
Received August 14, 2021, accepted August 31, 2021, date of publication September 13, 2021, date of current version October 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3112202

TS-Perf: General Performance Measurement of
Trusted Execution Environment and Rich
Execution Environment on Intel SGX, Arm
TrustZone, and RISC-V Keystone
KUNIYASU SUZAKI 1,2, (Member, IEEE), KENTA NAKAJIMA2, TSUKASA OI2,
AND AKIRA TSUKAMOTO 1
1National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
2Technology Research Association of Secure IoT Edge Application Based on RISC-V Open Architecture (TRASIO), Tokyo 101-0022, Japan

Corresponding author: Kuniyasu Suzaki (k.suzaki@aist.go.jp)

This work was supported by the New Energy and Industrial Technology Development Organization (NEDO) under Project JPNP16007.

ABSTRACT A trusted execution environment (TEE) is a new hardware security feature that is isolated from
a normal OS (i.e., rich execution environment (REE)). The TEE enables us to run a critical process, but
the behavior is invisible from the normal OS, which makes it difficult to debug and tune the performance.
In addition, the hardware/software architectures of TEE are different on CPUs. For example, Intel SGX
allows user-mode only, although Arm TrustZone and RISC-V Keystone run a trusted OS. In addition,
each TEE has each SDK for programming. Each SDK offers own APIs and makes difficult to write a
common program. These features make it difficult to compare the performance fairly between TEE and
REE on different CPUs. To obtain precise performance and behavior in TEE, we propose TS-perf which is
a compiler-based performance measurement method. TS-perf accesses the hardware timestamp counter in
TEE as well as REE and keeps a precise log. The codes for measurement are inserted in a TEE binary by
the compiler options (i.e., profile option, constructor, and destructor). Furthermore, we utilize the separate
compilation technique, and the same benchmark binary is used for a fair comparison between TEE and
REE. The architecture of TS-perf is general and implemented for three TEE architectures (Arm TrustZone,
Intel SGX, and RISC-V Keystone). TS-perf measures the performance of GlobalPlatform’s TEE internal
APIs, matrix multiplication, memory access, and storage access. The comparisons show the difference in
performance between TEE and REE and the unusual behavior of trusted applications (TAs).

INDEX TERMS Trusted execution environment (TEE), rich execution environment (REE), performance
measurement, Arm TrustZone, Intel SGX, RISC-V Keystone.

I. INTRODUCTION
Since recent OSs support many hardware/software functions,
they have become very large and complex and cannot escape
vulnerabilities [1], [2]. To avoid these vulnerabilities, current
CPUs offer an isolated execution environment for critical
processing (i.e., TA: trusted application). The hardware iso-
lation is called trusted execution environment (TEE) and is
independent of a normal OS, namely, rich execution envi-
ronment (REE). The TEE is equipped on popular CPUs
(e.g., Arm TrustZone [3], [4], Intel SGX [5]–[8], AMD

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiali Hei .

SEV [9]) as well as experimental CPUs (e.g., RISC-V based
TEE; Sanctum [10], MI6 [11], MultiZone [12], TIMBER-V
[13], Keystone [14], [15], Hector-V [16], CURE [17], and
uTango [18]).

Most TEE hardware architectures are implemented by
changing the state from REE to TEE on a core, which
means that the same core is used in REE and TEE. It seems to
show the same performance in REE and TEE, but each fea-
ture/limitation of each TEE architecture affects performance.
For example, Intel SGX offers 96MB encrypted memory and
user-mode (ring 3) only for a TA,whereasArmTrustZone and
RISC-V Keystone offer supervisor-mode to run a trusted OS
on normal memory. (For example, Arm TrustZone is used by

133520 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-0912-0087
https://orcid.org/0000-0002-3339-7177
https://orcid.org/0000-0002-2438-5430


K. Suzaki et al.: TS-Perf: General Performance Measurement of TEE and REE

many smartphones with a vendor specific trusted OS; KNOX
for Samsung [19]–[21], RTOSck for Huawei [22], QSEE for
Qualcomm [23], [24], etc. RISC-VKeystone also offers some
choices: eyrie [14], [15], seL4 [25], etc.)

In addition, each TEE has a software development
kit (SDK) for programming a TA. Unfortunately, the abstrac-
tion depends on SDK, and APIs for TA are not standardized
(namely, there is no POSIX-like standard). These features
make it difficult to write a portable program for TEE.

On the other hand, availability is an important factor
for security, but the current TEE does not support ade-
quate performance measurement tools because TEE hides
the behavior from the normal OS. Therefore, TA debugging
and performance tuning are not easy. To solve this issue,
some approaches have been proposed [26]–[34], but they
include high overhead or dependency of special hardware.
In addition, the previous approaches are not based on the
same reliable time counter between TEE and REE, and the
performance comparison is not accurate.

To solve these problems, we have implemented the
portable GlobalPlatform TEE internal API library for differ-
ent TEE architectures, but the performance details have not
been measured because we lacked a suitable measurement
method. In addition, we cannot confirm that the performance
in TEE is the same as that in REE. This has given us motiva-
tions to establish a fair performance comparison that runs the
same binary in TEE and REE and measures the performance
with the same time resource in both environments.

This paper proposes the precise measurement method
TS-perfwhich utilizes a CPU hardware timestamp counter
in TEE and REE, and GCC [35] compiler options to insert
the codes for measurement. TS-perf is combined with the
separate compilation technique and makes it possible to run
the same binary in TEE and REE to enable fair perfor-
mance comparison. The performance measurement results
show some unusual behaviors (e.g., strange core change and
uncertain CPU load), and we confirm that they come from the
difference in TEE implementations or a bug.
Contributions and Challenges:

1) General Performance measurement based on the
hardware timestamp in TEE and REE: We design
TS-perf which is a compiler-based performance
measurement method that can be applied in many
TEE implementations. TS-perf obtains the hardware
timestamp in TEE as well as in REE. The codes
for measurement are inserted by the GCC compiler
options (i.e., profile option, constructor,
and destructor). The result is reported to the REE
after the full logging process, which does not cause
runtime overhead. TS-perf is implemented for three
TEE architectures (i.e., Arm TrustZone, Intel SGXv2,
and RISC-V Keystone).

