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ABSTRACT Feature selection plays an important role in pattern recognition and smart computing. The
full set of typical testors constitutes a useful tool for solving feature selection problems, especially those
problems in which the objects are described by both quantitative and qualitative features. However, finding
the typical testors involves a high computational cost. That is why even the most efficient methods become
unsuitable to solve some problems. In this work, a new algorithm was introduced in order to reduce the long
runtimes involved in the search of typical testors. The performance of the proposed algorithm was evaluated
by means of several tests, which use both real-world and simulation data. MATLAB and Java language on
Eclipse SDK platform were used to build the simulation dataset and to perform the tests, respectively. The
runtimes achieved by the proposed algorithm were significantly shorter than those obtained by fast-BR and
GCreduct (the two fastest algorithms) mainly when the latter ones exhibited excessively long runtimes.

INDEX TERMS Algorithm, feature selection, runtimes, typical testors.

I. INTRODUCTION
Testor theory emerged together with the development of
logical mathematical methods for the localization of faults
in electrical circuits at the middle of the last century [1].
After that, only few years were needed for this theory to
be extended to the solution of classical pattern recognition
(PR) problems [2]. Testor theory has proved to be an impor-
tant tool mainly when working with mixed (quantitative and
qualitative) and incomplete data is required. In addition, its
development is closely related to the advances achieved in
the field of the Logical Combinatorial Pattern Recognition
(LCPR) [3].

The most compact form in which a testor can be found
is called typical testor (TT). The set of all TTs is a useful
tool used mainly for feature selection tasks [4], [5] or cluster-
ing [6], [7]. TTs have been used successfully to determine
the feature relevance in different supervised classification
problems [8]–[15]. Likewise graph learning techniques have
impacted on the current advances in digital signal and image
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processing (e.g., hyperspectral image analysis [16], [17]),
typical testors have played an important role in those fields
that require the smart processing of mixed and incomplete
data.

However, the time required for computing the complete
set of TTs can be excessively long in certain situations. This
is due to the fact that finding all the typical testors in a
given problem involves the evaluation of all sets of features,
whereas the relationship between the number of sets of fea-
tures and the number of features is exponential, as shown by
the following expression:

C = 2n − 1

whereC is the number of set of features and n is the number of
features employed to describe the problem. Then, in problems
described by a large number of features, the search of all
TTs might take long time intervals. Undoubtedly, this is a
nonpolynomial problem that can lead to a high computational
cost. All the notation included in the paper is provided in
Appendix A.

Algorithms addressing the search of all TTs must run as
faster as possible [18]–[24]. Various strategies have been
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developed to reach this goal, for example, the application of
hardware and software-hardware configurations [25], [26].
In addition, several algorithms have been proposed in order
to compute only the minimum-length TTs [27], [28], not the
set of all TTs.

Nevertheless, the use of the fastest algorithms, even when
they run on powerful computers, does not ensure to solve
complex problems in short time (indeed, runtimes could take
weeks for some problems [27]).

In this paper, a new algorithm, named Recursive over the
PossibleMatrices, RoPM, was developed in order to diminish
the runtime involved in TTs search procedures. The pro-
posed algorithm performs binary operations over the possible
reductions of the basic matrix. This matrix includes essential
information resulting from the comparison of the objects
involved in the problem.

The newRoPM algorithm allows for the computation of all
TTs in short runtimes, regardless the complexity of the prob-
lem. In many situations, the proposed algorithm is capable to
exhibit better performances than the fastest algorithms (fast-
BR andGCreduct [20], [21], [24]), especially when achieving
a significant reduction of runtimes is required. In partic-
ular, GCreduct is an algorithm that allows for the search
of reducts (from the rough set theory) and TTs [21], [24].
Reducts and TTs are concepts very close related to each
other [21], [27]–[30].

This paper is organized as follows: Section II presents
the concepts of the LCPR approach related to the testor
theory. Section III provides a brief summary of main works
performed in order to find TTs. In Section IV, the operation of
the novel algorithm is described in detail. Section V presents
a comparative study on the performance achieved by the
proposed algorithm through the implementation of several
tests. Section VI presents the conclusions and some future
works.

II. MAIN CONCEPTS OF THE LCRP APPROACH
A PR problem can be described through intrinsic object
features. The term object refers to the elements under study.
The term feature represents the variables that describe the
objects, usually features describe their main properties. Fea-
tures can be expressed through variables either quantitative
(age, height, weight) or qualitative (skin color, type of hair,
religion). Since missing data and partial representations are
often involved in some problems, incomplete descriptions
should also be considered.

