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ABSTRACT In this paper, we present an application-specificMulti-Access EdgeComputing (MEC) network
architecture by leveraging the Control and User Plane Separation (CUPS) in mobile core networks to
offload data processing from central servers to edge servers to reduce the transmitted traffic volume and
also the response latency of connected vehicle mobility service. We first apply deep learning to classify
packets of different applications to different Radio Access Networks (RAN) slices for application-specific
spectrum scheduling. Then, we slice Evolved Packet Core (EPC) and deploy EPC data plane slices on-
demand for each application and route packets fromRAN slices to edge servers. By applying network slicing,
multiple RAN, EPC and MEC slices that support different categories of services with different quality of
service (QoS) requirements can be deployed in the same physical infrastructure. We prototype the proposed
application-specific CUPS architecture usingmodified open source softwareOpenAirInterface on our deeply
programmable platform. The preliminary experimental results show the feasibility and efficiency of proposed
application-specificCUPS architecture, which can achieve a significant decrease in transmission data volume
and latency.

INDEX TERMS Edge computing, software-defined network (SDN), machine learning (ML).

I. INTRODUCTION
The evolving fifth Generation of Mobile Communica-
tions System (5G) communications are envisioned to be
classified into three categories [1]–[3]: enhanced Mobile
Broad Band (eMBB) to deliver gigabytes of bandwidth to
mobile devices on-demand, massive Machine Type Com-
munications (mMTC) to connect sensors and machines,
and Ultra Reliable and Low Latency Communications
(URLLC) targeted to low latency and reliable applications
like autonomous driving.

Multi-Access Edge Computing (MEC) has been consid-
ered as an indispensable component for the 5G networks.
It brings the applications from the centralized data centers
to the network edge that is close to Radio Access Net-
work (RAN) and User Equipments (UE). To meet the diverse
QoS requirements from diverse kinds of applications, it is
desirable to transfer traffic to dedicated edge servers to reduce
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the transmitted traffic volume and also the response latency
of latency-critical applications.

However, how to effectively identify and classify applica-
tions in real-time is still an open issue especially in the RAN
research area. As long as data has been transmitted from UEs
into a mobile network, the contextual information of the data
(e.g., which application the data belongs to and which device
the data generated from) is hidden from the network alliances.
Conventionally, there are several ways to achieve application
identification and classification, e.g., packet header mark-
ing [4], and deep packet inspection (DPI) [5] to detect signa-
ture per application from packet payloads. But packet header
marking fails to identify a broad scope of applications while
DPI is becoming harder and harder due to that application-
specific information conveyed in the payload is most likely
encrypted.

To address this issue, we first propose an application-
specific mobile network architecture utilizing in-network
deep learning so that we can apply application-specific radio
spectrum scheduling in RAN, Quality-of-Service (QoS) con-
trol and various network functions per application in core
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networks. In our design, we use a small number of customized
smartphones as supervising smartphones to generate training
data where packets are tagged with the information of the
application transmitting them. Then we can apply in-network
deep learning at Packet Gateway (P-GW) to identify mobile
applications of other phones and classify applications to
different virtual network functions for application-specific
in-network processing (e.g., HTTP caching service for web
browsing, video transcoding service for video streaming etc.).

We also attach the identification results to the downlink
packets at the P-GW and transmit them to eNodeB (eNB).
The eNB can apply application-specific spectrum scheduling
based on the attached application information. For each UE,
we set up one radio bearer and multiple S1 bearers between
eNodeB (eNB) and EPC user planes. For a packet from differ-
ent kinds of applications, eNB not only can assign different
RAN resources to it but also can divert it to different user
planes via different S1 bearers.

Then, we propose a deep learning-based application-
specific control and user plane separation (CUPS) edge com-
puting architecture to offload localized data processing to
the local edge server to reduce the overload of the central
server. By applying C/U plane separation, the Evolved Packet
Core (EPC) control plane could be virtualized and located
in a cloud environment while the user plane remains in the
transport network. Moreover, we can deploy multiple user
planes on-demand for a single control plane. As a result,
CUPS supports the increase of data traffic by enabling to
add more user plane nodes without changing the number
of control plane nodes and reduces latency on application
service by placing gateways as close as possible from the
radio access networks or users. Therefore, CUPS is one of
the indispensable technologies to enable edge computing and
achieve the QoE anticipated with the 5G introduction.