2) Comparison of the same benchmark in TEE and
REE: In many cases, different compiler options are
used for TEE and REE applications and result in dif-
ferent binaries. For a fair comparison, we utilize the

separate compilation technique, and the same
object is linked to the benchmark binaries in TEE
and REE. The performance is measured by the same
time resource between TEE and REE using TS-perf,
which enables fair performance comparison on a state-
changing style TEE. The results can show the precise
differences between TEE and REE on different CPUs.

3) Implementation benefits: The techniques used
by TS-perf (i.e., hardware timestamp, compiler
options) and the separate compilation are general tech-
niques and can be applied to many TEE implementa-
tions. The ability is shown by the implementation for
Arm Cortex-A (TrustZone), Intel x86-x64 (SGX), and
RISC-V U540 (Keystone).

4) TEE behavior is compared with the view of the
normal OS: The behavior of TA is monitored from the
view of the normal OS and compared with the results
of TS-perf. We confirm some unusual behaviors
(i.e., core change and uncertain CPU load) and find an
interrupt-handler bug between REE and TEE.

The remainder of this paper is organized as follows.
Section II describes the background knowledge. Section III
depicts the design of TS-perf and the separate compilation.
Section IV describes the implementation of TS-perf, and
section V shows the measured performance and behavior.
Section VI describes some related topics, and section VII
concludes this paper.

II. BACKGROUND
This section describes the background of the TEE archi-
tecture, time counter, common TEE programming API, and
related works for performance and behavior measurement
in TEE.

A. TEE ARCHITECTURE
The three TEE architectures used in this paper are described.
These TEEs are implemented by changing the state of the
CPU cores.

1) ARM TrustZone
Since smartphones, game machines, and set-top boxes
use Arm Cortex-A TrustZone [3], [4]1 for critical
processing, it is the most popular TEE. TrustZone
offers 2 world view model, i.e., the secure world
(i.e., TEE) and the normal world (i.e., REE). The world
(namely, the state of REE and TEE) is changed by
the SMC (secure monitor call) instruction. Each world has
user- and supervisor-mode and runs applications on a kernel
(i.e., trusted OS or normal OS). Many trusted OSes on Trust-
Zone(e.g., QSEE [23], [24], OP-TEE [36]) offer the APIs
defined by GlobalPlatform [37], [38] for TA programming.
Some APIs require the help of a normal OS (e.g., secure
storage).

1Arm Cortex-M also has a different TrustZone. This paper considers
Cortex-A only.

VOLUME 9, 2021 133521



K. Suzaki et al.: TS-Perf: General Performance Measurement of TEE and REE

Thememory allocation for TEE is flexible, but most imple-
mentations allocate the limited memory at the boot time
to keep a small trusted computing base (TCB). When an
interrupt is issued, a trusted OS can handle it if the interrupt
is caused by the secure world’s peripheral. However, many
interrupts are passed to a normal OS with a context switch
because they are issued for the normal world.

2) INTEL SGX
Intel Software Guard Extensions (SGX) [5]–[8] offers a sin-
gle address model of TEE, named enclave. SGX allows a
TA as a part of a normal application on a host OS, and the
TA runs on the user-mode (ring 3) in an enclave which is
the state of TEE. An enclave is created dynamically, and
the TA is loaded on it. The TA is implemented as a shared
library offered by Intel SDK. When an interrupt is issued,
the processing is passed to the normal OS in REE. The total
memory for enclaves is defined by UEFI and reserved at
power-on. The maximum size is fixed (128MB is reserved
on SGX version 1, and 256MB is reserved on version 2).
The memory region is encrypted with the key generated at
power-on.

Intel SDK includes the enclave definition language (EDL)
named edger8r, which offers glue codes for secure com-
munications between the normal application and the TA
(i.e., OCALL from the TA to the application and ECALL
from the application to the TA). The glue codes check the
region of the pointer and the size of the buffer. They wrap
the edge/boundary and serialize/deserialize the arguments/re-
sults. The glue codes are crafted with formal verification to
reduce attack surfaces. An exhaustive analysis of the EDL is
described in [39].

3) RISC-V KEYSTONE
RISC-V is an open instruction set architecture (ISA) and has
some TEE implementations [10]–[18]). This paper utilizes
Keystone because it is open-source and runs on a real CPU
(SiFive’s Unleashed board). Keystone, a mixed architecture
of Arm TrustZone and Intel SGX, can create a TEE dynam-
ically as SGX, although TrustZone offers only one TEE at
boot time. The TEE is named enclave as SGX but has user-
and supervisor-mode as TrustZone. Each TEE has its own
runtime, which works as an OS kernel. The memory for
an enclave is dispatched dynamically from REE (i.e., Linux)
using the physical memory protection (PMP) mechanism.
The dispatched memory is sanitized and used for critical
processing. The PMP also manages the state of cores and
changes from REE to TEE. In the same manner as Intel SGX,
Keystone offers the EDL named keyedger, and the glue
codes protect the OCALL.2

B. TWO TYPES OF TIME COUNTERS
Current computers keep two types of time. One is the hard-
ware timestamp, and the other is the system clock which
indicates the global clock (i.e., calendar clock).

2Current Keystone has not implemented ECALL yet.

TABLE 1. Hardware timestamp counter, reading instruction, and
frequency for each architecture.

1) TIMESTAMP CYCLE
The hardware timestamp counts the number of the internal
processor clock cycle. The timestamp counter is a special
hardware resource in a CPU, and access is allowed by spe-
cial instructions. For example, the Arm CPU’s counter-timer
physical count register CNTPCT_EL0 is allowed for the
supervisor only, but the counter-timer virtual count register
CNTVCT_EL0 is allowed for the user. In addition, some
CPUs can change their CPU speed frequency to reduce power
consumption, but the internal processor clock cycle is not
affected, and the timestamp counter remains monotonic.

Table 1 shows the timestamp counters of the target archi-
tectures of this paper. They are Intel x86-64’s timestamp
counter (TSC) with rdtsc instruction, Arm Cortex-A’s
counter-timer virtual count register (CNTVCT_EL0) with
mrs instruction, and RISC-V’s hardware performance mon-
itor (HPM) with rdcycle instruction. The table also
includes the frequency of the hardware timestamp of the CPU
used in this paper. Arm Cortex-A53 has a slower hardware
timestamp than the CPU speed frequency (1,400MHz). Thus,
the resolution is not high but is sufficient to measure a
function-level amount of code, as shown in Section V.

