methods. The error
rate was reduced from 5.3 % to 4% compared to using
a multi-stream system. Combining multi-stream sys-
tems with the proposed technique and a single stream
system using conventional spectral masking techniques
reduced the error rate to 0.
In [69], the researchers proposed a robust technique
that parameterized ambient noise and pitch varia-
tions at the front end of speech. That approach cap-
tures a short-time magnitude spectrum by discrete
Fourier transform, which uses variational mode
decomposition (VMD) to break it into several com-
ponents. Then, it smooths the spectrum by discarding
higher-order components. After that, it reconstructs the
spectrum using only the first two modes to smooth the
spectrum. The smoothed spectra are used to compute
MFCCs. After evaluating the new approach on the
ASR, the results showed that the acoustic features were
more robust with respect to ambient noise and pitch
variations than conventional MFCC.
In [33] the authors employed two stages that detect and
redact the environment noise to perform speech recog-
nition in human-robot interactions. The proposed sys-
tem automatically determines how to enhance speech
quality based on the signal-to-noise ratio (SNR).
In the second stage, independent component analy-
sis (ICA) and subspace speech enhancement (SSE)
are employed for noise reduction. Similarly, another
study [39] applied the signal-to-noise ratio combined
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FIGURE 6. Year of publication for the selected studies.

with progressive learning (PL) in an appropriately
named SNR-PL framework that provides better speech
intelligibility for all SNR levels. In order to reduce
the degradation of the desired signal by both additive
reverberation and noise, the authors of [44] provided
a state-of-the-art ASR system that enhances the sig-
nal in the feature domain and uses back-end methods
for a wide range of reverberation and noise condi-
tions. The proposed system clearly demonstrated the
benefit of speech enhancement processing. Further-
more, in [48], the authors created a very deep con-
volutional residual network (VDCRN) that included
batch normalization and residual learning for speech
recognition using a combination of factor aware train-
ing (FAT) and cluster adaptive training (CAT). Another
way of decreasing the environment noise is to employ
spectro-temporal processing methods with the speech
signal. In [51], the authors used a framework that
combines spectro-temporal feature extraction and the
training of neural network-based acoustic models into
a single process. They proposed two improvements on
recent advances in neural net technology to evaluate
speech contaminated with new types of noise by using
an artificial neural network (ANN) approach. Simi-
larly, in [52], the authors studied the spectro-temporal
effect on ASR. They provided a novel framework for a
modulation filter to remove the spectro-temporal mod-
ulations of the speech signal using deep variational
networks.
Some of the articles presented various methods
to improve the performance of ASR systems in
noisy environments, such as in [55], which used
self-modeling multivariate autoregressive (MAR)
models with Riesz envelope estimation. At the same
time, MAR models are widely used in forecasting.
Within the same scope in [56], a neural network
can be used to calculate the audio signal’s angle.