A class is formed by a set of objects that fulfill certain
properties. In this paper, we consider each object belongs to
one and only one class; that is, each object has just one class
label.

An object representation is given by a specific set of fea-
tures defined as a n-tuple of variables in the following form:
I (O) = (x1(O), . . . , xn(O)), where xi(O) ∈ Mi, i = 1, . . . , n
is the value of the feature xi in the object O and Mi is the
admissible set of values of xi.

In the area of supervised classification, a PR problem
can be represented in matrix form. Firstly, a learning matrix
(LM), where each row represents an object and each column
represents a feature, is built up. A LM is comprised by the
information of the object classification. This can be achieved
by using, for example, subsets of rows for each class, or new
columns indicating the membership to the classes, or any
other choice [18]. Table 1 shows an example of a LM with
only five objects grouped into two classes (K1, K2) and
characterized through four features.

TABLE 1. A learning matrix (LM) example.

An effective comparison between objects can be performed
through the application of a different comparison criterion
for each feature. A comparison criterion (CC) is defined as
follows:
Definition 1. Let Li be a complete ordered set and Mi be

the admissible set of values of xi, the function denoted as CC
of the values of xi is defined as Ci : Mi×Mi→ Li, such that:

CCi(xi(O), xi(O)) = min
y∈Li
{y}

if CCi is a dissimilarity CC between values of xi, or

CCi(xi(O), xi(O)) = max
y∈Li
{y}

ifCCi is a similarity CC between values of xi for i = 1, . . . , n.
Then, a CC can express the similarity (or dissimilar-

ity) degree between any two values of a variable xi for
i = 1, . . . , n. Two examples of boolean dissimilarity CC are:

CC1 (xs(Oi), xs(Oj)) =
{
0 if xs(Oi) 6= xs(Oj)
1 otherwise

(1)

CC2 (xs(Oi), xs(Oj)) =
{
0 if xs(Oi), xs(Oj) ∈ Ap
1 otherwise

(2)

where xs(Oi) and xs(Oj) are the values of feature xs for objects
Oi and Oj, respectively, and Ap is a set of values of the
variable xs [5]. For example, the CC given by (2) can be
used in order to compare the feature x1 (age) in the example
presented in Table 1. Three sets of values (Ap) are used in this
example to compare the values of x1: [under 20], [between
20 and 35], and [over 35]. The remaining features in the
example given in Table 1 can be compared by means of (1).

A testor can be defined as the set of features by which all
objects that belong to different classes can be differentiated
according to the predefined CCs. In a subset τ of columns of
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LM, if none row is similar to another row belonging to a dif-
ferent class (according to the boolean CC established for each
feature), then the set of features τ is a testor [3], [18], [30].
Given the example presented in Table 1, the set given by
features x2 and x3 constitutes a testor because it is not possible
to find two similar objects that belong to different classes.
On the other hand, the set given by features x3 and x4 is
not a testor because the objects O1 and O5, which belong to
different classes, are similar. Besides, it can be verified that
the set of all testors is the following:

{{x1, x2, x3, x4}, {x1, x2, x3}, {x1, x3, x4},

{x1, x3}, {x2, x3, x4}, {x2, x3}}

A testor is an irreducible testor (i.e., a TT) if it stops being
a testor when any of its features is removed [5]. Given a
testor comprised by the subset τ of columns of LM, if τ
stops being a testor when any of its columns is removed,
then τ is a TT [3, 18, 30]. For example, given the example
presented in Table 1, the set given by features x1 and x3 is a
TT. However, the set given by features x2, x3, and x4 is not
a TT because although when x4 is removed, the remaining
features, x2 and x3, represent a testor. Moreover, it can be
verified that the set of all TTs is:

{{x1, x3}, {x2, x3}}

Another useful matrix, the binary comparison matrix
(CM), can be also built up by applying pre-established binary
comparison criteria for each feature and making all possible
comparisons between the objects of different classes. Each
row in a CM contains the result of the comparison between
two objects [18]. As an example, Table 2 presents the CM
corresponding to the LM presented in the Table 1. The values
of feature x1 were compared bymeans of (2), whereas (1) was
used in order to compare the values of features x2, x3, and x4.

TABLE 2. CM corresponding to the LM presented in Table 1.

The first row of Table 2 is comprised by the boolean vector:
[1, 0, 1, 1], which means that objects O1 and O4 are similar
only for the feature x2; according to the remaining features,
these two objects are dissimilar. The next rows represent the
results obtained by the other comparisons.