2) SYSTEM CLOCK
The system clock indicates the global clock, which is used
for verifying certificates and logging. In general, the source
of the system clock is based on an external peripheral named
real-time clock (RTC) at boot time. The RTC has a battery
power supply and keeps working even if the CPU power is
down.

The system clock is obtained by a system call
gettimeofday() on Linux. If gettimeofday() is
implemented purely, it accesses the RTC. However, much
time is needed to access the external peripheral. To reduce
the access overhead, the initial value of the system clock is
obtained from the RTC, and the system clock is maintained by
other clock resources (e.g., timestamp counter). In addition,
most implementations of gettimeofday() use a virtual
dynamic shared object (VDSO) and omit the context switch
of a system call.

C. COMMON TEE PROGRAMMING API
In general, each TEE has an SDK for its TA programming.
For example, Intel offers SGX-SDK [5], and RISC-V Key-
stone also offers Keystone SDK [40]. To solve this problem,

133522 VOLUME 9, 2021



K. Suzaki et al.: TS-Perf: General Performance Measurement of TEE and REE

TABLE 2. Comparison of related works.

we implemented the portable library of GlobalPlatform’s
TEE Internal API [41] because the specification is opened
and widely used on smartphones.

On Arm TrustZone, the trusted OS OP-TEE offers Glob-
alPlatform’s TEE Internal API already, and we implemented
the portable library for Intel SGX and RISC-V Keystone.
Intel SGX has no supervisor mode, and RISC-V Keystone
offers eyrie runtime at the supervisor level, which provides
limited API for a TA. GlobalPlatform’s TEE Internal API
includes approximately 300 APIs with many arguments that
include many cipher suites. We selected notable APIs for
common applications.

We divide the GlobalPlatform APIs into 2 categories:
CPU-independent and CPU-dependent. CPU-independent
APIs are cryptographic functions and can be implemented
easily as a portable library, whereas CPU-dependent APIs
are functions related to secure storage, timer, and random
number. These APIsmust be customized for each architecture
but are also implemented as a library.

D. RELATED WORKS
The importance of TEE performance measurement has been
recognized, and some methods have been proposed.

Table 2 summarizes the relatedworks. Gjerdrum et al. [26],
SGX-Perf [27], and TEEMon [29] are Intel SGX spe-
cific solutions and cannot be applied to other architectures.
Gjerdrum’s and SGX-Perf are early approaches and use the
timestamp outside TEE. Their main target is the performance
of SGX primitive functions (e.g., context switches) and does
not provide a method to measure the functions of a TA.
TEEMon is a real-time performance monitoring framework
that uses the timestamp inside TEE, but the overhead is
reported to be high from 5% to 17%.

TEE-Perf [28] is a general perf implementation but
assumes a recorder process that occupies a core along with
the perf process. The recorder process has a software counter
on a sharedmemory, which is incremented by an infinite loop.
The perf process obtains the number of the software counter
via shared memory. TEE-Perf can be applied to REE, but the
implementation is redundant and inaccurate (the overhead is
reported to be up to 5.7× higher than that for Linux perf).

On Arm TrustZone, some trusted OSs offer measure-
ment functions because they are based on the Glob-
alPlatform APIs which include time measurement (i.e.,
TEE_GetREETime() and TEE_GetSystemTime()).
Furthermore, OP-TEE offers gprof [30], [31] to measure the

performance of each function. The paper [32] customizes
the OP-TEE to measure the performance of the stress test
benchmark; STRESS-NG [42]. They are useful but are not
generic to enable comparison to other architectures.

Some CPU vendors offer hardware assistance to obtain
the performance information. Intel Processor Trace (PT) [33]
and Arm CoreSight [34] are well-known mechanisms and
integrated current perf tools, but they are disabled by default
on SGX and TrustZone.
TS-perf measures performance using a general hard-

ware timestamp counter inside TEE and REE, and the results
are precise. We offer the same APIs on different TEE archi-
tectures and make it possible to compare the performance
between different architectures.

III. DESIGN
This section describes two design issues for TS-perf and
the method of comparing REE and TEE.

A. DESIGN OF TS-PERF
TS-perf is a compiler-based performance measurement
method that obtains the time from the hardware timestamp
counter in TEE and REE. The time data are saved in memory
during performance measurement because the writing of data
involves high overhead. TS-perf writes the time data in
memory to a file after the measurement.

To implement these functions, TS-perf has three chal-
lenges. The first concerns the access to the hardware times-
tamp counter in TEE and measuring the time before and
after a function. The second is the memory allocation for
logging in TEE. The third is the writing of data from TEE
to a file in REE. TS-perf solves these challenges using the
features of the GNU Compiler Collection (GCC)
[35] (i.e., profile option, constructor, and
destructor).

The means of accessing the hardware timestamp counter
in TEE is dependent on each architecture. On Intel SGX,
TS-perf is implemented for SGX version 2 (SGXv2) with
rdtsc instruction because SGX version 1 (SGXv1) does
not allow access to TSC in user-mode. SGX2 is offered for
limited CPUs only, but we choose an available machine.
Accessing the timestamp counter in SGX is not our contribu-
tion, but we utilize it for fair performance comparison. Arm
TrustZone and RISC-V Keystone allow access to their TSC
in user-mode (i.e., CNTVCT_EL0. and HPMwith rdtsc and
rdcycle instruction, respectively). The code to obtain the
timestamp must be inserted on the top and bottom of a target
function. Fortunately, theprofile option of GCCoffers
this feature, and TS-perf utilizes it.
The second challenge concerns how to keep the time

on memory in TEE. The memory region must be assigned
before measurement because it reduces the runtime overhead.
Fortunately, the constructor of GCC offers the mech-
anism to insert code before the main program. TS-perf
utilizes the constructor to reserve memory for
logging.

VOLUME 9, 2021 133523



K. Suzaki et al.: TS-Perf: General Performance Measurement of TEE and REE

The third challenge is reporting log data to REE after mea-
surement because access to REE includes heavy overhead.
The destructor of GCC enables insertion of a code after
the main function, and TS-perf utilizes it. The way to
save data from TEE to a file in REE depends on the TEE
implementation. TS-perf follows the manner suitable for
each architecture.

FIGURE 1. Separate compilation for TEEE and REE benchmark.

