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ABSTRACT Traffic congestion is one of the challenges that face urban cities’ planners. It affects the
environment as it increases the emissions of CO2 and affects the logistics systems as it may increase the travel
time of different vehicles. Scheduling traffic signals is one of the ways to solve this problem. In the urban
traffic signal scheduling problem, it is desired to get the optimum schedule for each considered traffic signal
to maximize or minimize a specific objective function(s); these schedules determine the active and inactive
traffic phases during each cycle time. In this paper, a mathematical programming model for solving the
urban traffic signal scheduling problem is presented, the proposed mathematical model captures the physical
constraints of the problem. Furthermore, a firefly-based rolling horizon approach is proposed to solve the
problem. Both methods are used to solve a traffic-responsive system, which is considered the future of traffic
control systems. The performance of both methods has been simulated using the SUMO traffic simulator to
verify the solutions. The performance of the solutions was measured using the average queue length of the
roads, the average waiting time, and the average travel time. The proposed methods have been applied to a
real case study, and the results were remarkable.

INDEX TERMS Firefly heuristic, mathematical programming, rolling horizon, traffic signal scheduling,
transportation.

I. INTRODUCTION
Traffic congestion is one of the most critical problems that
face almost all metropolitan cities in the world. According
to the organization of motor vehicle manufacturers, the sales
of different types of vehicles show an upward trend with
about 3% increase in sales each year, this increases the traffic
congestion on different roads. In turn, it affects the traveling
time of vehicles and has a negative impact on the environment
as it increases the emissions of Co2. Furthermore,

One of the possible ways to decrease the impacts of traffic
congestion is to control the timings of traffic signals at the
intersections. Typically, there are two types of systems used to
control the operation of traffic signals, the fixed-time control
system and the traffic-responsive control system [1]. In the
fixed-time control system, the system parameters such as the
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cycle length, the phase splits, and the phases sequence are
specified in advance based on historical data. This type of
control system is suitable when the flow of an intersection
shows no or low changes over time. On the other hand,
in the traffic-responsive control system, all the previously
mentioned parameters are not fixed, and they are subject
to changes according to the changes in the flow rates and
patterns. Hence, the traffic-responsive control system can
deal with the instantaneous flow of vehicles [2].

Figure 1 shows an illustration of an intersection with the
locations of the different traffic signals. The green time dura-
tion is the period of time within which vehicles are allowed to
move from one road to another, while the red time duration is
the period of time that vehicles are not allowed to move from
their current road. A phase is a configuration that determines
the directions that the vehicles are allowed to move to and
from, and the cycle length is the time required to perform a
cycle of phases [2]. To control the timings of traffic signals,
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FIGURE 1. Illustration of an intersection.

there is a need for a tool that is effective and efficient in such
a dynamic traffic environment. Discrete event simulation is
one of the tools used to simulate traffic systems and develop
different scenarios to select the best scenario among them.
However, the generated solution is not optimum and better
solutions may exist [3]. The contributions of this work are:

1. The introduction of amathematical model for the traffic
signal scheduling problem, the model considers the
physical constraints related to the problem which have
not been investigated before. The model can solve
small instances to optimality.

2. The introduction of a new firefly-based constructive
heuristic to solve the problem efficiently. This heuristic
is used to solve realistic problem instances, that are not
tractable by the closed form solution approach.

After this introduction, the problem description is pre-
sented in the second section. The related work is discussed
in the third section, the proposed new mathematical model
is presented in the fourth section, and the proposed new
firefly constructive heuristic-based rolling horizon technique
is presented in the fifth section. The results and discussion are
presented in the sixth section. Finally, the conclusions and the
directions for future work are presented.

II. PROBLEM DESCRIPTION
In this work, the traffic signal scheduling problem is inves-
tigated considering the traffic-response control system. The
problem aims to determine the optimum duration for the
green and red times for each traffic signal at each road in a
given intersection to achieve a specific objective(s). The start
and the duration of these timings (i.e. green and red times) are
considered as a schedule for each traffic signal. The schedules
of these traffic signals determine the phases which will be
activated.

The objective in the presented case is the minimization of
the summation of the queue lengths of all the roads of a given
intersection.