A useful definition related to the CM is the subrow.
Definition 2. Given any two rows of CM, denoted by Rp

and Rq, Rq is a subrow of Rp if and only if:
1) in every column where Rq presents a ‘1’, Rp also

presents ‘1’,

2) there is at least one column where Rp presents a ‘1’ and
Rq presents a ‘0’.

According to these statements, since:

- the second and sixth rows of the CMpresented in Table 2
have‘1s’ at the first (x1) and second (x2) columns,

- the sixth row has ‘1s’ at the third (x3) and fourth (x4)
columns, and

- the second row has‘0s’ at such positions,

the second row (1 1 0 0) is a subrow of the sixth
row (1 1 1 1). Similarly, it can be seen that the fifth row is
a subrow of the first, third, fourth, and sixth rows.

The subrows are also useful for determining the basic rows
in CM.
Definition 3. Let Rb be a row of CM. If there is not another

row being a subrow of Rb, then Rb is a basic row (BR). The
matrix formed by the different BRs of a CM is called as basic
matrix (BM).
Since the only rows with no subrows in the CM presented

in Table 2 are the second and fifth rows, they are the only
BRs. The resulting BM is:

bm =
[
1 1 0 0
0 0 1 0

]
It is recommended to obtain the TTs from the BM rather

than from the previously mentioned matrices [5]. Usually,
the BM is comprised by a number of rows and a density of
‘1s’ that are smaller than those of the CM and the LM, thus
the work with the BM is an advantage. Indeed, the starting
step of the fastest algorithms for TTs computing involves the
work with the BM [18]–[21].

A given set of columns of BM, τ , is said to form a covering
if it is not comprised by any row with all ‘0’ elements [20].
Accordingly, the first and second columns, c1 and c2, of the
BM obtained in the example, are not a covering because
the second row they form is an all-0 row. On the contrary,
the first, second and third columns, c1, c2, and c3, are a
covering since they do not form any all-0 row. This way, it can
be verified that the set of covering of such a BM are:

{{c1, c2, c3, c4}, {c1, c2, c3}, {c1, c3, c4}, {c1, c3},

{c2, c3, c4}, {c2, c3}}

It should be notice that every covering of the BM is a testor.
Definition 4. Let Rt be a row of a BM and τ =

[x1, x2, . . . , xn] a set of features of the BM. Rt is said to be a
typical row (TR) of the feature xi (such that 1 ≤ i ≤ n) with
respect to τ , if it has ‘1’ at the column corresponding to xi
and ‘0’ at the remaining columns of τ .

Regardless the definition of TT and TR, a set of features τ
is a TT if:

a) it is a covering
b) for each feature xi ∈ τ there is at least one TR of the

feature xi with respect to τ .

The set of features τ that fulfills the condition b) is called
as sequence of compatible elements (SCE) [20].

128222 VOLUME 9, 2021



J. P. Gómez et al.: RoPM: Algorithm for Computing TTs Based on Recursive Reductions

In case of the example’s BM, the covering formed by
columns c1, c2, and c3 does not comply with condition b)
since a TR cannot be found for features 1 and 2. It can be
verified that condition b) is fulfilled by only the coverings:

{{c1, c3}, {c2, c3}}

It should be noticed that this SCE coincides with the set of
TTs obtained previously.

The next section provides a brief summary of the main
works performed in order to find TTs.

III. RELATED WORK
Reducing the long runtimes that the most efficient algorithms
still require to solve certain problems is the main motivation
for the development of new methods of searching TTs. The
algorithms developed for computing TTs can be classified in
either external or internal scale algorithms [5]. External scale
algorithms use lists of feature sets (candidates) to find TTs.
The differences between the several external scale algorithm
implementations reside mainly in the strategy used for the
candidate formation, which involves the work with a number
of candidates as lower as possible. With regard to the internal
scale algorithms, they use the aforementioned matrices and
are focused on finding the conditions that ensure the existence
of the TTs without using lists of candidates.

Up to now, the fastest algorithms are external scale algo-
rithms. Among them, the lowest runtimes correspond to
those algorithms that select only the features that satisfy
specific properties [18]–[21]. Some algorithms select those
features that ensure that the candidate meets the testor prop-
erty at first place, and after that, they verify the typicity
property [19]. Nevertheless, the first step of other algo-
rithms is to select those features that guarantee the typicity
of the candidate, and afterword, they verify testor prop-
erty [18], [20], [21]. Two techniques are recognized as the
fastest techniques for computing TTs: the algorithms fast-BR
and GCreduct [20], [21], [24]. However, the use of these
algorithms does not ensure to reach the solution of complex
problems in short time (indeed, the work based on powerful
personal computers can take days or weeks.) In fact, accord-
ing to [24], these algorithms take several tens of seconds to
solve problems that do not include a large number of features.