B. DESIGN OF A METHOD FOR COMPARING REE AND TEE
TS-perf enables precise performance measurement based
on the same timestamp in TEE and REE, but it is insufficient
because the same binary cannot be run in TEE and REE in
general. The reason is that the system call is different, and a
TA must link special libraries for TEE execution. In addition,
the compiler options are different in many cases. If link
time optimization (LTO) is enabled, the functions may be
optimized differently. To solve this problem, we utilize the
separate compilation technique.

Figure 1 shows the overview. The functions for measuring
are saved in an original source file and compiled to an object
file (in Figure 1,memory andCPU are themeasuring targets).
The benchmark main and TS-perf codes are prepared for
TEE and REE because they depend on these environments.
The benchmark main code includes the function to call the
measuring target, and the TS-perf code uses GCC profiling.
TS-perf offers measuring codes for TEE and REE. Hence,
TS-perf does not use the GCC original prof because of the
objective of fair comparison.

The measuring target object file is linked to the benchmark
main and TS-perf object and creates a benchmark binary.
The same measuring target binaries are thus used in REE
and TEE.

Unfortunately, this technique is not applied to the func-
tion that uses TEE architecture-dependent APIs (e.g., secure
storage). In that case, the source code is written as similar as
possible and compiled with the same options.

IV. IMPLEMENTATION
TS-perf is implemented for Arm TrustZone, Intel SGX,
and RISC-V Keystone. The implementation in TS-perf
consists of three steps on GCC [35]. TS-perf is also

implemented for REE, but this section concentrates on TEE
because the implementation is almost the same and simple.
Step 1 (Compiler Phase): The profile option of GCC

requires the compile flag to build an object for measuring
functions. The flag is -finstrument-function, which
inserts a code at the top and the bottom of every function.
These inserted codes access the timestamp counter from TEE
on each architecture.
TS-perf also requires the codes for preparing the

log buffer and reporting the log to REE (i.e., normal
OS). These codes must be executed before or after
the main part of TA execution. The GCC compiler
offers __attribute__((constructor)) and
__attribute__((destructor)) to insert code at the
start and end of the main function. However, the linker script
for the TA is not compatible on each architecture, and it is
not easy to insert arbitrary codes.

Fortunately, each TA has its own entry point which enables
the insertion of arbitrary codes before and after the TA.
The entry points are eapp_entry, ecall_ta_main
and TA_InvokeCommandEntryPoint on RISC-V Key-
stone, Intel SGX, and Arm TrustZone, respectively. The code
for obtaining a 64KB log buffer is inserted before the entry
point. Its size is fixed for simplicity, and it is large enough
to profile on each function. The code to report the log data
to REE is inserted after the entry point. The implementation
depends on each architecture described as follows.
Step 2 (Recorder Phase): During the TA execution, the

address of the function and the timestamp counter value of
each enter/exit are logged into the buffer. After the TA is
finished, the buffer data must be written to the log file in REE.
(Note: TS-perf runs a log-saving code in REE and writes
the log file using the system call of Linux.)

In TS-perf in TEE, the __profiler_map_info
and __profiler_unmap_info functions are registered
in the entry point of each TEE and play an important
role in logging. The __profiler_unmap_info
function is inserted before the main function of TA
by __attribute__((constructor)) and prepares
the log buffer (64KB). The __profiler_unmap_info
function is inserted after the main function of TA
by __attribute__((constructor)) and saves
the log to a file in REE (i.e., Linux).

The implementation of the __profiler_unmap_info
function is different on each TEE because it needs to collab-
orate with Linux. In Keystone and SGX, OCALL functions
are used to write the log buffer to the file in REE. On the
other hand, in TrustZone (namely, OP-TEE), the log data are
moved into the shared buffer. After the end of the TA, it is
written to the file in REE.

InRISC-VKeystone, the entry point is theeapp_entry
function which should be added with the EAPP_ENTRY
keyword with The __profiler_unmap_info. The
__profiler_unmap_info uses OCALL functions such
as open, write, and close for the log file on Linux
(in Code 1).

133524 VOLUME 9, 2021



K. Suzaki et al.: TS-Perf: General Performance Measurement of TEE and REE

Code 1. Saving log in REE by OCALL on RISC-V Keystone.

Code 2. Saving log in REE by OCALL on RISC-V Keystone.

In Intel SGX, the __profiler_unmap_info is also
registered at the SGX entry point ecall_ta_main. The
OCALL functions are used in the same way as Keystone, but
the arguments are not the same (in Code 2).

In Arm TrustZone, a secure OS OP-TEE manages a
TA. OP-TEE has no OCALL as Keystone and SGX, and
we have to write a program to share log data. We pre-
pare the buffer both in REE and in TEE explicitly to
share the log data. In REE, the shared buffer is allocated
with the output flag. The buffer is conveyed to the TA
by TEEC_InvokeCommand, which starts the TA in TEE
(in Code 3).

Code 3. Getting Buffer between TEE and REE on OP-TEE/Arm TrustZone.

Inside the TA, the__profiler_unmap_info function
is also registered by TA_InvokeCommandEntryPoint.

Code 4. Transferring log from TEE to REE on OP-TEE/TrustZone.

Code 5. Log Saving in REE on Linux/Arm.

In TEE, after themain program, the__profiler_unmap_
info function is called (in Code 4). In the __profiler_
unmap_info function, the log data are simply moved to the
shared buffer.

When the TA terminates, the TEEC_InvokeCommand
function returns in REE. The buffer is packed with the
log data for each function. The log data are saved with
POSIX-compliant functions such as open, write, and close in
REE (in Code 5).

Step 3 (Analyzer Phase): The performance result is saved
as a binary file. The analysis tool parses the data, organizes
into a readable format, and compares the figure between the
different architectures.

TABLE 3. Target machines (The intel pentium CPU does not include
hyperthreading.).

V. EVALUATION
TS-perf measured some types of benchmarking in
TEE and REE on three different architectures listed in
Table 3. The CPU speed frequency is fixed at 1,000 MHz
by cpufreq-set to prevent an automatic change on
Intel x86-64. However, we preformed evaluations on
1,400 MHz Arm because the Raspberry Pi3 B+ offers 600

VOLUME 9, 2021 133525



K. Suzaki et al.: TS-Perf: General Performance Measurement of TEE and REE

TABLE 4. Timestamp Counts and Time (µ-seconds) for
TEE_GetREETime() and TEE_GetSystemTime().

or 1,400 MHz frequency only. Each benchmark is mea-
sured 200 times, and the average is shown.