A forward-bound neural network is then used to deal
with the noise. The signal can then be fed into an ASR
system to improve performance with robots in noisy
environments. The authors of [47] discussed address-
ing the challenge of noisy ASR tasks by utilizing a
neural beamformer in addition to proposing an archi-
tecture of multiple channels in end-to-end ASR. This
allows deduction in recognizing multichannel speech
to enhance it based on an ASR objective, leading to a
comprehensive framework that works effectively with
a noisy background. The authors of [40] sought to
obtain an accurate speech estimate from noise without
requiring specific knowledge about the noise. They dis-
cussed the novel realization of integrating full-sentence
speech correlation with clean speech recognition to
enhance conventional speech methods based on a mul-
tiframe. They used a Zero-mean Normalized Correla-
tion Coefficient (ZNCC) as the comparison measure.
The results show that the proposed approach was
able to significantly outperform conventional methods
that use optimized noise tracking in terms of ASR.
A novel joint training framework for speech separation
and recognition [57] was provided to build a larger
neural network, which jointly adjusts the weights in
each model by concatenating a DNN-based speech
separation frontend with more noise and reverbera-
tion. In order to reconstruct noise-robust features in
various noise conditions, the authors of [58] applied
DNN-based speech feature enhancement (FE) using
a direction-of-arrival (DOA)-constrained independent
component analysis (DCICA) to obtain multichannel
input signals. To solve sensitivity to the recording
conditions caused by a high level of background noise,
the authors of [38] provided an adapting DNN-based
acoustic using an audio database recorded by wireless
sensors to train an accurate model for the actual speech
processing application. A trained DNN was also used
in [27] to take a supervised approach that classifies
each time-frequency (TF) binary into noise or speech,
which, however, resulted in a degradation in ASR per-
formance in a noisy environment. This led the authors
to take an unsupervised approach that decomposes
each TF binary into the sum of speech and noise by
using a multichannel nonnegative matrix factorization
(MNMF). Similarly, the authors of [43] used the basic
version of NMF with a variational Bayesian (VB) tech-
nique to separate the target speaker’s voice from back-
ground sources. In addition, they used an amplitude
modulation filter bank (AMFB) that implicates prior
information of speech to analyze its temporal dynamic
and outperformed the commonly used frame-splicing
technique of filter bank features in conjunction with
a deep neural network (DNN). Another work [59]
provided a new factor aware training framework called
neural network-based multifactor aware joint train-
ing to reduce ASR performance degradation in noisy
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environments using combined functional models in the
DNN models. In addition, in [60], the authors intro-
duced new all-convolutional networks (A-ConvNets) to
reduce the number of free parameters, which consisted
of little to no connection layers to solve the feature
extraction problem. They found that the proposed
approach is effective with 99% accuracy and works
well for extended operating conditions (EOCs). Also,
in [61], the authors proposed a hybrid neural model that
consisted of a multi-layered neural network. It contains
a two-memristor synapse to solve the diversity problem
in the input data and solve the noise. They found that
the average accuracy of the model was 95.4%.
In [67], the authors extended the familiar missing-data
bounded marginalization technique from a static to a
dynamic filter bank for robust ASR. A well-known
theorem from statistics was used to show how the relia-
bility of derivative filter bank features can be expressed
in the form of a probability density function. As another
contribution, the corresponding HMM state emission
likelihood equation (bounded marginalization rule) for
dynamic features was derived in closed form. On the
CHiME corpus, the new approach showed superior
accuracy compared to previous heuristics for handling
missing dynamic features. To this author’s best knowl-
edge, the average accuracy of 92.58% is the best result
reported so far for the 2011 CHiME Challenge.
Other articles to improve noisy environments in
schools were presented in [64]. They explored the
teacher-student learning approach using a parallel
clean and noisy corpus to improve speech recogni-
tion in multimedia noise. They incorporated up to
8000 hours of untranscribed data for training, and
they presented separate results for sequence-trained
models and cross-entropy-trained ones. Compared to
a sequence-trained teacher, the best sequence-trained
student model reduced the word error rate (WER) by
approximately 10.1%, 28.7%, and 19.6% on clean,
simulated noisy, and real test sets, respectively. Another
semi-supervised learning method known as ‘‘noisy stu-
dent training’’ has shown improved performance for
deep networks. Noisy student training is a method
that depends on iterative self-training, which lever-
ages augmentation to enhance the performance of
the network. The authors in [68] worked to improve
noisy student training for ASR, employing (adaptive)
SpecAugment as the augmentation method. They were
able to filter, balance, and augment the data generated
between self-training iterations. They obtained WERs
of 4.2%/8.6% on the clean/noisy LibriSpeech test sets
by using only the clean 100-h subset of LibriSpeech
as the supervised set and the rest (860-h) as the unla-
beled set. They also achieved WERs of 1.7%/3.4%
on the clean/noisy LibriSpeech test sets by using the
unlab-60k subset of LibriLight as the unlabeled set
for LibriSpeech 960-h. Thus, they improved upon

the previous state-of-the-art clean/noisy test WERs
achieved on LibriSpeech 100h (4.74%/12.20%) and
LibriSpeech (1.9%/4.1%).
In distant speech recognition, [70] provided an effect of
multi-channel processing with modern DNN recogniz-
ers. The researchers evaluated multi-channel methods
for distant speech recognition in urban environments.
The experiments were applied to the third CHiME
Challenge database. They analyzed the effects of pro-
cessing the stages of beamforming, dereverberation,
and adaptive noise cancelation, and they discussed
back-end processing components.

2) Speech Overlapping (Simultaneous Conversation)
Speech overlapping means that several people are talk-
ing at the same time. Researchers observed a vital
degradation in the performance of ASR systems when
speech contained cross-talk. A few recent articles
have addressed speech overlapping in ASR. In [18],
the authors suggested a target speaker extraction net-
work (TEnet) that identifies and isolates a specific
speaker’s speech based on a clean voice sample of
the speaker to address the problem of multiple people
speaking at the same time. They concluded that the
proposed method has a high performance with a word
error rate (WER) of 22.5% and signal-to-distortion
rate (SDR) of 15.5%. Likewise, in [23], the authors
proposed a model that divides the interfering speech
recognition problem in one channel into three parts:
translation, speaker tracking, and speech recognition.
They find that it improves by 30% the rate of speech
errors.
In [71], the authors combined approaches to address
the cross-talk problem called deep clustering (DPCL)
by creating a hybrid acoustic model. They obtained a
WER of 16.5% on the wsj0-2mix dataset, which is the
best performance reported so far.
However, in [29], one of the challenges of auto-
matic speech recognition is identifying children’s
speech in bilateral interactions because children have
weaker communication ability. To address this prob-
lem, the authors suggested two methods: semantic
response generation and lexical repetition. They con-
cluded that it improved children’s speech recognition
and was applicable. In addition, in [34], to address
the problems of integrating multimedia features and
frame alignment between two data streams, the authors
proposedWaveNet with a mutual interest for automatic
voice and visual speech recognition. It improved per-
formance as it reduced Tibetan singular syllable error
by 4.5% and 39.8% on English word error in speech.