The structure of a typical intersection is presented in fig-
ure 2. An intersection is composed of a number of roads (|J |),
each road has a length of (Lj), a number of lanes (nj), and two
legs. For each of the roads in a given intersection, there are
two important parameters, the inflow from road (j) at each

FIGURE 2. A representation for an intersection.

FIGURE 3. Different types of settings for a traffic signal (a) setting 1
(b) setting 2 (c) setting 3.

time period (t) to the intersection, and it is represented by
(Qinjt ), and the outflow from that road at each time period to
the other roads and hence outside the intersection, and it is
represented by (Qoutjt ).
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FIGURE 4. Different types of traffic phases.

The total flow to road (j) at time period (t)(TF injt ) is affected
by two components; the queue that is accumulated from the
previous period (Wj(t−1)), and the inflow to the road at this
time period (Qinjt ). Different types of vehicles are passing
through the intersection, each vehicle of type (k) has a length
of (lk ), and the total number of types of vehicles is (K ).
Each road has a Traffic Signal (TS) that regulates the flow

from this road to the other roads in the intersection. Each TS
has three different settings that restrict the direction of flow
from the road to the rest of the roads in an intersection as
shown in figure 3. According to the settings of the differ-
ent (TSs) in an intersection, a phase is formed. The different
types of phases are shown in figure 4.

III. RELATED WORK
The literature is reviewed using these keywords: urban traffic
light, traffic signals, traffic signals scheduling, and traffic
control systems. The reviewed research articles are identified
by searching on various search engines such as google search
and google scholar. In addition, different databases are surfed

to obtain the most relevant research studies. These databases
are, for example, Elsevier, and Springer.

Andrea Villagra et al., proposed two versions of a Cellular
Genetic Algorithm (CGA) to solve the traffic signal schedul-
ing problem, namely the synchronous and asynchronous ver-
sions. They applied their approach to real cases in Spain
and France [4], and the results show the superiority of their
method. Yousef et al., proposed a history-based traffic man-
agement algorithm to tackle the traffic signal scheduling
problem. The algorithm depends on the history of traffic data
to predict the green/red times for each TL at a given intersec-
tion. Their proposed approach has been tested using SUMO
(i.e. traffic simulation environment) [5]. Matias Peres et al.,
presented a methodology based on combining discrete event
simulation with a multi-objective evolutionary method to
solve the traffic signal scheduling problem. They applied their
proposed methodology to three real cases in Uruguay [6].

Kaizhou Gao et al., solved the traffic signals scheduling
problem using a discrete harmony search algorithm. The
algorithm was tested in a case study in Singapore, and
the results show the superiority of the used algorithm [7].
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Javier Ferrer et al., proposed an iterated racing algorithm
that adjusts the number of traffic scenarios. They applied
their proposed algorithm to a real case study in Spain [8].
Peirong (Slade) Wang et al., proposed a linear integer
programming formulation for joint optimization of vehi-
cle space-time trajectories and traffic control. Lagrangian
decomposition and dynamic programming were used to solve
the problem understudy [9].

Sabar et al., provided an adaptive memetic algorithm to
find the optimum schedule for each traffic signal, the data
was collected using induction loop detectors [10]. Gao et al.,
studied a large-scale urban traffic signal scheduling prob-
lem, they proposed three different metaheuristics to solve the
problem. Themetaheuristics: Jaya algorithm, harmony search
algorithm, and water cycle algorithm were used to minimize
the total network delay time [7]. Khooban et al., combined
the general type-2 fuzzy logic sets and the Modified Back
tracking Search Algorithm (MBSA) to control the traffic sig-
nals and phase succession. The solution method guarantees
a smooth flow of traffic with minimum waiting times and
average queue length [11].

Jiajia et al, used an ant colony optimization algorithm to
minimize the time delay of vehicles [12]. Huan et al. proposed
a genetic optimization algorithm for optimizing the timing
durations of traffic signals at a. The authors summarized
their model that the coordination of traffic signals at inter-
sections mimic the coordination cells in cellular space. Their
experimental results were generated with the aid of urban
simulation software [13].