The evaluations aim to show (1) the accuracy and pre-
cision of performance measurement, (2) the difference in
TEE implementation on different CPUs, and the difference
between TEE and REE on the same CPU, and (3) the unusual
behavior in TEE.

A. OVERHEAD FOR OBTAINING TIME
To show the accuracy of TS-perf, we measured the
time functions of GlobalPlatform TEE Internal APIs:
TEE_GetREETime() and TEE_GetSystemTime().
TEE_GetREETime() obtains the system clock from REE,
and TEE_GetSystemTime() obtains the hardware times-
tamp in the user-mode of TEE, which is the same as that in
TS-perf.

Table 4 shows the results. TEE_GetREETime()
causes OCALL, and the average time is more than
15 µ-seconds on each architecture. On the other hand,
the average time of TEE_GetREETime() is less than
0.5 µ-seconds on each architecture. Hence, the average
time of TEE_GetSystemTime() is 30 times faster
than that of TEE_GetREETime(). The maximum time
and standard deviation in TEE_GetREETime() on the
Arm TrustZone and Intel SGX were higher than those on
the RISC-V Keystone. We speculate that the differences
are caused by the complex hardware on Arm and Intel
(e.g., cache hierarchy, branch prediction). The relative
maximum time and standard deviation on TEE_
GetSystemTime() are less than those on
TEE_GetREETime(), but the absolute values of TEE_
GetSystemTime() are shorter than those on
TEE_GetREETime().

The time-related functions were measured by
TS-perf, which uses the hardware timestamp as
TEE_GetSystemTime(). The standard deviations
were low; therefore, TS-perf is stable and accurate.

B. TEE AND REE BENCHMARKS
We use three original benchmarks because existing bench-
marks are not suitable for TEE. They assume input/output

or system calls that are not supported in TEE. In addition,
we want to show a fair performance comparison between
TEE and REE. The three benchmarks are CPU, memory, and
storage intensive.

1) FEATURES OF BENCHMARKS
CPU Intensive: CPU-intensive benchmarks measure
25,000,000 multiplications of integers or double float
numbers. They are simple arithmetic benchmarks and are
assumed to have no difference in TEE and REE. The bench-
marks utilize the separate compilation technique for a fair
comparison. (Note: The iteration number is determined by
the average elapsed time on all architectures.)
Memory Intensive: Memory-intensive benchmarks mea-

sure 1MB memory read/write access sequentially or ran-
domly. The benchmarks may cause performance differences
when the memory is encrypted. However, cache and branch
prediction may hide the performance difference. The bench-
marks utilize the separate compilation technique for a fair
comparison. (Note: the memory size is decided to compare
all architectures.)
Storage Intensive: Storage-intensive benchmarks mea-

sure the 1MB file read or write sequential access only
because the current implementations of GlobalPlatform
APIs for storage (i.e., TEE_WriteObjectData() and
TEE_ReadObjectData()) do not allow random access.
Read or write access occurs for each 32KB unit due to
the TEE buffer size. Storage depends on the different API
implementations in TEE and REE. Therefore, the separate
compilation technique cannot be used.

2) RESULTS OF BENCHMARKS
Table 5 summarizes the results for TEE and REE, and
Figure 2 visualizes the results for the CPU- and memory-
intensive benchmarks.
CPU Intensive: The results show almost the same perfor-

mance for themultiplication of integers and double float num-
bers in TEE and REE. These results are quite natural because
TEE and REE run on the same core architecture. However,
each architecture has a slight difference. Arm TrustZone
shows that TEE is approximately 3% slower; this impact is
the highest among the three CPUs. The maximum and mini-
mum times did not have large differences, but the differences
were stable. We hypothesize that there are the architectural
differences, and analysis is left to future work.
Memory Intensive: The results show almost the same per-

formance for sequential and random memory access in TEE
andREE of Intel SGX andRISC-VKeystone. ArmTrustZone
shows that TEE is slower, especially with 11% overhead on
random access. Arm has a large impact on random memory
access in TEE, and programmers should exercise caution.

We expected that SGX’s memory encryption mechanism
would cause performance degradation, but the results do
not show this feature. We analyzed further performance
on Intel, and we changed the memory size from 1MB to
32MB. Figure 3 shows the results. The sequential access

133526 VOLUME 9, 2021



K. Suzaki et al.: TS-Perf: General Performance Measurement of TEE and REE

TABLE 5. Performance comparison between TEE and REE on Arm Cortex-A, Intel X86-64, and RISC-V U540.

FIGURE 2. Performance comparison between TEE and REE on Arm Cortex-A, Intel X86-64, and RISC-V U540.

performance is almost proportional to the memory size, but
the random accesses are slower for TEE than for REE. Table 6
shows the detailed results. The performance degradation is
not clear until 4MB. We expect the same performances on
small memory to be caused by the CPU cache because
Pentium j5005 has a 4MB L2 cache. We also expect the
degradation in random access in TEE to be caused bymemory
encryption because the effects of the cache are the same
in REE and TEE. The overhead for memory encryption is
exposed upon large memory random access.
Storage Intensive: The results show the difference between

TEE and REE. As expected, the results were unstable because
TEE requires OCALL to save the encrypted data in REE

TABLE 6. Memory access performance on SGX (cycle).

(i.e., Linux). On TrustZone, both read and write performance
in TEE showed a large difference, perhaps because imple-
mentation is complex for OP-TEE in terms of file access.

VOLUME 9, 2021 133527



K. Suzaki et al.: TS-Perf: General Performance Measurement of TEE and REE

SGX and Keystone cause OCALLs, which include glue
code created by the EDL. We expected that the EDL affects
the performance. However, the stability is not good, and the
results cannot clearly show the effect of the EDL.

FIGURE 3. Memory Access Performance on SGX.

TABLE 7. The view of the TA from REE.

C. COMPARING FROM THE VIEW OF REE
The behaviors of TEE benchmarks were monitored by htop
on Linux (REE), which shows the load on each core. The
results showed two unusual behaviors: (1) the TEE running
core was changed, and (2) the core load did not remain at
100% even if a heavy benchmark was run. Table 7 summa-
rizes the results.

1) CORE CHANGE
Because the core maintained a 100% CPU load, htop
informed which core was used for the TEE benchmark. The
CPU load category shown byhtopwas different in each TEE
architecture: system load for TrustZone and Keystone
and user load for SGX, which indicated the view of the
TA from REE. In addition, htop showed that the 100% load
core changed sometimes. This behavior was unusual.