Our contributions in this paper are as follows. First,
we present our design of an in-network deep learning-based
CUPS architecture for mobile edge computing. We present
our design of an in-network deep learning-based mobile net-
work. One advantage of the proposed architecture is that we
only need to apply deep learning-based application identifica-
tion once at packet gateway (P-GW) while the eNB can reuse
the identification results piggyback on the packets from P-
GW to RAN.

Second, we utilize in-network deep learning to identify and
classify traffic and apply application-specific radio spectrum
scheduling in RAN, Quality-of-Service (QoS) control, and
various network functions. As far as we know, there are very
few real implementations of application-specific spectrum
scheduling although there are many simulation-based works
[6], [7] on how to schedule ratio resources with different QoS
requirements (e.g., real-time and delay-tolerant).

Third, we introduce our effort on prototyping the CUPS
architecture. By flexibly deploying user plane nodes, we can
offload the localized data processing at the local edge server
instead of concentrating all the information at the central
server. This mitigates the burden of both networks and the

FIGURE 1. Architecture of edge computing with CUPS.

central cloud. There are several advantages of our prototype:
(i) Feasibility: as far as we know, our work is one of the
very few real implementations; (ii) Scalability: in our sys-
tem, multiple user planes can be deployed on-demand; (iii)
Extensibility: our work can be easily extended to work as one
of the user plane functions (UPF) in 5G networks.

The rest of the paper is organized as follows. Section II
introduces the CUPS-based edge computing deployment.
Section III introduces the design of in-network deep learning-
based application-specific CUPS. Section IV presents our
implementation of application-specific CUPS architecture.
Section V reports some preliminary evaluation of our pro-
totype system. Section VI briefly concludes and introduces
future work.

II. EDGE COMPUTING WITH CUPS
In a 5G network, massive machine type communication
(MTC), including narrowband (NB)-IoT has been approved
by 3GPP, and it is intended to connect a massive number
of small low-power sensor devices. Still, the data volumes
are considered fairly modest. But adding to this, the current
trend of concentrating data processing at central locations
will cause huge data transmission traffic, which will lead to
unnecessarily long response times and in turn will increase
computation time.

In a conventional central-cloud system, all the data pro-
cessing at a central place causes huge data transmission traf-
fic, which also leads to unnecessarily long response times
and in turn, will increase computation time. It is forecasted
that in [8]–[11], for the 2025 time frame, the number of
connected vehicles will grow to about 100 million globally
and the data volume delivered between vehicles and the cloud
will be about 100 petabytes per month. Assuming 20GB per
month per vehicle and three million vehicles (12% market
share and 25% regional ratio of 100 million vehicles), 60
petabytes of vehicle data will come to the cloud every month.
Assuming the data transaction rate at the cloud is 10GB per
second, it will take 70 days just for the transactions. For this
reason, to be able to establish a practical platform to serve
Vehicle-to-Cloud (V2Cloud) services, both computation and
network performance need to be taken into account.

Edge computing is expected to reduce the network latency
and mobile resource demands by migrating the computing
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and storage capabilities from the central cloud to the edge of
a mobile network [12]. It has been one of the key emerging
technologies. In an edge computing framework, computation
power can be deployed as close as possible to the vehicles,
achieving better performance for these latency-sensitive and
location-aware applications.

How to deploy edge computing is still an open issue. The
most common solution is to deploy edge computing along
with the base station. However, it will increase the complexity
of the base station. Another possible solution is CUPS, i.e.
Control and User Plane Separation, which is supposed to
be one of the key architectures for future cellular networks.
It enables the core network functionality separation, the net-
work can be deployed and operated flexibly without affecting
the functionality of the existing nodes subject to this split.

As shown in Figure 1, CUPS allows operators to separate
the EPC (evolved packet core), typically the SGW (serving
gateway), PGW (packet data network gateway), into the con-
trol plane and user plane. The control plane can sit in a cen-
tralized location, for example, the middle of the country, and
the user plane can be placed in proximity to the application
it is supporting. Despite this separation, the functionality of
the existing nodes subject to this split is not influenced. As a
result, CUPS supports the increase of data traffic by enabling
to add more user plane nodes without changing the number
of control plane nodes and reduces latency on application
service by placing gateways as close as possible from the
radio access networks or users. Therefore, CUPS is one of
the indispensable technologies to enable edge computing and
achieve the QoE (quality of experience) anticipated with the
5G introduction.