Jin et al., introduced an intelligent control system called
Fuzzy Intelligent Traffic Signal (FITS) to control the cycle
time of traffic signals. They also developed a computational
framework to evaluate the FITS system using microscopic
traffic simulation [14]. Computer simulation is a widely used
tool to represent traffic systems. Jaime et al., performed
different experiments using the PTV-VISSIMTM simulation
software to find the best combination of factors that min-
imizes the average time in the system, fuel consumption,
and CO2 emissions [15]. Adriana et al., addressed a multi-
objective simulation-based signal control problem through
an eco-neighbourhood case study to find the optimal traffic
control plan to reduce congestion during peak hours [16].

Optimal scheduling of traffic signals is of importance
nowadays to tackle the traffic congestion problem. The lit-
erature that considers the traffic-responsive control system
is very limited, and most of these studies used approximate
solution methods to solve the problem. Therefore, it is crucial
to investigate new methods and models that can get the opti-
mum scheduling of traffic signals according to the changes in
the flow rates and patterns.

In this work, a mathematical formulation has been pro-
posed to solve the traffic signal scheduling problem. The
model considers the minimization of the total queue length
that accumulates at an intersection, which is the summation of
the total queue lengths of all the roads at a given intersection.
To the best of the author’s knowledge, this model is the first to

capture the physical characteristics of an intersection such as,
the length of the roads in the given intersection, the maximum
queue length of each road, the number of lanes of each road,
the length of different types of vehicles passing through the
intersection, and the maximum queue of vehicles which a
road can accommodate. In addition, it considers the main
aspects of the traffic signals scheduling problem.

In the era of Industry 4.0 and the growth of information and
communication technology, the importance of transportation
systems increases as a main key in a successful Industry
4.0 system. Travel times need to be decreased to improve the
performance measure of the system.

Heuristics are suitable tools to generate efficient and
effective solutions to complex problems [17]. In this paper,
a firefly-based heuristic is developed to solve the traffic
signal scheduling problem efficiently. The firefly algorithm
has been specifically used as it shows a very good perfor-
mance in solving other problems such as the supply chain
network design [18], resource allocation [19], vehicle routing
problem [20], capacitated vehicle routing problem [19], [20],
machine scheduling [21], and layout optimization [22]. All
the previous problems can be categorized either in the assign-
ment problems category or in the scheduling and sequencing
problems category. Also, the traffic light scheduling problem
is categorized in the scheduling problems category. There-
fore, the firefly algorithm has been used in the presented
problem.

IV. SOLUTION METHODOLOGIES
A. THE MATHEMATICAL PROGRAMMING MODEL
A binary mathematical model has been developed to solve the
urban traffic signal scheduling problem. The sets, parameters,
decision variables, objective function, and constraints are
illustrated next.

1) SETS AND PARAMETERS
J Set of roads with an index of (j) such that

j ∈ {1, 2, . . . .J}.
I Set of traffic signal settings with an index of

(i) such that i ∈ {1, 2, 3}.
T Set of time periods such that

t ∈ {1, 2, . . . ,T }.
K Set of vehicles’ types such that k ∈

{1, 2, . . . ,K }.
RjComp Set of compatible roads of road (j), where

RjComp ⊂ J .

RjInComp Set of incompatible roads of road (j), where
RjInComp ⊂ J .

Lj Length of road (j).
Qinjt Inflow to road (j) at time period (t) from

outside the intersection (vehicles). In other
words, it is the total number of vehicles that
enter road (j) at time period (t) from outside
the interaction.
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Qoutjt Outflow from road (j) at time period (t), this
represents the outflow from road (j) to other
roads, and hence outside the intersection –
(vehicles). In other words, it is the total num-
ber of vehicles that leave road (j) at time
period (t).

Wjt The queue of vehicles, measured by the
number of waited vehicles at road (j) at
time period (t) due to unserved vehicles –
(vehicles).

TF jt Total number of vehicles that are accumu-
lated at road (j) at time period (t) .This num-
ber considers the inflow to road (j) at time
period (t) (Qinjt ), and the number of waited
vehicles at road (j) from the previous time
period (Wj(t−1)) - (vehicles).

Cmax Maximum cycle length.
Cred Minimum red time duration for a setting of

a traffic signal.
lk Average length of type (k) vehicle.
nr j Number of lanes for road (j).
pibj Percentage of vehicles that discharged from

road (b) to road (j) if traffic signal of setting
(i) is set to be ‘‘ON’’.

qmaxj Maximum physical queue length of road (j).
In other words, it is the maximum number
of vehicles that road (j) can accommodate –
the queue length is expressed in terms of the
number of vehicles.