We confirmed that the TA’s core was changed when the
normal application in REE was changed by the taskset
command, which can designate the running application core.
These results indicate that the Linux scheduler changes the
process’s core even if the process uses TEE. Therefore, the
current Linux scheduler does not recognize whether a process
uses TEE. We regard this as a next research topic for the
scheduler to collaborate with TEE.

TrustZone showed more unusual behavior. The TA some-
times did not follow the normal application, and thus, it ran on
a different core from the normal application. We imagine that
OP-TEE changes the core when it accepts SMC instruction.
This does not violate the rule of the trusted OS, but we could
not determine why, leaving this question to future research.

2) CPU LOAD
The htop showed the core load changed from 100% to 0%
sometimes on RISC-V; this was unusual because the TA
should consume the CPU until the finish, and the results
of TS-perf did not show a large difference. We ana-
lyzed the code of the eyrie runtime, and the unusual
behavior led us to find a bug. The bug is the treatment of
handle_timer_interrupt, which shares the platform-
level interrupt controller (LPIC) between Linux and eyrie.
The bug omits the CPU load on a core.We posit that this result
was caused by a design mismatch between TEE and REE and
subsequently discuss this topic in section VI-C.

VI. DISCUSSIONS
A. APPLYING TS-PERF TO ANOTHER TEE ARCHITECTURE
TEE implementation is not limited to core sharing,
e.g., Apple iPhone’s Secure Enclave [46], [47]. The secure
enclave is implemented on another CPU and does not cause
core change. The performance information is also hidden
from the normal OS. This style of TEE architecture is not
related to core change and does not affect application per-
formance in REE. In addition, the separated-CPU TEE can
avoidmicroarchitectural vulnerability (e.g., Spectre [48]. The
vulnerability also infects the TEE (e.g., ForeShadow [49])).
However, the implementation results in a higher cost. Even if
the core-sharing style TEE is used, hyperthreading technol-
ogy causes vulnerabilities for side channel attacks. Disabling
hyperthreading is recommended for some CPUs. Fortunately,
the CPU used in this paper has no hyperthreading.

The portability of TS-perf can be reserved on separated-
CPU TEE if the time measurement works and communica-
tion between REE and TEE is guaranteed. This extension
is enabled by the compiler-based performance measurement
method.

On the other hand, some core-shared TEE has another
cryptographic accelerator, e.g., Secure Element (SE) [50]
or Rambus CryptoManager [51], which work as a root of
trust [52]. GlobalPlatform defines the API from core-shared
TEE to SE [53]. This style hides the performance of the cryp-
tographic accelerator, and current TS-perf cannot cover the
performance measurement.

B. COVERAGE OF TS-PERF
Fair performance comparison is a fundamental issue because
current hardware and OS have performance hiding mecha-
nisms, e.g., cache hierarchy, branch prediction, and Linux’s
page cache for I/O. As mentioned in section V-B, the per-
formance degradation caused by memory encryption was not
easy to disclose. These performance hiding mechanisms are
effective for small access sizes and fixed patterns. In general,
traditional TAs have been used for cryptographic processing,
and the binaries were small, which can yield the effect of per-
formance hiding mechanisms. However, current TAs are used
by machine learning, genome analysis, privacy processing,
etc. The codes and data are large, and the processing shows

133528 VOLUME 9, 2021



K. Suzaki et al.: TS-Perf: General Performance Measurement of TEE and REE

native performance. Since performance tuning becomesmore
important, TS-perf aims in the development of these TAs.
TS-Perf is not limited to the same benchmark library

and can measure the precise performance of different bina-
ries using the hardware timestamp counter. For example,
TS-Perf can measure the binary that is optimized for REE
or TEE. The results may show another perspective on this
difference. This topic is the subject of our future work.

C. INTEGRATED DESIGN BETWEEN REE AND TEE
As mentioned in section I, the programming and execution
environments are different between REE and TEE, which
includes hardware architecture as well as software archi-
tecture. This style was effective on smartphones because
the target applications are limited (e.g., key management,
DRM management). However, TEE has become popular,
and many normal applications want to be executed in TEE
(e.g., machine learning and genome analysis). They require
the execution of the same normal program in TEE.

To run normal applications without customization,
SGX-LKL [54] and SCONE [55] have been developed; how-
ever, they cannot offer complete compatibility. For example,
SGX-LKL does not support fork(). Current SCONE sup-
ports fork() but recommends avoiding fork() based on
the performance problem.

We think that these problems are caused by the unfixed
abstraction of TEE. As mentioned in section V-C, the mis-
match between TEE and REE causes some unusual behavior.
A seamless programming style in REE and TEE is desired,
but the abstraction model and its support formal verification
tools are not established. Hence, TEE remains in use in many
research fields. TS-perf is a compiler-based performance
measurement method and offers a seamless programming
tool that can bridge REE and TEE.

VII. CONCLUSION
TS-perf is a general compiler-based performancemeasure-
ment method and can be applied in many TEE implemen-
tations. TS-perf is based on the timestamp counter that
is available in REE and TEE on three architectures (Arm
Cortex-A, Intel x86-64, and RISC-V U540), and this method
enables a fair comparison between REE and TEE. To conduct
a fair comparison, we also propose to utilize the separate
compilation and enable the use of the same binary in REE and
TEE. The performance results showed the sameness (arith-
metic performance) and difference (memory encryption and
storage) between REE and TEE. The TEE results were also
compared with the view from REE, and strange core change
and an interrupt-handler bug were found.

REFERENCES
[1] S. Dambra, L. Bilge, andD. Balzarotti, ‘‘SoK: Cyber insurance—Technical

challenges and a system security roadmap,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), May 2020, pp. 293–309.

[2] Y. Shin and L. Williams, ‘‘An empirical model to predict security vulnera-
bilities using code complexitymetrics,’’ inProc. 2nd ACM-IEEE Int. Symp.
Empirical Softw. Eng. Meas. (ESEM), Oct. 2008, pp. 315–317.

[3] S. Pinto and N. Santos, ‘‘Demystifying Arm TrustZone: A comprehensive
survey,’’ ACM Comput. Surv., vol. 51, no. 6, pp. 1–36, Feb. 2019.

[4] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, ‘‘SoK: Understanding the
prevailing security vulnerabilities in TrustZone-assisted TEE systems,’’ in
Proc. IEEE Symp. Secur. Privacy (SP), May 2020, pp. 18–20.