The main motivation for developing a new algorithm is to
help to reduce the excessive runtimes that the most efficient
algorithms still require to solve the most complex problems.
The main idea and novelty of this proposal is to use the struc-
ture of the basic matrix to construct the candidates list on the
fly, while successive reductions of this matrix are performed.
The aim of this method is to reduce the number of candidates,
the cost involved in testing testor property and typicity, and
the runtimes required to solve complex problems.

A detailed description of the proposed method is pre-
sented in next section, where an example based on a simple
basic matrix is developed in order to facilitate understanding.
At this section, a second example constituting a comparison
between the number of candidates verified by the proposed

algorithm and those verified by the algorithms fast-BR and
GCreduct is presented.

IV. RoPM: A NEW ALGORITHM FOR TTs COMPUTING
In this paper, a new algorithm named Recursive over the Pos-
sible Matrices (RoPM) is proposed for computing TTs. This
algorithm is an external scale algorithm that works in a recur-
sive way. The algorithm rearranges the BM on each iteration,
and removes the rows that do not provide useful information
and could overload the next iteration. Then, the algorithm
performs logical operations that ensure the testors arising.
Whenever a testor is found, typicity verification is performed
using the original BM. Fig. 2 shows a diagram of algorithm
RoPM.

The main function (Fig. 1) reads the file comprised by the
input parameter (BM), initializes the input variables, runs the
timer, calls the recursive methodRoPM, stops the timer when
the recursivemethod ends, and display the results. Two global
variables are defined in the main function: the arrays bm
and tt. The matrix bm stores the input BM and is used in order
to check the typicity of both the candidates and the testors.
The matrix bm remains unaltered during all iterations. The
matrix tt, initially empty, will be used to store the TTs. Other
two variables are defined: the arraysmt andmasc. The matrix
mt also stores initially the input BM, but unlike bm, mt is
modified at each iteration. Some features selected from the
first row of mt determine the candidates. The latter are stored
in the vector masc, initially empty, which is modified at each
iteration as the candidates are updated.

FIGURE 1. Main Function. Flow Diagram.

The recursive main function RoPM (see Fig. 2) essen-
tially includes eight internalmethods:And, SCEr,UpdateTT,
SetIndexTo0, All0Row, OrdMat, SCEm, and UpdateMT.

The BM of the example developed in Section II will be
used in order to explain how such methods work. This BM is
expressed as follows:

bm =
[
1 1 0 0
0 0 1 0

]
During the algorithm explanation, although some of the

parameters used by the methods, for example, mt, tt, masc,
and ind_m, are binary they will appear in function of the
indices of the ‘1s’. This allows for a more suitable represen-
tation of the way the RoPM algorithmworks. Then, the initial
values of the input parameters for the algorithm, iteration #1,
are:

mt =
[
1 2
3

]
masc = []
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FIGURE 2. Algorithm RoPM. Flow Diagram.

• Iteration #1:
Firstly, method And is executed in order to obtain the

indices of the all-ones columns of matrixmt(vector resp). For
the current example, the vector resp, obtained at iteration #1,
is empty because the same index is not included in all rows
of mt.

resp = []

Since the vector resp is empty, the method OrdMat is
called. The method OrdMat determines which row will be
the first row in the matrix mt. The idea is that this position
is occupied by the row with the lowest number of ‘1s’. If the
first row has not the lowest number of ‘1s’, then it is switched
with the row with the lowest number of ‘1s’. Then, the output
matrix of OrdMat, that is, mt, at iteration #1 is:

mt =
[
3
1 2

]
However, if several rows have the same lowest number

of ‘1s’, then, the total number of ‘1s’ of the columns at the
positions of the ‘1s’ of these rows, is computed for each of

such rows. The row yielding the highest result will occupy
the first position in matrix mt.