In detail, CUPS allows for reducing latency on applica-
tion service, for example, we can place user plane nodes in
proximity to the applications they are supporting. And by
enabling adding user plane nodes, CUPS supports increased
data traffic. Besides, by CUPS, we can scale the control plane
and user plane resources of the EPC nodes independently and
enable software-defined networking (SDN) to deliver user
plane data more efficiently. By flexibly deploying user plane
nodes, we can offload the information processing at the local
edge server instead of concentrating all the information at
the central server. This mitigates the burden of both networks
and the central cloud. Besides, we can shorten the response
latency because: (i) the user plane nodes are isolated from
each other and, (ii) the edge server is deployed at a much
closer place than the central server’s location, making it
possible to collect and distribute information from a local
edge server in a more timely manner.

III. DESIGN
In this section, we introduce the design of deep learning-
based application-specific control and user plane separa-
tion (CUPS) edge computing architecture.

As shown in Figure 2, by applying control and user plane
separation, the Evolved Packet Core (EPC) control plane
could be virtualized and located in a cloud environment while

FIGURE 2. Deep learning-based CUPS architecture for edge
computing [13].

the user plane can remain in the transport network.We deploy
multiple user planes on-demand for a single control plane. For
each UE, we set up one radio bearer and multiple S1 bearers
for multiple EPC user planes. Compared to the multiple-
bearer network architecture defined in 3GPP [14], where UE
needs to monitor and select an optimal radio bearer for its
packet based on the QoS classes, the merit of our single radio
bearer architecture can eliminate the workload of UE side and
save its battery life. Another merit of design is that we can
support multiple applications while the conventional multiple
bearer based architecture [14] can only support a maximum
of 11 classes of traffic.

Next, how could the eNB classify the packets according
to the application and select the proper S1 bearer for the
radio packet is challenging here due to two main challenges.
First, as long as data has been transmitted from user equip-
ment (UEs) into amobile network, the contextual information
of the data (e.g., which application the data belongs to) is
hidden from network alliances. Second, data packets will be
compressed, concatenated, and modulated in a RAN area,
which makes application identification in a RAN much more
difficult than that in a core network (CN).

In our previous work [15], [16], we have proposed the
deep learning-based application identification architecture,
where a small number of customized supervising phones are
used to generate training data in real-time and apply deep
learning at the packet gateway (P-GW). We reuse the traffic
classification architecture to tag the downlink packets with
app_name from P-GW to eNB. There are two benefits of
the design: (1) We don’t need to apply deep learning-based
application identification on eNB so that the overload of eNB
could be reduced; (2) The traffic of all UEs must pass through
the P-GWs while there is only a very limited number of UEs
connected a single eNB so that we may not be able to get
enough training data if we apply machine learning on the
traffic collected at a single eNB.

Machine learning-based identification has been proposed
in [17]. The selected features are fed into some kind of clas-
sifiers such as Naive Bayes [18], K-Means [19], and Neural
Network [20]. Conventional machine learning techniques are
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FIGURE 3. Application identification with deep neural networks with extracted features.

limited in processing natural data in their raw form. Usually,
much expertise is required to construct pattern-recognition
feature vectors from raw data. Deep learning is proposed
to replace handcrafted features with efficient algorithms for
feature learning and hierarchical feature extraction.

As shown in Fig. 3, our training model is defined based
on deep neural networks (DNN) with an input layer, multiple
fully connected hidden layers, and an output layer. Each
hidden layer is a feed-forward neural network.

We extract feature vectors from packets and feed the vec-
torized features X into the input layer. Each hidden layer takes
the previous layer output Ŷ as input X and multiplying it by
weightmatricesW, add bias vectorb associated to those inputs
(Ŷ = W · X + b). The output layer computes the softmax
probabilities that are assigned to each application. We use
the cross-entropy loss function as a cost function and use
stochastic gradient descent as an optimization algorithm to
minimize the cost during training.

Comparing to conventional work on identifying applica-
tions from the traffic trace relies on DPI of the user data,
our application identification method has two benefits: (1) we
don’t need to inspect packet payload of both training and test
data so that we may not risk privacy violation, and (2) our
training data are generated in real-time with low-cost at 100%
accuracy because of packet tagging even when the packet
payload data is encrypted.