[5] Intel. Intel Software Guard Extensions (Intel SGX) Developer Guide.
Accessed: Sep. 25, 2021. [Online]. Available: https://software.intel.com/
content/www/us/en/develop/download/intel-software-guard-extensions-
intel-sgx-developer-guide.html

[6] V. Costan and S. Devadas, ‘‘Intel SGX explained,’’ IACR Cryptol. ePrint
Arch., vol. 2016, no. 86, pp. 1–118, 2016.

[7] V. Costan, I. Lebedev, and S. Devadas, ‘‘Secure processors—Part I: Back-
ground, taxonomy for secure enclaves and Intel SGX architecture,’’ Found.
Trends Electron. Des. Autom., vol. 11, nos. 1–2, pp. 1–248, 2017.

[8] V. Costan, I. Lebedev, and S. Devadas, ‘‘Secure processors—Part II: Intel
SGX security analysis and MIT sanctum architecture,’’ Found. Trends
Electron. Des. Autom., vol. 11, no. 3, pp. 249–361, 2017.

[9] R. Buhren, C. Werling, and J.-P. Seifert, ‘‘Insecure until proven updated:
Analyzing AMD SEV’s remote attestation,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Nov. 2019, pp. 1087–1099.

[10] V. Costan, I. Lebedev, and S. Devadas, ‘‘Sanctum: Minimal hardware
extensions for strong software isolation,’’ in USENIX Secur. Symp.
(USENIX Sec), 2016, pp. 857–874.

[11] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, Arvind, and S. Devadas,
‘‘MI6: Secure enclaves in a speculative out-of-order processor,’’ in
Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchitecture, Oct. 2019,
pp. 42–56.

[12] (2018). HexFive. [Online]. Available: https://hex-five.com/
[13] S. Weiser, M. Werner, F. Brasser, M. Malenko, S. Mangard, and

A.-R. Sadeghi, ‘‘TIMBER-V: Tag-isolated memory bringing fine-grained
enclaves to RISC-V,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., Feb. 2019,
pp. 1–16.

[14] D. Lee, D. Kohlbrenner, S. Shinde, D. Song, and K. Asanović, ‘‘Keystone:
An open framework for architecting TEEs,’’ 2019, arXiv:1907.10119.
[Online]. Available: http://arxiv.org/abs/1907.10119

[15] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, ‘‘Keystone:
An open framework for architecting trusted execution environments,’’ in
Proc. 15th Eur. Conf. Comput. Syst., Apr. 2020, pp. 1–16.

[16] P. Nasahl, R. Schilling, M. Werner, and S. Mangard, ‘‘HECTOR-
V: A heterogeneous CPU architecture for a secure RISC-V execution
environment,’’ 2020, arXiv:2009.05262. [Online]. Available: http://arxiv.
org/abs/2009.05262

[17] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek,
A.-R. Sadeghi, and E. Stapf, ‘‘CURE: A security architecture with CUs-
tomizable and resilient enclaves,’’ in Proc. USENIX Secur. Symp. (USENIX
Sec), 2021, pp. 1073–1090.

[18] D. Oliveira, T. Gomes, and S. Pinto, ‘‘UTango: An open-source TEE
for the Internet of Things,’’ 2021, arXiv:2102.03625. [Online]. Available:
http://arxiv.org/abs/2102.03625

[19] Samsung. Samsung KNOX. [Online]. Available: https://www.
samsungknox.com/en

[20] U. Kanonov and A. Wool, ‘‘Secure containers in Android: The Samsung
KNOX case study,’’ in Proc. 6th Workshop Secur. Privacy Smartphones
Mobile Devices, Oct. 2016, pp. 3–12.

[21] M. Dorjmyagmar, M. Kim, and H. Kim, ‘‘Security analysis of Sam-
sung Knox,’’ in Proc. 19th Int. Conf. Adv. Commun. Technol. (ICACT),
Feb. 2017, pp. 550–553.

[22] D. Shen, ‘‘Exploiting TrustZone on Android,’’ Black Hat USA, Aug. 2015.
[23] D. Rosenberg, ‘‘QSEE TrustZone kernel integer overflow vulnerability,’’

Black Hat USA, Aug. 2014.
[24] K. Ryan, ‘‘Hardware-backed heist: Extracting ECDSA keys from Qual-

comm’s TrustZone,’’ in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Nov. 2019, pp. 181–194.

[25] Keystone-seL4. Accessed: Sep. 25, 2021. [Online]. Available: https://
github.com/keystone-enclave/keystone-sel4

[26] A. T. Gjerdrum, R. Pettersen, H. D. Johansen, and D. Johansen,
‘‘Performance of trusted computing in cloud infrastructures with Intel
SGX,’’ in Proc. 7th Int. Conf. Cloud Comput. Services Sci., 2017,
pp. 668–675.

[27] N. Weichbrodt, P.-L. Aublin, and R. Kapitza, ‘‘Sgx-perf: A performance
analysis tool for Intel SGX enclaves,’’ in Proc. 19th Int. Middleware Conf.,
Nov. 2018, pp. 201–213.

[28] M. Bailleu, D. Dragoti, P. Bhatotia, and C. Fetzer, ‘‘TEE-perf: A profiler
for trusted execution environments,’’ in Proc. 49th Annu. IEEE/IFIP Int.
Conf. Dependable Syst. Netw. (DSN), Jun. 2019, pp. 414–421.

VOLUME 9, 2021 133529



K. Suzaki et al.: TS-Perf: General Performance Measurement of TEE and REE

[29] R. Krahn, D. Dragoti, F. Gregor, D. L. Quoc, V. Schiavoni, P. Felber,
C. Souza, A. Brito, and C. Fetzer, ‘‘TEEMon: A continuous performance
monitoring framework for TEEs,’’ in Proc. 21st Int. Middleware Conf.,
Dec. 2020, pp. 178–192.

[30] Linaro. Gprof in OP-TEE Documentation. Accessed: Sep. 25, 2021.
[Online]. Available: https://optee.readthedocs.io/en/latest/debug/gprof.
html

[31] I. Opaniuk and J. Forissier, ‘‘Benchmark and profiling in OP-TEE,’’ Linaro
Connect Budapest, Mar. 2017.