The other output of method OrdMat, the vector ind_m,
is comprised by the indices of the positions of the ‘1s’
in the resulting first row of matrix mt. Such indices are
arranged in descending order, according to the number of ‘1s’
in the column identified by the corresponding index. Thus,
at iteration #1 the vector ind_m is:

ind_m = [3]

At the end of method OrdMat, a cycle is executed and
repeated as many times as the length of the vector ind_m.
For the current example, iteration #1 runs this loop only
one time, since the vector ind_m is comprised by only one
index. Inside this loop, the method SCEm will verify the
typicity of the feature set defined by both the vectormasc and
the current index of vector ind_m. This procedure is always
applied to the matrix bm. Since the vector masc is null and
the vector ind_m has just one index at iteration #1, the method
SCEmworks with only one column of thematrix bm(the third
column):

mct(:, 3) =
[
0
1

]
The output of method SCEm is ‘‘true’’ at iteration #1,

which indicates that the typicity condition is fulfilled.
Whenever the typicity condition is fulfilled, this index of

the vector ind_m is included in the vector masc. In case of
the typicity condition is not fulfilled, the analysis is repeated
for a new index of vector ind_m. When this cycle ends, the
current iteration also ends. Thus, at the end of iteration #1 the
vector masc is:

masc = [3]

Afterwards, the method UpdateMT is called in order to
perform the following actions: (a) removing the rows of
matrix mt that have ‘1’ at the position given by such an
index of vector ind_m; (b) turning into all-zeros columns
the columns of matrix mt at the positions of the indices that
were included in vector masc during previous cycles. Since
at this stage of iteration #1, just one index has been included
in vector masc, the first action is the only applied to matrix
mt. Hence, at the end of this iteration, the matrix mt is:

mt =
[
1 2

]
In this case, the application ofUpdateMT resulted in a new

matrix mt with one row less. At each iteration, successive
reductions ofmt are performed byworkingwith bothmethods
UpdateMT and SetIndexTo0 (the latter is explained below).
These reductions occur in matrix mt as many times as possi-
ble. That is why the proposed algorithmwas namedRecursive
over the Possible Matrices (RoPM).
Iteration #1 endswhen a new iteration of themethodRoPM

is called. For the iteration #2, the inputs parameters are:

mt =
[
1 2

]
masc = [3]
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• Iteration #2:
The method And is executed and the result (vector resp) is:

resp =
[
1 2

]
which matches the only row included in matrix mt,
as expected. Since the vector resp is not empty, the method
SCEr is called.
The method SCEr verifies the typicity of the feature sets

defined by both the vectormasc and each index of vector resp.
This procedure always runs on the matrix bm. At this iteration
and according to the features included in both the vectormasc
and the vector resp, the method SCEr evaluates two subsets
of columns of matrix bm: the subset given by the third and the
first column, and the subset given by the third and the second
column, that is:

bm(:, [3 1]) =
[
0 1
1 0

]
bm(:, [32]) =

[
0 1
1 0

]
At this iteration, the method SCEr performs the corre-

sponding verification which reveals that both sets of features
fulfill the typicity condition. Thus, vector resp includes two
indices at the method SCEr output:

resp =
[
1 2

]
Each index in vector resp at the method SCEr output,

as well as the indices of vector masc, form a new TT that
is stored (UpdateTT). Then, the TTs are updated at iteration
#2, which yields the following matrix tt:

tt =
[
3 1
3 2

]
The ‘1s’ in the columns of matrix mt, which are iden-

tified by the indices of vector resp, are switched to ‘0s’
(SetIndexTo0). Hence, at iteration #2, the matrix mt at the
method SetIndexTo0 output is:

mt =
[
0 0

]
Then, themethodAll0Row is executed. Thismethodmakes

the current iteration end becausematrixmt includes a null row
vector. If matrixmt does not include any null row vector, then
the method OrdMat is called.
At this stage, since every preceding iteration has already

been completed, the method RoPM ends as well. Finally,
according to the matrix tt, the resulting set of TTs is:

TT =
[
x1 x3
x2 x3

]
An advantage of the algorithm RoPM is the low number

of candidates that this algorithm works with. This can be
revealed, for example, through a BM from [21], denoted here
as BMa, and defined as:

BMa =


1 0 0 0 0 0 0
0 1 0 1 0 0 0
0 0 0 0 0 0 1
0 0 1 0 1 0 0
0 0 0 0 0 1 0



It should be noticed that the algorithm fast-BR removes the
repeated columns from the BM. Then, columns #4 and #5 are
removed from BMa, resulting on the following BM:

BMr(fast_BR) =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0


In this case, the pairs of columns #2 and #4,

and #3 and #5 of BMa are represented in matrix
BMr by the columns #2 and #3, respectively. Besides,
columns #6 and #7 of BMa are represented in matrix BMr by
the columns #4 and #5, respectively.

Table 3 presents the candidates that are verified by the
algorithms GCreduct, fast-BR and RoPM. The TTs are high-
lighted in bold-type text. The candidate #11 of the algorithm
fast-BR represents a pseudo-TT, since it comes from theBMr.
Then, the TTs are computed from this pseudo-TT.