3) Signal processing
More recent examples of narrative studies within gen-
erating an acoustic model in ASR can be found in [32];
its authors presented an end-to-end acoustic modeling
approach using convolutional neural networks (CNNs)
in which the CNN takes as input a raw speech signal
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and estimates the conditional probabilities of HMM
states as the output. They found that the proposed
approach yields a consistently better system with
fewer parameters when compared with the conven-
tional approach of cepstral feature extraction followed
by ANN training.
Additionally, in [37], the authors provided a review of
modeling the development process of end-to-end (E2E)
ASR. They also discussed three different models:
a Connectionist temporal classification (CTC)-based
model, a recurrent neural network (RNN)-transducer
model, and an attention-based model. They looked at
the models from different aspects, which were prin-
ciples, progress and research hotspots, and detailed
comparisons from theoretical and experimental views.
In terms of results, they found the CTC-based model
had the worst effect without an external language
model. The gap between it and the other models was
very large because it could not learn the language
model knowledge by itself; it is just made a condi-
tional independent assumption for the output, while the
RNN-transducer was greatly improved on all test sets
because, compared to the CTC, it could use the predic-
tion network to learn the language knowledge by itself.
Lastly, the attention-based model had the best results of
all the end-to-end models; specifically, the decoder’s
depth had an impact on the results, as the two-layer
decoder was better than the one-layer decoder.
Connected to the related studies, in [20], the authors
described the enhancement of ASR using linear, mel,
and inverse-mel filter banks. They noted that the use of
linear or inverse-mel filter banks improved the recog-
nition of children’s and adult females’ speech.
In addition, the authors of [86] evaluated DNN perfor-
mance when trained on envelope spectrogram features
that represented temporal amplitude modulations as a
subband of speech signals. Their method outperformed
standard DNNs that trained on different types of fea-
tures, such as mel and PLP, in both TIMIT phone
recognition and AURORA-4 word recognition.
The authors in [87] discussed the use of perceptually
motivated subband temporal envelope (STE) features
and a time-delay neural network (TDNN) denois-
ing autoencoder (DAE) to improve DNN-based ASR.
Improved ASR performance was obtained when fea-
tures enhanced by TDNNDAE were used in an ASR
system using DNN acoustic models. In that scenario,
using STE features provided a WER reduction of 9.8%
compared to using FBANK features. Another proposal
by [88] investigated the possibility of optimizing acous-
tic models for ASR systems using a variant of evolu-
tionary stochastic gradient descent (ESGD). In [90],
the authors investigated various stream fusion methods
on a multi-size window fusion. They used posterior-
in-posterior-out (PIPO-BLSTMs) and employed them
in the context of stream fusion for ASR. The results

showed that the turbo fusion approach outperformed
the single-window setup by 8.2.
In [90], the authors studied the influence that noisy
spectral phase improvement had on the accuracy of
ASR when corrupted speech signals were included.
In [25], the authors proposed a speech recognition
evaluation method for dysarthric speech recogni-
tion systems using an adaptive neuro-fuzzy infer-
ence system (ANFIS). They found that the proposed
method was effective by employing it to measure
the performances of two dysarthric ARS systems
based on multiple-view multiple-learner (MVML) and
multiple-view single-learner (MVSL) active learning.
The authors of [41] discussed how adults’ and
children’s speech differ significantly due to large
deviations in the acoustic correlates. They used a
pitch-dependent acoustic mismatch in the context of
children’s speech recognition on adults’ speech-trained
models. A low-latency adaptation approach has been
explored for their GMM-HMM-based ASR system.
In [46], the authors proposed an online hybrid
CTC/attention E2E ASR architecture that replaces all
the offline components of a conventional CTC/attention
ASR architecture with their corresponding streaming
components by using LibriSpeech English and Man-
darin tasks (from the Hong Kong University of Science
and Technology, HKUST) to decode the speech in a
low-latency and real-time manner. The researchers in
[91] introduced a combined framework to integrate
social signal detection (SSD) and ASR systems based
on CTC, which is an end-to-end model. They studied
several reference labeling methods regarding social
signals, and they confirmed that the end-to-end frame-
work by BLSTM-CTC beat the standard DNN-HMM
system with a language model in both SSD and ASR
performance.
Going deeper, some studies have discussed the
difficulty of decoding ASR graphs. In traditional
approaches, the algorithm must extend the graph to
generate each newly observed n-gram when the graph
is decoded with higher-order language models. This
expansion process raises computation time and mem-
ory consumption. In [85], the researchers introduced
a method to decode ASR graphs by applying an algo-
rithm based on ant colonies. The algorithm used a new
language model, without the need to extend it.
Recently, many companies have relied on distributed
deep learning to overcome the long time needed
for training modern ASR systems. The algorithm
for training must be able to converge with a large
mini-batch. In [92], the researchers found that Asyn-
chronous Decentralized Parallel Stochastic Gradient
Descent (ADPSGD) can run with a much larger batch
size than the usually applied synchronous SGD (SSGD)
algorithm. In [94], the authors proposed different
types of distributed deep learning approaches for ASR,
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and they evaluated them on a long short-term mem-
ory (LSTM) acoustic model on the 2000-hour switch-
board (SWB2000). The experiments confirmed that
the LSTM model could be trained by Asynchronous
Decentralized Parallel SGD (ADPSGD) in 14 hours
with 16 NVIDIA P100 GPUs to reach a 7.6% WER.
Several streaming attention-based sequence-to-
sequence (S2S) models have recently been suggested
to implement an online ASR system with linear-time
decoding complexity. However, those models are
delayed during the token generating process because
of the lack of future information. To decrease latency,
the researchers in [94] introduced several approaches
during the training process that leveraged external
hard alignments obtained from the hybrid model.
In addition, the researchers in [95] introduced a fully
streaming E2E ASR system based on transformer
architecture, where output is produced shortly after
each spoken word. This result was achieved by employ-
ing time-restricted self-attention to control the latency
of the encoder. Then, the triggered attention (TA)
concept is used to control the output latency of the
decoder. The proposed model achieved WERs of 2.8%
and 7.3% for the test-clean and test-other data sets of
LibriSpeech.