[32] J. Amacher and V. Schiavoni, ‘‘On the performance of ARM TrustZone,’’
in Proc. IFIP Int. Conf. Distrib. Appl. Interoperable Syst. Denmark:
Springer, 2019, pp. 133–151.

[33] J. R. Blackbelt. (2013). Processor Tracing. Accessed: Sep. 25, 2021.
[Online]. Available: https://software.intel.com/content/www/us/en/
develop/blogs/processor-tracing.html

[34] Arm. (2010) Coresight Trace Memory Controller Technical Refer-
ence Manual. Accessed: Sep. 25, 2021. [Online]. Available: https://
developer.arm.com/documentation/ddi0461/b/

[35] GNU Compiler Collection (GCC). Accessed: Sep. 25, 2021. [Online].
Available: https://gcc.gnu.org/

[36] OP-TEE.Org. OP-TEE. Accessed: Sep. 25, 2021. [Online]. Available:
https://github.com/op-tee/

[37] GlobalPlatform. Accessed: Sep. 25, 2021. [Online]. Available:
https://globalplatform.org

[38] GlobalPlatform API Archives. Accessed: Sep. 25, 2021. [Online]. Avail-
able: https://globalplatform.org/specs-library/

[39] J. Van Bulck, D. Oswald, E. Marin, A. Aldoseri, F. D. Garcia, and
F. Piessens, ‘‘A tale of two worlds: Assessing the vulnerability of enclave
shielding runtimes,’’ in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Nov. 2019, pp. 1741–1758.

[40] D. Lee. Keystone SDK. Accessed: Sep. 25, 2021. [Online]. Available:
https://github.com/keystone-enclave/keystone-sdk

[41] K. Suzaki, K. Nakajima, T. Oi, and A. Tsukamoto, ‘‘Library implemen-
tation and performance analysis of GlobalPlatform TEE internal API for
Intel SGX and RISC-V keystone,’’ in Proc. IEEE 19th Int. Conf. Trust,
Secur. Privacy Comput. Commun. (TrustCom), Dec. 2020, pp. 1200–1208.

[42] (2013). Stress-NG. Accessed: Sep. 25, 2021. [Online]. Available:
https://kernel.ubuntu.com/~cking/stress-ng/

[43] Raspberry Pi Foundation. Raspberry Pi 3 Model B+. Accessed:
Sep. 25, 2021. [Online]. Available: https://www.raspberrypi.org/products/
raspberry-pi-3-model-b-plus/

[44] Intel. NUC PJYH. Accessed: Sep. 25, 2021. [Online]. Available:
https://ark.intel.com/content/www/us/en/ark/products/126137/intel-nuc-
kit-nuc7pjyh.html

[45] SiFive. SiFive Unleashed Board. Accessed: Sep. 25, 2021. [Online]. Avail-
able: https://www.sifive.com/boards/hifive-unleashed

[46] Apple. Secure Enclave Overview. Accessed: Sep. 25, 2021.
[Online]. Available: https://support.apple.com/en-am/guide/security/sec
59b0b31ff/web

[47] T. Mandt, M. Solnik, and D. Wang, ‘‘Demystifying the secure enclave
processor,’’ Black Hat USA, Aug. 2016.

[48] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, ‘‘Spectre
attacks: Exploiting speculative execution,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), May 2019, pp. 1–19.

[49] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, ‘‘Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-of-order
execution,’’ in Proc. USENIX Secur. Symp. (USENIX Sec), 2018, pp. 1–18.

[50] GlobalPlatform. (2018). Introduction to Secure Elements.
[Online]. Available: https://globalplatform.org/wp-content/
uploads/2018/05/Introduction-to-Secure-Element-15May2018.pdf

[51] Rambus. CryptoManager Trusted Provisioning Services. Accessed:
Sep. 25, 2021. [Online]. Available: https://www.rambus.com/security/
provisioning-and-key-management/cryptomanager-trusted-provisioning-
services/

[52] S. Marisetty. (2017). Demystifying Security Root of Trust. Linaro Connect
SFO. [Online]. Available: https://www2.slideshare.net/linaroorg/sfo17-
304-demystifying-ro-tfinallc-83555369

[53] GlobalPlatform. (2013). TEE Secure Element API Version 1.0.
[Online]. Available: https://globalplatform.org/wp-content/uploads/
2018/06/GPD_TEE_ SE_API_v1.0.pdf

[54] C. Priebe, D. Muthukumaran, J. Lind, H. Zhu, S. Cui, V. A. Sartakov,
and P. Pietzuch, ‘‘SGX-LKL: Securing the host OS interface for trusted
execution,’’ 2019, arXiv:1908.11143. [Online]. Available: http://arxiv.
org/abs/1908.11143

[55] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’keeffe, M. L. Stillwell, and D. Goltzsche,
‘‘SCONE: Secure Linux containers with Intel SGX,’’ in Proc. Symp.
Operating Syst. Design Implement. (OSDI), 2016, pp. 689–703.

KUNIYASU SUZAKI (Member, IEEE) received
the B.E. and M.E. degrees in computer science
from Tokyo University of Agriculture and Tech-
nology, and the Ph.D. degree in computer science
from The University of Tokyo, Tokyo, Japan. He is
currently a Senior Researcher with the National
Institute of Advanced Industrial Science and Tech-
nology (AIST) and a Researcher with the Tech-
nology Research Association of Secure IoT Edge
Application Based on RISC-V Open Architecture

(TRASIO). His research interests include security on CPU, operating sys-
tems, and hypervisor.

KENTA NAKAJIMA received the M.S. degree in
mathematical informatics from The University of
Tokyo. He is currently a Researcher with the Tech-
nology Research Association of Secure IoT Edge
Application Based on RISC-V Open Architecture
(TRASIO). His research interests include software
engineering on operating systems, system security,
and software automation. He is interested in how
the Linux OS and container libraries work.

TSUKASA OI is currently a Researcher with
the Technology Research Association of Secure
IoT Edge Application Based on RISC-V Open
Architecture (TRASIO). His research interests
include security of operating systems and virtual
machines.

AKIRA TSUKAMOTO received the M.S. degree
in computer science from Columbia University,
New York. He currently works with the National
Institute of Advanced Industrial Science and
Technology (AIST). He has worked on products
based on Cell/B.E. and Arm. His research inter-
ests include software engineering on a networks,
operating systems, and system security, and he
is enthusiastic regarding any kind of technical
development.

133530 VOLUME 9, 2021