As shown in Table 3, GCreduct evaluated 24 subsets, fast-
BR evaluated 12 subsets plus the computation of TTs from the
pseudo-TT, and the proposed RoPM evaluated just 9 subsets.
These results reveal that the number of candidate subsets
evaluated by fast-BR and GCreduct algorithms is higher than
the number of candidates evaluated by the RoPM algorithm.
However, it should be noticed that processing fewer candi-
dates does not necessarily guarantee that an algorithm is the
fastest; other important factors, such as the way by which
the testor and typicity properties are verified, determine the
runtime of an algorithm as well.

V. PERFORMANCE EVALUATION
Several experiments were implemented for evaluating the
performance of the RoPM algorithm. The experiments were
aimed to evaluate its with respect the two fastest algo-
rithms: fast-BR and GCreduct [24]. The comparison with the
recent algorithms presented in [27], [28] was not performed
because they do not deliver the full set of TTs. The tests
were conducted on a laptop Alienware, model 17R3, Intel(R)
Core (TM) i7-6700HQCPU@2.60GHZ (8CPUs) processor,
16 GB RAM, Windows 10 Pro 64 bits operating system. The
algorithms were programmed in Java through the software
Eclipse SDK, version 4.13.

A. TESTS WITH REAL-WORLD DATASETS
The first test was carried out by using ten BMs available in
the machine learning repository of the Informatics Sciences
University (UCI), from Havana, Cuba [31]. Such BMs come
from true study cases and are widely used on different works
on Pattern Recognition, artificial intelligence and machine
learning. Table 4 shows the name and the search space of
each BM, as well as the candidates solutions evaluated by
the algorithms fast-BR, GCreduct and RoPM. The lowest
numbers of candidates evaluated are highlighted in bold type
text.
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TABLE 3. Candidates verified by each algorithm.

Table 4 reveals that RoPM evaluates the lowest number
of candidates in all cases. Indeed, this number of candidates
is always much lower than the number of candidates eval-
uated by the algorithms fast-BR and GCreduct. However,
as mentioned in Section IV and presented in Table 5, this
does not necessarily mean that RoPM is the fastest at all. The
Table 5 shows the runtimes achieved by the three algorithms
for these BMs.

In Table 5, the density of ‘1s’ (rate of the number of ‘1s’
and the number of BM items), the BM order (number of
rows per number of columns), the number of TTs found,
and runtimes, are presented. The lowest runtimes per test
are highlighted in bold type text. Tests were repeated several
times because in many cases the runtimes were very short

TABLE 4. Number of candidates evaluated. UCI BMs.

TABLE 5. Algorithm performance. UCI BMs.

and then, no accurate conclusions could be made. When
QSAR-Biodeg, Diabetes, Dermatology, Flags, Sponge, and
Cylinder datasets were used, the algorithms were applied ten
times.WhenConnect-4, Student-por, Student-mat, and Lung-
cancer datasets were used, the algorithms were applied five
times. The runtimes presented in Table 5 are the mean values
of the execution times incurred by each algorithm, per dataset.

Fig. 3 shows a bar chart with the performance achieved
by the three algorithms. In this figure, horizontal axis cor-
responds to the BM identification number and the vertical
axis corresponds to each average runtime expressed as the
percentage of the sum of the average runtime attained by the
three algorithms.

Both Table 5 and Fig. 3 reveal that fast-BR was the fastest
algorithm for four BMs, it was the second fastest algorithm
for two BMs, and it was the slowest algorithm for the remain-
ing four BMs. GCreduct was the second fastest algorithm for
four BMs, and it exhibited the worst results for the resting
six BMs. The algorithm RoPM was the fastest one for six
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FIGURE 3. Algorithm Performance in Function of the Average Runtimes.
UCI BMs.

FIGURE 4. Algorithm Performance in Function of the Total Average
Runtimes. UCI BMs.

BMs, it achieved the second most outstanding times for the
remaining four BMs.

Fig. 3 also shows that when the algorithm RoPM did not
achieve the best performance, it exhibited a low percent-
age of average runtime; actually, this algorithm achieved a
percentage of average runtime below the 20% for all BMs.
The algorithms fast-BR and GCreduct obtained percentage
of average runtime below the 20% for five and one BMs,
respectively. With regard to the highest percentages, two
algorithms, GCreduct and fast-BR, exhibited percentages of
average runtime above the 50% for six and three BMs, respec-
tively.