4) Adaptation
Adaptation is often used to solve mismatch problems.
Domain mismatch and robustness is one of the chal-
lenging problems for ASR. Pre-trained ASR systems
can be purchased and used by companies of any size
to build speech-based products. However, domain mis-
match is still considered a problem in these applications
for many stakeholders who need an optimal result.
In [96], the authors proposed a factorized hidden
layer (FHL) adaptation method to investigate the
robustness of acoustic models trained on multi-domain
data on unseen domains. The authors collected speech
data from various applications with different domains.
Results on two unseen domains confirmed that FHL
was a more useful method of adaptation than the
standard fine-tuning network approach. Then, authors
in [97] suggested applying domain adaptation for ASR
error correction through the machine translation pro-
cess. They used a machine translation model to learn
how to map errors from an out-of-domain ASR to
in-domain terms in the corresponding reference files.
ASR accuracy can also be affected by the mismatch
in train and test datasets, so adaptation is required.
In [98], the authors employed discriminative features
as input derived from joint acoustic factor learning for
DNN adaptation. The bottleneck (BN) layer of a DNN
generates these characteristics, which are referred to
as BN vectors. The authors used two types of joint
acoustic component learning to generate these BN
vectors, which captured speaker and auxiliary informa-
tion such as noise, phone, and articulatory information

of the speech. The authors showed how BN vectors
could be used to adapt and enhance ASR performance.
In addition, they show that adding BN vectors to
standard i-vectors improved performance even further.
The experiments were carried out on the Aurora-4,
REVERB challenge, and AMI databases.
The authors in [99] examined the adaptation of visual
signals to ASR systems. They investigated the AM and
LM adaptation for ASR using a speaker face for tran-
scribing a multimedia dataset. Results revealed a small
WER enhancement in the transcription of instruction
videos after applying the AM and LM adaptation with
fixed-length face embedding vectors.

B. CLASSIFICATION OF ARTICLES BASED ON NATURAL
LANGUAGE PREPROCESSING

1) Vocabulary
Several articles have dealt with improvements inWERs
by adding more vocabulary to the language model
(LM). This section reviews articles that dealt with
vocabulary and improving word vectors to enhance the
ASR system.
The authors of [78] provided a novel approach to
extract valuable information from out-of-vocabulary
(OOV) speech regions in ASR system output. They
used a hybrid decoding network with words and sub-
word units. The candidates for OOV regions were iden-
tified as subgraphs of subword units in the decoded
lattices. They clustered the recurring OOVs to facilitate
word recovery. The clustering metrics depended on a
comparison of the OOV candidates’ subgraphs. That
approach outperformed conventional techniques that
consider one best subword string to discover the repeat-
ing out-of-vocabulary words and find their graphemic
representation.
A problem that was addressed in [79] is that the acous-
tic encoder and the language model are entangled, and
this doesn’t allow the language model to be trained
separately from external text data. They studied two
strategies to update the E2E ASR network. They found
that by pre-training the subnet with the text data and
then fine-tuning the entire E2E network using both
labeled and text data, they introduced a new archi-
tecture that separates the decoder subnet from the
encoder output. As a result, the language model could
be easily updated using external text data. Experimen-
tal results showed that the new architecture benefitted
more from the external text data than the conven-
tional architecture. To improve LM, the researchers
in [82] proposed a context-sensitive candidate label
approach to smooth the training of recurrent neu-
ral network language models (RNNLMs), and it
enhanced the ASR performance. The method helped
prevent over-fitted and over-confident models, and it
could distinguish plausible target words from incorrect
ones.
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Subwords are the most popular applied output units
in an E2E ASR system [83]. The researchers in [81]
tested subword regularization with both CTC-based
and attention-based ASR models. They found that
regularizing subwords with an attention-based model
improved the performance of ASR systems. In [81],
the same authors introduced a new loss function,
n-gram maximum likelihood loss. It yields signifi-
cant improvement over a character-based model with
two different subword vocabularies and text decom-
position strategies. They followed the latent sequence
decomposition (LSD) framework for using subword
units, but they introduced an updated loss function
that allowed the ASR model to explicitly perform unit
discovery. They showed that the n-gram loss function
outperformed standard maximum likelihood loss in
the LSD framework. They also showed that uniform
greedy sampling of subword units, which is much
faster than LSD, was also an effective decomposition
strategy when combined with n-gram loss. In [83],
the researchers investigated the regularizing influence
of the subword segmentation sampling approach on
a streaming task of E2E ASR. They evaluated the
contribution of subword regularization that relied on
the training dataset size, and the results suggested that
subword regularization provided a consistent reduction
of WER.
A Google group in [84] produced a large vocabulary
ASR system for both adults and children by exper-
imenting and comparing the results of applied long
short-termmemory (LSTM) recurrent networks to con-
volutional LSTM deep neural networks (CLDNN).
Other recent studies have sought to improve E2E ASR
with word embedding learned from text-only data.
In [42], the researchers chose to adopt word embedding
because off-the-shelf word embedding carrying seman-
tic information learned from a vast amount of text can
be easily obtained. An autoregressive decoder was gen-
erally used to predict the transcription corresponding to
the input speech. The results showed the benefits that
word embedding can bring to this type of sequence-to-
sequence ASR mode.
In [19], the authors compared several graph-based
algorithms and proposed the prior-regularized measure
propagation (pMP) algorithm. They evaluated two dif-
ferent frameworks for integrating graph-based learning
into state-of-the-art DDN-based speech recognition
systems. The first framework utilizes graph-based
learning in parallel with a DNN classifier within
a lattice-rescoring framework, whereas the second
framework relies on an embedding of graph neigh-
borhood information into continuous space using an
autoencoder. They showed experimental results on
several large vocabulary continuous speech recogni-
tion (LVCSR) tasks and showed consistent improve-
ments in WERs under a variety of conditions.