A. SELECTION OF FEATURE VECTORS
Usually, a feature with big relevance to the output is
considered as a useful feature. It is straightforward that
server_ip, server_port, and proto could be the
features to identify applications. Besides the above three fea-
tures, TTL is useful in application identification. We believe
this is because TTL is a metric of the distance from the appli-
cation server to the FLARE node located near P-Gateway,
which is highly dependent on application type. Then we
add TTL to our feature vector. Similarly, the packet interval
between two sequential packets of both uplink and downlink
packets of a flow. We also find that packet size is a useful
feature. This is because clients and servers need to exchange
information during connection establishment. The size of the
exchange information is usually application-specific. There-
fore, we add sizes of the first few packets of each flow as

FIGURE 4. Experimental results of application identification over mobile
traffic from the OPTAGE MVNO.

a useful feature to our training model. In summary, we use
a vector of server_ip, server_port, proto, TTL,
packet_size, and packet_interval as features to
identify applications. We mark it as feature-based. As a com-
parison, without feature extraction, we use the first 60-bytes
of the uplink and downlink packets as the input feature vector
directly, we mark the method as payload-based.

B. EXPERIMENTS OF APPLICATION IDENTIFICATION
We begin with a brief introduction of our GPU DNN plat-
form, consisting of one Intel 8-core Xeon E5-2670 2.60GHz
processor and one NVIDIA GTX1080 card, each of which
has 8GB GDDR5X memory and 20 Streaming Multiproces-
sors (SMs). Each SM contains 128 CUDA cores, resulting
in 2560 CUDA cores per GPU in total. The processing power
of a GPU comes from its hundreds of cores. According to
our test, at the peak performance, one GTX1080 GPU is
comparable to about ten E5-2670 processors. So we offload
all training tasks to GPUs while using CPU to preprocess and
slice training data into GPUs and coordinate training parame-
ters during training.We use two-week (1-14 September 2019)
OPTAGE [21] MVNO data as training data, where each day
of traffic consists of about 20000 flows. Besides training and
inference, we use one-day (15 September 2019) traffic as
validation in training.

As shown in Figure 4, by using a tuple of <
dst_ip, dst_port, proto, ttl, packet_size,
packet_interval > as the features of application traffic
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captured at an MVNO, we can successfully identify 200
mobile applications with about 75% accuracy over 15-day
(16-30 September 2019) traffic using an 8-layer Deep Neural
Network with TensorFlow [22]. As a comparison, if we use
payload as an input vector without feature extraction, we can
only achieve an identification accuracy of about 65%. The
experimental results show that feature extraction is important
in deep learning-based application identification due to the
fact that less misleading data can improve the accuracy.

IV. IMPLEMENTATION
In this section, we introduce the detailed implementation
of classifying and diverting packets to application-specific
edge servers from the RAN to the core network via network
slicing. Network slicing has been considered as one of the
most significant technologies for 5G mobile networks [3],
where multiple slices that support different categories of ser-
vices with different quality of service (QoS) requirements are
supposed to be deployed in the same physical infrastructure.

A. APPLICATION-SPECIFIC RAN SLICING
RAN (Radio Access Network) Slicing is a mandatory compo-
nent of the end-to-end networking and recently catches much
attention both in academia and in industries. Radio resources
represented as Resource Blocks (RBs) may be isolated and
allocated to UEs applications, and services to enable resource
isolation for achieving desired QoS in RAN. While the basic
concept of RAN slicing has been already addressed in our
various research projects such as 5G! Pagoda and industry
collaborations, there are more and more interesting research
challenges to be addressed.

For different applications, in this subsection, we propose
that the packets should not only be diverted to different
EPC user planes but also be able to be assigned to different
RAN slices with different radio resource blocks (RBs) and
spectrum scheduling algorithms. For example, autonomous
driving requires low latency while video streaming requires
high-bandwidth.

FlexRAN [23] to our knowledge is the most complete
implementation of RAN slicing where the RAN control and
data planes are decoupled through a custom southbound
API. Each RAN slice could have its own spectrum resource
blocks (RBs) and MAC scheduling algorithm, which could
be configured remotely in real-time through the FlexRAN
agents, which are composed of Virtual Subsystem Func-
tions (VSFs) responsible for control operations such as RAN
RBs scheduling. The controller can swap VSFs dynamically
and program RAN slices via the config file at runtime.

However, in naive FlexRAN, we can only do UE-specific
RAN slicing where we assign UEs to each RAN slice at a
granularity of UE, which lacks flexibility. As shown in Fig-
ure 5, we implement application-specific RAN slicing [24]
as an extension to a modified version of the FlexRAN, where
we reuse the deep learning-based traffic classification archi-
tecture to tag the downlink packets with app_name from

FIGURE 5. Architecture of application-specific RAN slicing.