Fig. 4 shows the total average runtime (sum of the average
runtimes from the work with the ten BMs) of each algorithm
as a percentage of the sum of the total average runtimes
achieved by the three algorithms. The shortest average run-
time, 13.68 %, was achieved by the algorithm RoPM; the
algorithms fast-BR and GCreduct achieved the 18.47 % and
67.85 %, respectively.

Nevertheless, such results do not allow for assessing the
conditions that lead an algorithm to reach the solution of a
problem in the shortest runtime. The next section is a deeper
analysis of the performance behavior of the three algorithms
under different conditions of application.

TABLE 6. Number of TT. in UD BMs.

B. TESTS USING UNIFORM-DISTRIBUTED BASIC
MATRICES
In this section, the results obtained from the implementation
of new tests, which could lead to a better performance char-
acterization of the algorithms, are presented. Specifically,
such results were achieved by using uniform-distributed (UD)
BMs. The BMs were built up by means of the software MAT-
LAB. The work with six different BM dimensions, 30 × 25,
40 × 30, 60 × 40, 100 × 45, 500 × 50, and 700 × 55,
was performed. 114 BMs (19 matrices per dimension) having
different density of ‘1s’, from 0.05 to 0.95 with step 0.05,
were built up.

Table 6 shows the number of TT obtained for each matrix.
In this table the largest numbers of TT are more frequently
obtained at low densities and high dimensions. In cases of
the number of TTs exceeded ten thousand, this number was
rounded by defect and expressed in scientific notation.

Table 6 reveals that the highest amounts of TTs of all
dimensions are found at densities of ’1s’ between 0.10 and
0.25.

Tables 7, 8, and 9 show the runtimes (in seconds) achieved
by the three algorithms for BMs with densities within the
intervals: [0.05 0.25], [0.3 0.6], and [0.65 0.95], respectively.
In the first columns of these tables, the BM dimensions
30× 25, 40× 30, 60× 40, 100× 45, 500× 50, and 700× 55
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TABLE 7. Runtimes in UD BMs. Density: [0.05 0.25].

are denoted by numbers from 1 to 6 respectively. Several
executions per matrix were performed for the shortest run-
times, in order to ensure the reliability of the results; in such
cases the average runtime is presented. For example, in case
of 30 × 25 matrices, each algorithm was executed 30 times
per matrix and then, the average value was computed. The
shortest runtime attained from the work with each BM is
highlighted in bold type text.

Results presented in Table 7 reveal that the best perfor-
mances for the density interval [0.05 0.25] were more often
achieved by the algorithm RoPM. Specifically, RoPM stands
out when both fast-BR and GCreduct incur their longest
delays. In fact, runs of Fast-BR and GCreduct had to stop at
36, 48 or 345 hours in some cases (Table 7), due to their delay
compared to the runtimes of algorithm RoPM.

Results presented in Tables 8 and 9 reveal that the algo-
rithms fast-BR and GCreduct tends to reach the shortest
runtimes for the density interval [0.3 0.95]. Specifically,
the algorithm GCreduct stands out at low dimensions and
high densities (see Table 9). However, the runtimes achieved
by the three algorithms are in general shorter than one minute
for density intervals showed in Tables 8 and 9. The run-
times become more significant only for BMs with dimension
700 × 55 and densities between 0.3 and 0.4. In particular,
the algorithm GCreduct incur in a significative delay (more
than 7 hours) for the BM with density 0.3 and dimension
700× 55.

TABLE 8. Runtimes in UD BMs. Density: [0.3 0.6].

FIGURE 5. Algorithm Performance in Function of the Total Runtimes.
UD BMs.

Fig. 5 shows the time taken by each algorithm to complete
all the tests that used the UD BMs, expressed as a percentage
of the sum of the time taken by the three algorithms. The
algorithm RoPM only required 0.53 % of the total time to
complete the tests, whereas algorithms fast-BR and GCreduct
each resulted in about 50% of that time. This is essentially
due to the fact that in cases of large dimension BMs with low
density of ‘1s’ (a problem with very high complexity), by far
the best performance was achieved by the algorithm RoPM
and the use of algorithms fast-BR and GCreduct became
unsuitable.
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TABLE 9. Runtimes in UD BMS. Density: [0.65 0.95].