The authors of [24] proposed a fast-learning method
for multilayer perceptrons (MLPs) on large vocabu-
lary continuous speech recognition (LVCSR) tasks.
The method is suitable for humanoid robots whose
CPU/GPUs and memories are limited. The basic con-
cept of this method is to pre-adjust the initial MLP
and then train it using an unconventional back propa-
gation (BP) algorithm after restructuring weight matri-
ces via singular value decomposition (SVD). The
researchers found that the method accelerates the train-
ing processes to about 2.0 times faster with improve-
ments in the cross-entropy loss and frame accuracy.
The method can accelerate the training processes to
around 3.5 times faster with just a negligible increase
of the cross-entropy loss and with a tiny loss of the
frame accuracy. In addition, in [30], the authors dis-
cussed brain-inspired spiking neural networks (SNN)
for speech recognition and evaluated their performance
on several large vocabulary recognition scenarios. They
mentioned that SNN-based ASR systems achieved
competitive accuracy on par with their ANN counter-
parts across phone recognition, low-resourced ASR,
and large-vocabulary ASR tasks. The results of their
work are that an SNN-based acoustic model has been
revealed as a compelling prospect for rapid inference
and unprecedented energy efficiency in a neuromorphic
approach. Furthermore, to detect errors and make the
estimation accurate for the vocabulary, the authors of
[35] discussed deep bidirectional recurrent neural net-
works (DBRNNs) as classifiers for error detection and
accuracy estimation. In addition, in [53], the authors
suggested a topic similarity score to specify the varia-
tion among word topic distributions and identical sen-
tences, in addition to another word-discourse score,
to measure the word appearance probability in a sen-
tence using the word vector and discourse vector that
was produced internally to grade the n-best hypotheses
of an ASR system. In this work, they tested two types of
semantic features: linear discriminant analysis (LDA)
topic features and global vector (GloVe) continuous
word representations. They achieved 0.29% and 0.51%
reductions in WERs.
A Viterbi approximation of latent word language mod-
els (LWLMs) for ASR was proposed by the authors of
[31]; they concluded that the combination of an n-gram
approximation method and the Viterbi approximation
method improved ASR performance.
Confusing words is another factor that affects the
understanding of speech. In [45], the authors suggested
an N-best rescoring system that integrates attentional
information for locally confusing words extracted from
alternative hypotheses in a conventional speech recog-
nition system. A top-down selective attention (TDSA)
mechanism was used to adapt the input feature by
maximizing the log-likelihood of the feature given con-
fusing words. They used a designed neural network
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to output data-dependent rescoring weights in the pro-
posed CM (class model), and it was optimized by
minimizing the WER. They found that emphasis in the
proposed system can be applied so that ASR systems
can generate competing hypotheses and provide the
gradient of the input feature for confusing words.

2) Pronunciation
Many articles in the field of ASR have addressed pro-
nunciation problems that could affect thework. Regular
ASR usually employs phoneme-based pronunciation
lexicons provided by linguistic experts. If hand-crafted
pronunciations cannot include the vocabulary of a
new domain, then the best solution is to use a
grapheme-to-phoneme (G2P) converter to obtain pro-
nunciations for new words. In [73], the researchers
suggested a probabilistic framework approach that
is grapheme-based ASR. As a stage in ASR sys-
tem training, lexical modeling combines pronuncia-
tion learning and employs both lexical resources and
acoustics. That approach was tested on four lexical
resource-constrained ASR tasks, and it was compared
with the conventional two-stage approach, where G2P
training is followed by ASR system development.
Recent studies have proved that grapheme-based
acousticmodeling outperformed phoneme-basedmeth-
ods in E2E and hybrid ASR, even in English, which
is considered a non-phonemic language. Neverthe-
less, graphemic ASR systems still have difficulty with
words that have low frequency, such as entity names.
In [74], the authors introduce a novel approach to
train a statistical grapheme-to-grapheme (G2G) model
on text-to-speech data that could rewrite sequences
with an arbitrary character to be more consistent
phonetically.
Standard Named Entity Correction (NEC) algorithms
apply single-stage grapheme- or phoneme-level edit-
ing to search and replace named entities misrecog-
nized by the ASR system. In [76], the researchers
suggested a hierarchical multi-stage NEC algorithm.
Since longer-named entities are not easily processed by
a single-stage correction, they proposed a three-stage
NEC. The first stage is word-level matching, fol-
lowed by phonetic double-metaphone-based matching.
Finally, a grapheme-level candidate is selected. The
authors also suggested a new NE rejection technique
that maintains the NEs recognized correctly to ensure
that they are not changed. That suggestion was evalu-
ated on call and music domains, and it minimized the
WER by 14% for music and 63% for calls.
In [77], the researchers examined whether an ASR
system could predict phoneme confusion in human
listeners. DNN-ASRs and listening tests with six
normal-hearing subjects provided phoneme-specific
response rates. The accuracy of the correlation of
phoneme recognition from ASR and human speech
recognition (HSR) is the measure for model quality.