FIGURE 6. Throughput of RAN slices with different assigned RBs.

P-GW to RAN. The workflow of application-specific RAN
slicing is as follows:

• For each application-specific RAN slice with
slice_id, we assign it with a label in the
ran-slicing-config.json file. The label is
calculated as a hash of the app_name.

• When receiving a packet from P-GW, eNB checks
the tagged app_name, calculates label by hashing
app_name, and then looks up the table <label,
slice_id> to get slice_id.

• The eNB updates the mapping of UE and slice_id at
the interval of every radio frame (10ms in LTE).

In Figure 6, we examine whether we can assign packets
from a mobile application (e.g., App1) to a specific RAN
slice and whether we can modify the assigned RBs of the
RAN slice in real-time. We define two slices: default and
App1 slices. For both downlink and uplink, we assign a
different number of RBs to the App1 slice and check the
throughput of App1. The experimental result shows that the
throughput of both uplink and downlink is proportional to the
assigned RBs.

Figure 7 shows an example of ran-slicing-config.json file.
Here, we define three slices with slice_id 0, 3, and 5, where
slice 0 is defined as the default slice with 25% RBs, slice
3 as label 10003 with 25% RBs and slice 3 is defined as
label 10006 with 50% RBs. We assign packets of application
App 1 to slice 3, App 2 to slice 3, and all other packets to
slice 0.
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FIGURE 7. Example of ran-slicing-config.json with three
application-specific RAN slices.

FIGURE 8. Throughput of SpeedTest and SpeedTesu slices with 25%
and 50% RBs separately.

To compare the applications in different RAN slices
fairly, we use AppCloner to clone SpeedTest to a
new application named SpeedTesu, which is identical to
SpeedTest except the application name. According to
our test, SpeedTest and SpeedTesu achieve the same
throughput when they are in the same RAN slice. We define
three slices: default, SpeedTest and SpeedTesu slices.
As shown in Figure 8, we assign 25% and 50% of RBs to
SpeedTest and SpeedTesu slices separately. The exper-
imental results show that SpeedTesu slice can get twice
the throughput of that of SpeedTesu slice due to that it has
twice the RBs.

B. APPLICATION-SPECIFIC EPC SLICING WITH CUPS
In this subsection, we introduce our research efforts on
prototyping Application-Specific CUPS using deeply pro-
grammable network nodes with general-purpose proces-
sors and network processors, called FLARE programmable
nodes [25] and FPGA boards with OpenAirInterface
(OAI) [26] on top of them.

OpenAirInterface (OAI) is an open experimentation and
prototyping platform created by EURECOM. It provides
a software implementation of all elements of the 4G
LTE/5G architecture including user equipment (UE), eNodeB

FIGURE 9. Architecture of EPC slicing supporting CUPS [3].

FIGURE 10. CUPS architecture with multiple user planes.

(eNB), Home Subscriber Server (HSS), and Evolved Packet
Core (EPC) components. A compound EPC component con-
sists of Serving Gateway (S-GW), Packet Data Network
Gateway (P-GW) as well as the Mobility Management Entity
(MME). The eNB and EPC components are responsible for
creating channels (namely bearers) with UE and forwarding
the user traffic.

As shown in Figure 11, we implement a software EPC
on FLARE [3], where signaling related EPC entities (e.g.,
MME, HSS, SP-GW-c) are implemented in control plane
while user data forwarding and processing (e.g., SP-GW-u)
are implemented in the data plane. The data plane and user
plane connected via the PCI interface.

In this paper, we extend the work [3] by running the EPC
control plane and EPC user plane on different machines,
where the data plane and control plane are connected via the
Internet. As shown in Figure 10, we run the signaling entities
of an EPC slice, e.g., MME and the control plane of SP-
GW, in a Docker instance. We can also run the HSS entity
in another Docker instance. These two docker instances are
isolated and replaceable without interfering with each other.
For example, we can install different versions of packages in
MME and HSS instances even if they may conflict with each
other when installed on the same host machine.

We implement SP-GW (u-plane) components with
chained Click elements on many-core processors for high-
performance, which is implemented with GTPV1-U kernel
module in naive OAI software. To scale network functions,
we subdivide andmodularize the EPC user plane into network
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FIGURE 11. Signaling flow for bearer establishment in designed CUPS.

functions and to parallelize packet processing across on-chip
multiple processors.