C. STATISTICAL ANALYSIS
This section presents a complementary analysis of the algo-
rithm performance resulting from the tests carried out on
the UD BMs (section VB). This work consisted in the sta-
tistical analysis of the positions occupied by the algorithms
according to the average times consumed during the tests.
Two nonparametric statistical tests were performed: Fried-
man [32] test and Holm’s post-hoc [33] test. A significance
level α = 0.05 for a 95% of confidence was established
for the hypothesis tests. Two hypotheses were established:
a null hypothesis stating that there is no difference between
the positions attained by the algorithms, and an alternative
hypothesis stating that there are differences between such
positions.

The results of the implementation of both tests (Friedman
and Holm) are shown in Table 10. The p-values highlighted in
bold type text represent the cases of the null hypothesis was
rejected. Similarly, the rankings highlighted in bold type text
identify the algorithm that achieved the first position as result
of the tests.

For densities of ’1s’ between 0.05 and 0.20, by far the best
performance was achieved by means of the RoPM algorithm
(see Table 10). This density interval is the most critical since
it is the interval that yields the highest number of TTs (see
Table 6 ). In addition, RoPM algorithm achieved the sec-
ond highest statistical ranking for densities of ’1s’ equal to

TABLE 10. Statistical analysis of the algorithm performance.

0.25, 0.30, 0.35, 0.55, and 0.95. Besides, according to the
Holm’s post-hoc test, no significant differences between the
performance of RoPM and those of fast-BR and GCreduct
are reached for densities of ’1s’ equal to 0.25, 0.30, 0.35,
and 0.55.

Although RoPM did not achieve the first position very
often, this algorithm reached the best performance by far
when long runtimes are required to compute the TTs. Then,
this statistical analysis is confirming the results presented in
previous sessions.

The following suggestions can be very useful for the solu-
tion of certain problems:

- To use RoPM for densities of ’1s’ lower than 0.2
- To use fast-BR for densities of ’1s’ between 0.25 and
0.75

- To use any algorithm for densities of ’1s’ higher than
0.75 and lower than 0.95.

- To use GCreduct for densities of ’1s’ higher or equal
to 0.9

Consequently, and on the basis of the results achieved by
the statistical tests, it is possible to state that the method
RoPM is suitable to be used for basic matrices with low and
high densities (less than 0.25 and between 0.75 and 0.95).
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These suggestions must be followed carefully, because
they have been stated as result of the tests performed on UD
BMs. This may change for other BM distributions.

VI. CONCLUSION
This paper presents a new technique, the algorithm RoPM,
which allows for the computation of all TTs.

Different tests carried out by means of BMs of the UCI
machine learning repository [31] revealed that in many cases
the algorithm RoPM is capable of performing better than
the already-published two fastest algorithms: fast-BR and
GCreduct.

In addition, other tests were implemented by means of
randomly-generated UD BMs with different densities of ‘1s’
and dimensions, in order to achieve a better characterization
of the algorithm’s performance. The results revealed the abil-
ity of the algorithm RoPM to find the TTs in short runtimes,
regardless the complexity of the problem. Although RoPM
was not the fastest algorithm in all cases, the results showed
that it can significantly reduce the runtimes required for
computing the TTs. In fact, the cases where both algorithms
fast-BR and GCreduct became unsuitable were those when
RoPM showed its greatest power. Thus, in cases of density of
‘1s’ lower than 0.25, the use of RoPM is very advisable.

The RoPM algorithm constitutes a significant contribution
to reduce the high computational costs associated with the
nonpolynomial problem of finding the TTs.

APPENDIX A
Nomenclature used in the paper, in alphabetical order:
Notations Meanings
Ap Set of values of certain feature
BD Bachelor Degree
BM Basic Matrix
bm Variable that stores the BM
BMs Basic Matrices
BR Basic Row
BRs Basic Rows
C Number of sets of features
CC Comparison Criterion
CCk Comparison Criterion k
CCs Comparison Criteria
CM Comparison Matrix
Den. Density of ‘1s’
F Female
fast-BR Faster Boolean Recursive algorithm
f-BR fast-BR
GCr GCreduct
GCreduct Algorithm for computing all reducts based

on Gap elimination and attribute
Contribution

HS High School
K r Class r
LCPR Logical Combinatorial Pattern Recognition

LM Learning Matrix
M Male
masc Variable that stores the candidates
MD Master Degree
mt Variable that stores the modified BM
n Number of features
Oi Object i
PR Pattern Recognition
RoPM Recursive over the Possible Matrices
Rp Row p
S. space Search Space
SCE Sequence of Compatible Elements
TR Typical Row
TT Typical Testor
tt Variable that stores the TTs
TTs Typical Testors
UCI Informatics Sciences University of Cuba
UD BMs Uniform-distributed BMs
xj Feature j
τ Set of features
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