In [19], the authors investigated graph-based semi-
supervised learning (SSL) in DNN-based acoustic
models for speech recognition. They compared several
graph-based learning (GBL) algorithms and proposed
the pMP algorithm. Their proposed method is likely
to be useful for adapting ASR systems to data-sparse
test conditions, such as noisy environments or accented
speech, and for developing ASR technology for
low-resource languages.
To address mispronunciation detection and diagno-
sis (MDD) issues, such as the unrecognition of phone
errors that are missing from extended recognition
networks (ERNs), the authors of [49] proposed an
acoustic-graphemic phonemic model (AGPM) that
uses DNNs. They found that when compared with
an approach using ERNs, the results showed that
the proposed approach is simpler and more effective.
It achieved an 11.1% phone error rate (PER), while
the ERN approach achieved 16.8%, and the free-phone
recognition for L2 English speech obtained a PER
of 25.6%.
Similarly, in [36], the authors presented a detailed
account of the anatomy of modern ASR, with examples
of how it has been used in speech-language pathology
research. They presented the architecture of a mod-
ern speech recognizer and the probabilistic framework
underlying this technology. They took into consider-
ation a pronunciation model since words may have
multiple correct pronunciations, as they are influenced
by factors such as the speaker’s accent, speaking style,
and neighboring words.
The authors of [54] presented vocal characteristics of
whispered speech and discussed the problems for the
recognition of whispered speech in different condi-
tions. They provided a new pre-process method with
cepstral features based on a deep denoising autoen-
coder (DDAE) to improve whisper recognition.
There were other experiments conducted by [75] to
study why the recognition process was more difficult
on children’s speech than on adult speech. The answer
suggested by the authors was that the errors in ASR
came from predictable phonological effects correlated
with language acquisition. They experimented with
phone recognition on hand-labeled data for children.
A comparison of the results for children and adults on
TIMIT data showed higher phone substitution rates for
children.

3) Dialect
ASRs work well with native English but poorly on
non-native English data. Different articles have dis-
cussed the problem of dialect recognition in ASR
to improve performance and accuracy. To improve
the performance of a native English ASR on
non-native English data, the authors in [26] proposed
a DNN-based pseudo-likelihood correction (PLC)
technique. They experimented with DNN-based PLC
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mapping to improve the ASR performance for Indian
English speakers with varied mother tongues. They
proposed a novel objective function to learn the param-
eters. The experiments revealed that optimizing PLC
mapping using standard MSE objective function was
detrimental to non-native ASR performance. On the
contrary, the proposed objective function showed sig-
nificant improvement in WER compared to native
model performance.
In [21], the authors provided an ASR system to
address the problem of mixed dialects in input
utterances in ASR using two main methods: the
maximization of recognition likelihoods and the inte-
gration of recognition results. The proposed sys-
tem statistically trains transformation rules between
a common language and dialects and simulates a
dialect corpus for ASR based on a machine transla-
tion technique. As a result, they demonstrated that the
maximization of recognition likelihoods showed the
best performance, while the integration of the recogni-
tion method showed slightly smaller accuracy. In [72],
the researchers highlighted the demand for ASR sys-
tems that can account for dialectal variations behind
acoustic modeling. Researchers evaluated two ASR
systems—DeepSpeech and Google Cloud Speech—to
examine how well ‘‘are’’ is recognized in African
American English (AAE), namely habitual ‘‘be’’. They
found that the habitual ‘‘be’’ was more likely to be
an error than the unhabitual ‘‘be’’ and the words
surrounding it.

C. CLASSIFICATION OF ARTICLES BASED
ON DEVICE EFFICIENCY

1) Microphone
Many articles described the enhancement of ASR from
the perspective of the speaker’s problems and the
microphone that captures the speaker’s voice. Usually,
the results of the ASR are good when the training
and testing data are matched. However, the results
are much worse when they differ in the number and
arrangement of microphones. In [20], the authors sug-
gested an unsupervised spatial clustering approach to
microphone array processing. This approach, known as
Model-based EM Source Separation and Localization
(MESSL). While using MESSL’s outputs for spatial
covariance estimates of the noise improved ASR per-
formance compared to a standard baseline.
The authors of [27] proposed a method that used mul-
tichannel nonnegative matrix factorization (MNMF) to
estimate the spatial covariance matrix (SCM) of speech
and noise in an unsupervised manner and generated
an enhanced speech signal with beamforming. They
found that the proposed methods were more robust
in an unknown environment than the state-of-the-art
beamforming method with DNN-based mask estima-
tion. Moreover, in [18], the researchers proposed a