The Sx signaling is defined following OpenFlow’s con-
vention for programming abstraction. We define our own
programming abstraction as API as follows,

<UEID, TEID><Action><Stat>,
where UEID may be a UE’s IP address assigned by MME
through the signaling channel and Action may be actions
such as create/ update/ remove a GTP-U tunnel.
The 3GPP defines a new Packet Forwarding Control Plane

(PFCP) protocol for communication between the control
plane and the user plane. According to 3GPP TS 29.244 [14],
PFCP is mainly responsible for:
• Create an association between UP function and CP func-
tion over UDP port 8805;

• Enable CP function to control UP function on how to
process certain traffic;

• Forward packets between CP and UP;
• Select UP function based on DNS.
Note that the signaling flow of our prototyped CUPS is dif-

ferent from 3GPP-PFCP. The protocol between CP and UP is
implemented over TCP instead of UDP in 3GPP-PFCP, where
we don’t need to define extra association and keep-alive
schemes between CP and UP. All other basic functions of
PFCP have been implemented in our prototype.

As shown in Figure 11, signaling flow for bearer establish-
ment in our designed CUPS is as follows:

When a UE sends a UE_ATTACH_REQUEST to eNB,
eNB will authenticate the UE and encapsulate the
UE_ATTACH_REQUEST into a CREATE_ SESSION_
REQUEST and sends it to the EPC-CP. The EPC-CP can
parse the UE_ATTACH_ REQUEST and get the embedded

APN, IMSI, and eNB info. EPC-CP can select EPC-UP
based on one or combination of this info. In our imple-
mentation, we use APN info as an example. Unlike 3GPP-
PFCP, we don’t need any DNS procedures here. Instead,
we use the keywords embedded in theAPN info. For example,
if the APN name is ‘‘vehicle.map’’, we can select all user
planes related to the vehicle mapping applications. Of course,
the EPC-CP needs to maintain a database about the mapping
of the <APN, UP(s)>.

After the UE receives the UE_ATTACH_ACCEPTmessage
from eNB, it will send back a UE_ATTACH_COMPLETE
message and establish a radio bearer between the UE and the
eNB.

After EPC-CP receives MODIFY_BEARER_REQUEST,
it will send GTPU configuration to all selected EPC user
planes via the customized southbound API. The format is
< UEID,TEID><Action>, where UEID may be a UE’s
IP address assigned by MME through the signaling channel
and Action may be actions such as create/update/ remove a
GTP-U tunnel. Then one S1 bearer is established between
eNB and each EPC user plane. The eNB will get the selected
EPC-UP info after it receives the GTP-U packet from an
S1 bearer.

When a packet from the UE arrives at the eNB, we identify
the application name of the packet at the eNB and classify it to
the corresponding S1 bearer and send it to the corresponding
EPC user plane.

C. APPLICATION-SPECIFIC EDGE SERVER SLICING
Even for one physical edge router, we can also apply
application-specific slicing to slice an edge server into mul-
tiple MEC slices so that each MEC slice can serve one
application separately. As shown in Figure 12 [12], we use
two FLARE nodes: one is to classify traffic from RAN to
different virtual network functions NFV_VLAN while the
other is to classify reverse traffic accordingly. The traffic of
NFV_VLANs is isolated using VLANs on the hosting MEC
server running Open vSwitch [27]. Packets from smartphones
are classified and tagged with different VLAN IDs accord-
ing to applications at the FLARE2 and then are diverted to
the MEC server. In each NFV_VLAN, we apply a specific
optimization policy according to applications. For exam-
ple, we run HTTP caching service for web browsing (e.g.,
Chrome), video transcoding service for video streaming
(e.g., YouTube).
The application-specific MEC slicing is useful for applica-

tion developers, as unlike conventional LTE networks where
only operators can define what capabilities for MEC network
functions to be exposed to third parties, application devel-
opers may add arbitrary functionalities, especially of ultra
reliable and low latency communication (uRLLC).

D. EDGE SERVER DEPLOYMENT
In mobile edge computing, we can deploy a set of edge
servers geographically. The mobile users can access the near-
est edge servers with the lowest latency. One fundamental

128112 VOLUME 9, 2021



P. Du et al.: Intelligent Network Slicing With Edge Computing for Internet of Vehicles

FIGURE 12. Architecture of application-specific edge server slicing [12].

problem is how to select edge servers for many mobile users
so that the total waiting time is minimized.