target speaker extraction network (TEnet) to isolate
the speech of a specific speaker. They relied on the
auxiliary speaker characteristics provided by an anchor
(a clean audio sample of the target speaker). They
demonstrated that the proposed TEnet can outperform
the single short anchor baseline by about 22.5% on
WER and 15.5% on the SDR.
Sensitivity to recording conditions can be caused by
a high level of background noise and a mediocre
or poor-quality microphone installed on the sensors.
The authors of [38] provided an adapting DNN-based
acoustic model. They used an audio database recorded
by wireless sensors to train an accurate model for the
actual speech processing application. They found that
joint training was not significantly better than training
on the sensor-recorded noisy database subset, while
the DNN adaptation turned out to perform signifi-
cantly better. In [43], the authors provided an ASR
system that employs various methods to address noisy
acoustic scenes in public environments using an NMF
with VB technique to separate the target speaker’s
voice from background sources and a time-varying
minimum variance distortionless response (MVDR) to
detect failure in the microphone channel. They use the
AMFB that implicates prior information of speech to
analyze its temporal dynamics. The proposed system
achieved an absolute WER of 5.67% on the real eval-
uation test data. Also, in [47], the authors suggested
extending an existing attention-based encoder-decoder
framework to address the challenging noisy ASR tasks
using a neural beamformer. In addition, they proposed
an architecture of multiple channels in end-to-end ASR
that allows the deduction of recognizing multichan-
nel speech to enhance it based on an ASR objec-
tive. Their comprehensive frameworkworks effectively
with a noisy background. They found that the suggested
framework results exceeded the end-to-end baseline
with noisy input. Furthermore, successful learning was
achieved by the beamformer of the noisy suppres-
sion. To improve the prediction accuracy of speak-
ers, the authors of [50] proposed a hybrid method for
automatic speaker identification using an ANN. The
recognition is performed using Bayesian regularization
andMLPs. The features are extracted using the mel fre-
quency cepstral coefficient (MFCC). They found that
the proposed method provides the best discrimination
and has a high accuracy of 93.33%.

IV. RESULTS
A. WHAT RESEARCH TOPICS HAVE BEEN ADDRESSED IN
RECENT ASR RESEARCH? (RQ1)
According to the aforementioned studies, most of the research
published during 2015–2020 focused on addressing themajor
problems that degraded ASR system performance, such as
various dialects, background noise, and speech interference.
The research orientations applied DNN techniques to address
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these problems by training the model with various back-
ground noises, large vocabularies, speech pronunciations,
and dialects. Moreover, many research works have applied
audio-visual techniques to make ASR systems more robust.
Furthermore, some research was devoted to employing ASR
in order to support the medical and education sectors.

B. WHAT ARE THE MAJOR CHALLENGES IN ASR? (RQ2)
Based on the literature, problems related to speech capture
in general were detailed, such as domain and device effects.
In addition, problems related to speech pre-processing,
which were vocabulary, pronunciation problems, and English
dialects, were described.

One of the biggest challenges for ASR is getting a suit-
able performance even in the presence of background noise.
ASR system performance is highly degraded in the pres-
ence of noisy environments [52]. Although many algorithms
have been proposed to perform ASR, most of them fre-
quently fail in real-world environments with noise [58]. For
instance, if the environment is very noisy, acoustical fea-
tures will be severely degraded, especially in short-frame
detection [40]. Moreover, noisy environments contribute to
spectro-temporal absence in input signals, which leads to
missed time-frequency correlations of the underlying speech
signal [55]. Although many noise reduction methods have
been developed, these methods cannot work unless the noises
are known. However, noise signals can have many properties
in real-world situations [33]. Due to this variety, creating a
database that is responsive to external noise is a big challenge
for DNN-based systems [38].

Another challenge caused by the environment is speech
overlapping or simultaneous conversation. This happens
when more than one person talks at the same time and is
known as the ‘‘cocktail party’’ problem. Consequently, ASR
systems face difficulties in detecting the target speech. This
problem is still one of the most difficult in ASR [23].

The first step of the ASR process is to capture the
speech by microphone. Consequently, ASR system perfor-
mance is directly affected by the device hardware. Poor and
mediocre microphones are one of the factors that reduce
the quality of ASR system performance [38]. Furthermore,
background noise can cause telephone channel distortions;
suitable system performance in the presence of background
noise requires high-quality microphone manufacturing [52].
In addition, to apply the approaches that use beamforming
for speech segregation, the number of microphones has to be
larger than the number of sound sources [56].

In addition, ASR systems have to contend with speech
pre-processing challenges. One of the dilemmas in natural
language processing (NLP) is the diversity of dialects. While
the diversity of commonly spoken language is caused by the
speakers themselves and their parents’ business and residence
histories, this variety makes detecting common language
tremendously difficult for ASR systems [21]. Furthermore,
a large vocabulary causes an increase in the computational
cost of an ASR system [24], [37], which decreases the system

response. Moreover, audio-visual fusion models are always
facing difficulty in detecting continuous speech with a large
vocabulary.

Another challenge occurs when dealing with spontaneous
speech. Pronunciation problems directly affect ASR system
performance, and this is particularly noticeable when the con-
tent of the speech is less predictable. Differences in pronun-
ciation may be due to a health symptom, such as stuttering,
or may be from children with limited speech ability [29].