The control plane is responsible for selecting a P-GW
according to a UE’s request. Whenever a UE issues a request
for a service, the control plane will select the optimal edge
server in terms of service time.

We assume that the system consists of N geographically
distributed edge servers, where each edge server i has a
processing capacity Ci. The transmission delay between the
UE i and edge server j is Dij, the queueing delay at server
j is Qj while the processing delay at server j is Pij. So the
control plane will select the edge server with the minimum
delay Ti = argmin(Dij + Qij + Pij) for UE i.
Since the location of each edge server j is fixed, the control

plane can calculate the Dij based on the location of UE i.
So we only need to consider the queueing delay Qij and
processing delay Pij at server j.
We assume that requests from the UE follow a Poisson

process with rate λ, which represents the average number
of requests per unit time. We assume the service time of the
request (e.g., the flow size of dynamic mapping information)
follows an exponential distribution 1/µ, where µ is the ser-
vice rate of the edge server. We assume the edge server can
serve c requests simultaneously.We define ρ = λ/cµ, ρ < 1.
Otherwise, the edge server will be overloaded. Then the edge
server can be modeled as a traditional Erlang’s C formula.

According to the above analysis, we have the following
conclusion.

• Where there are less than c quests being processed in all
edge servers, the queueing delay Qij is equal to 0. Pij
is equal to the service time of the request. In this case,
the control can simply select the edge server with the
smallest transmission latency. E.g., edge server close to
a mobile vehicle.

• Where there are more than c quests being processed
at the nearest edge servers, we need to consider the
queueing delay Qij. Since the processing delay Pij only
depends on the requests itself, which is independent of
the server. The control plane needs to choose an edge
server with the min(Dij +Qij). The Dij can be evaluated

FIGURE 13. Prototype of CUPS based edge computing [13].

FIGURE 14. Experimental setup with offloading traffic to edge server.

by the distance between the UE i and edge server j, while
the queueing delay Qij can be evaluated by the Erlang
Formula ρ/λ · ρ/(1− ρ).

V. EVALUATION
In this section, we evaluate our prototyped application-
specific CUPS system shown in Figure 13. Since we have
evaluated the performance of application-specific RAN slic-
ing in Section IV-A, we focus on evaluating the scenarios of
application-specific data processing without or with CUPS.

A. LOCAL CUPS TESTBED IN LAB ENVIRONMENT
We use USRP B201 as a software radio platform and two
Nexus5 as UEs. The EPC control plane is a modified Ope-
nAirInterface EPC while two EPC user planes are imple-
mented on FLARE [13], [28]. We use two local servers to
emulate the edge server and the central server. Comparing
to the edge server, we assume the central server is suffering
from extra delay and bandwidth limitation due to the fact that
a lot of UEs may collect and send traffic to the central server
simultaneously. In our evaluation, we set the extra delay to
50ms while the limited bandwidth to 5Mbps.

We assume UE1 (App1) is for static information that
should be stored in the central server while UE2 (App2) is
for some local dynamic information that could be offloaded to
the edge server for processing. We evaluate two scenarios as
shown in Figure 14: 1) without edge server to offload traffic,
where all traffic from UE1 (App1) and UE2 (App2) is
sent to the central server; 2) with edge server to offload traffic,
where traffic to UE2 (App2)will be sent to the edge server
first and then only abstracted info will be sent to the central
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FIGURE 15. Evaluation of data processing with and without edge
computing.

server, where the abstracted info is much smaller comparing
to original info.

We emulate the data collection procedure from UEs to the
edge and the core server.

Test Case 1 (traffic volume is small): we set the total
send rate as 4Mbps (UE1: 0.8Mbps,UE2: 3.2Mbps). The total
traffic volume is smaller than the capability of the input link
of the central server. We can observe the packet loss ratio is
very small and there is almost no difference between the total
traffic volume received at the central server in both scenarios.

Test Case 2 (traffic volume is medium): we set the total
send rate as 5Mbps (UE1: 1Mpbs, UE2: 4Mbps). The total
traffic volume is almost equal to the capability of the input
link of the central server. We can observe a small number of
packet losses (15%) in scenario 1, while there is almost no
packet loss in the scenario.