C. WHAT ARE THE CURRENT RESEARCH
GAPS IN ASR? (RQ3)
Researchers have faced several limitations in ASR. Limited
datasets for ASR research was one of the major limitations
noted during the application of the proposed methods [17],
[34]. Moreover, single-channel speech recognition is con-
sidered another major limitation in ASR, especially with
NN-based methods. In [27], the authors discussed only
single-channel magnitude spectrograms in the evolution of
the field as neglecting important data, such as interaural
level differences (ILDs) and interaural phase differences
(IPDs), which lead to unbalanced results. Similarly, in [23],
the authors mentioned the problem of single-channel for
overlapped speech recognition, which is derived from crossed
speech when multiple people speak at the same time.

In other studies, different limitations affected their results.
In [44], the authors adopted offline implementations to test
the proposed enhancement methods. Therefore, any locative
property changes of the sound during the observation of
received signals were caused by the change in the acous-
tic channel, which resulted in decreasing the performance
and affecting the outcomes. In [56], the authors proposed
an embedded cognition method to improve ASR for robots,
using microphone arrays to locate the speech sources. They
then separated the speech signals from background noise.
Accordingly, the proposed method requires prior knowledge
of the number of sound sources, which is a limitation.

D. WHAT ARE FUTURE RESEARCH DIRECTIONS
IN ASR? (RQ4)
Automatic speech recognition is one of the areas that
has received a great deal of interest and attention from
researchers. It is considered one of the longstanding problems
in the field of artificial intelligence. ASR systems can be
found in mobile devices, desktop computers, and also as
virtual assistants in call centers. Still, this technology has
many challenges and problems that researchers seek to inves-
tigate. Studies recently published in 2020 have presented
some future research directions in ASR.Most of those studies
have focused on the enhancement of the proposed methods
and increasing the accuracy of speech recognition in different
environments. For example, in [50], the authors proposed
future work using other deep recurrent neural networks, such
as a restricted Boltzmannmachine, deep Boltzmannmachine,
and hybrid neuro-fuzzy genetic algorithm (GA). Similarly,
as future work in [17], the authors seek to investigate other
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TABLE 2. Future directions in ASR.

auxiliary tasks for the proposed hybrid-task learning (HTL)
setup, for instance, generating only the noise as the auxiliary

task. Also, the authors want to investigate more deeply the
impact that the convergence of the auxiliary task has on the
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TABLE 3. Applied datasets in the reviewed papers. Some papers used more than one dataset. Therefore, the same paper has been repeated in different
datasets which increase the total number of papers.

main task and then select and train auxiliary tasks accord-
ingly. In the future work of [29], the authors are interested in
automatically learning adaptationweights (possibly unique to
each n-gram) to minimize the WER without using a held-out
set (considering the limited availability of in-domain data).
They will also continue to focus on developing robust generic
child ASR. In [26], the authors suggest a deeper investigation
for robustness with the proposed method for noise to increase
detection accuracy further. In [21], the authors suggested
adapting acoustic models with more speech data for each
dialect. This was applied later in [72], where the researchers
highlighted the demand for ASR systems that could consider
dialectal variations behind acoustic modeling.

The future direction of some of the related articles in ASR
is presented in Table 2, which describes the plans and direc-
tions that researchers seek to investigate in the field of ASR.

E. WHAT DATASETS ARE USED IN THE REVIEWED
PAPERS? (RQ5)
As shown in Table 3, in 13% of the papers, the authors tried
to create their own recorded dataset to use in their experi-
ments and test their methodology. After that, themost popular
datasets were the CHiME and REVERB Challenge database,
the TIMIT database, Aurora, LibriSpeech, SWB2000, and
AMI. These constituted 41% of the papers. Another 12%
did not use any dataset; they explained their approach with-
out validations, and 11% did not mention which dataset
they used. Several datasets were used only once. They
were grouped as ‘‘other’’, and they comprised 8% of the
papers. Given the explanations in this paper, it is recom-
mended that researchers in the future either create their
own ASR data or use established data sets (CHiME &
REVERB Challenge database, the TIMIT database, Aurora,
LibriSpeech, SWB2000, and AMI).

V. LIMITATIONS
This research was conducted with a focus on selected ASR
studies that examined English speech only. The search pro-
cess was performed using a limited set of keywords that

targeted an overview of ASR. This research focused on publi-
cations for a finite period from 2015 to 2020. However, it does
provide an overview of the challenges and recent research
trends in ASR.

VI. CONCLUSION
The most important way for humans to communicate with
each other and acquire information is through speech. This
paper provides a systematic literature review of automatic
speech recognition with the most significant topics published
in the last six years. A total of 82 conferences and arti-
cles studies were reviewed from five research databases:
IEEE Xplore Digital Library, ACM Digital Library, Scopus,
the Web of Science, and Science. First, a brief introduction to
ASRwas provided. Themethodology of this research, includ-
ing research questions, search strategy, and quality assess-
ment process, was then described. After that, a review of the
selected studies published from 2015 to 2020 in ASR based
on their characteristics was organized and presented. The
publication trends in speech recognition were then detailed.
In addition, the major challenges and current research gaps
in ASR were reviewed. Future directions for research in ASR
were investigated. It is expected that this examination will
help other researchers, as it provides a review of ASR studies
published in recent years. Finally, statistics of mostly utilized
datasets in reviewed papers were provided.
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