Test Case 3 (traffic volume is heavy): we set the total
send rate as 7.5Mbps (UE1: 1.5Mbps,UE2: 6Mbps). The total
traffic volume is much higher than the capability of the input
link of the central server. We can observe a large number
of packet losses (45%) in scenario 1, while there is almost
no packet loss in scenario 2. The experimental results show
that our implemented CUPS based edge computing system
achieves a significant decrease in transmission data to the
central server so that we can handle much more sensor data.

The experimental results show that our implemented CUPS
based edge computing system achieves a significant decrease
in transmission data to the central server so that we can handle
much more sensor data.

B. USE CASE: DYNAMIC MAPPING
Next, we use dynamic mapping as an example of use case to
evaluate the above prototyped CUPS testbed.

Dynamic mapping plays an indispensable role in future
intelligent transportation systems and autonomous vehicles.
It is a database that consolidates static information such as
3D structures and dynamic information, for example, nearby
vehicles, traffic signals, and road works. With dynamic map-
ping, a vehicle would know its relevant road information in
advance. In general, data is collected from onboardmeasuring

FIGURE 16. Evaluation of (a) Upload and (b) Download time of dynamic
mapping information versus the flow size of transmitted information.

instruments like cameras, radar sensors, and laser scanners
(LIDAR), transferred and processed in the cloud. Different
from traditional maps, the dynamic map must be precise
enough to accurately localize dynamic objects, so a large
amount of data transfer is necessary to update the map.
Besides, as a result of the dynamic information that needs
to be updated on time, low latency is especially required.
In this sense, the edge computing system with CUPS-based
data offloading is a very promising technology to fulfill above
strict requirements for dynamic mapping.

We install OpenStreetMap [29] server software on both
central and edge servers. We use a smartphone to take photos
of moving cars and traffic lights as the dynamic mapping
information and upload them to central and edge servers to
show on a static OpenStreeMap there.

We use UE to upload and download pictures (dynamic
mapping information) with different sizes to and from OSM
servers. Then we measure the elapsed time. The result and
comparisons of with and without CUPS are shown in Fig-
ure 16. The experimental results in Figure 16 show the
elapsed upload and download time of data from users versus
the size of information.

The experimental results in Figure 16 shows the elapsed
time of data uploaded from users versus the number of

128114 VOLUME 9, 2021



P. Du et al.: Intelligent Network Slicing With Edge Computing for Internet of Vehicles

FIGURE 17. Evaluation of upload time of dynamic mapping information
versus the number of users [13].

FIGURE 18. Architecture of international CUPS testbed.

simulated users (vehicles or other data collection devices).
Compared with transferring raw data collected by vehicles
directly to the central server (conventional approach), this
CUPS-based system saves much upload time, thereby sup-
ports the increase of data transfer, and reduces the burden to
the core network.

C. INTERNATIONAL CUPS TESTBED BETWEEN EU AND JP
In the previous subsection, we have verified our proposed
CUPS architecture in a lab environment, where we add an
extra delay to emulate the latency difference between edge
and cloud. In this subsection, we evaluate the CUPS archi-
tecture in our international testbed. As shown in Figure 18,
we set up two user planes: one is in Tokyo (Japan), another is
in Berlin (Europe).

It is very important to efficiently use the network resources
when considering the huge demand for data transfer for the
connected vehicles. Future connected and autonomous vehi-
cles will generate various kinds of data such as CAN data,
camera data. Those data usually have diverse QoS require-
ments depending on the application provided. Application-
specific CUPS is the key for efficient use of mobile
network resources, not only offloading data to alleviate net-
work congestion, but also intelligently offloading according
to different applications to better satisfy their application
requirements.

In Figure 19, we compare the RTT and TCP throughput
between two UEs when without and with CUPS. The exper-
imental results show that RTT between UEs can be reduced

FIGURE 19. Evaluation of international CUPS testbed in terms of (a) RTT
and (b) TCP throughput.

from 416.6ms to 66.4ms while the TCP throughput can be
increased from 5.5Mbps to 17.4Mbps.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose an application-specific edge com-
puting network architecture with CUPS in mobile core
networks. We apply deep learning to classify packets
from different applications to different Radio Access Net-
work (RAN) slices for application-specific spectrum schedul-
ing and also route packets to different edge servers for
application-specific processing. The capabilities of our sys-
tem have been evaluated and the obtained experiments results
have shown that our system achieves a significant decrease in
transmission data and latency. Our future work will focus on
implementing more real use cases.
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