The set of compatible roads for a specific road (j) can be
defined as roads that demonstrate no conflict with road (j) if
both roads have either a traffic signal of setting one or setting
two. On the other hand, the set of incompatible roads for a
specific road (j) can be defined as the roads that demonstrate
conflict with road (j) if both roads have a traffic signal of
setting two. For example, referring to figure 2 and figure 3, if
road one has a traffic signal of setting two sets to be ‘‘ON’’,
then the sets of compatible roads and incompatible roads
are {3}, and {2,4} respectively. Figure 5 shows the sets of
compatible and incompatible roads for each road in a given
intersection. The value of one in the figure demonstrates that
both roads show no conflict, and the value of zero otherwise.
If any road has a traffic signal of setting three is set to
be ‘‘ON’’, then all other roads are considered incompatible
roads.

2) DECISION VARIABLES
a: IN-DEPENDED DECISION VARIABLES
xijt ∈ {0, 1}, where xijt = 1, if a traffic signal of setting (i)
at road (j) is set to be ‘‘ON’’ at time period (t), and xijt= 0,
otherwise.

b: DEPENDED DECISION VARIABLES
yijt ∈ {0, 1}, where yijt = 1, if a traffic signal of setting (i) at
road (j) is set to be ‘‘OFF’’ at time period (t), and yijt = 0,

FIGURE 5. Compatible and in combatable roads.

otherwise. The relationship between xijt and yijt is controlled
by constraint (2).

3) OBJECTIVE FUNCTION

Min
J∑
j=1

T∑
t=1

Wjt

The objective function of the proposed model is the min-
imization of the total number of waited vehicles at a given
intersection. The total number of waited vehicles is the sum-
mation of the waited vehicles of all the roads at a given
intersection, for instance, if the number of waited vehicles
at roads 1, 2, 3, and 4 are 3, 3, 5, and 6, respectively, then
the total number of waited vehicles, in this case, will be
17 vehicles. The mathematical model has been verified using
randomly generated instances to ensure that it is working as
desired and that all the constraints are necessary and sufficient
to reach an optimum solution for the problem.

4) CONSTRAINTS

I∑
i=1

xijt

≤ 1 ∀j ∈ J , t ∈ T (1)

yijt
= 1− xijt ∀i ∈ I , j ∈ J , t ∈ T (2)

min(t+Cmax ,T )∑
t

xijt + yijt

≤ Cmax ∀i ∈ I , j ∈ J (3)
min(t+Cmax ,T )∑

t

xijt

≤ Cmax − Cred ∀i ∈ I , j ∈ J (4)

qmaxj

=
KLjnr j∑

k
(lk + 1)

∀j ∈ J (5)

xijt − xij(t+1)
≥ 0 ∀i ∈ I , j ∈ J , t ∈ T (6)
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yijt − yij(t+1)
≥ 0 ∀i ∈ I , j ∈ J , t ∈ T (7)

x3jt +
J∑
b∈J
b6=j

I∑
i=2

xibt

≤ 1 ∀j ∈ J , t ∈ T (8)

x2jt +
∑

b∈RjInComp

I∑
i=2

xibt +
∑

r∈RjComp

x3rt

≤ 1 ∀j ∈ J , t ∈ T (9)

Qoutjt

=

J∑
b∈J
b6=j

I∑
i=1

TF injt pijbxijt ∀j ∈ J , t ∈ T (10)

TF jt
= Wj(t−1) + Qinjt ∀j ∈ J , t ∈ T (11)

Wjt

= TF jt − Qoutjt ∀j ∈ J , t ∈ T (12)

Wjt

≤ qmaxj ∀j ∈ J , t ∈ T (13)

As mentioned earlier, in the traffic-responsive control
system, the traffic system parameters (e.g. green duration,
red duration, cycle length. . . etc.) are not fixed, and they
are subjected to changes according to the flow pattern, but
these changes are within pre-specified limits. Constraint (1)
ensures that at most only one setting for a traffic signal could
be ‘‘ON’’ at any time period. The set of constraints (2) is
to define the dependent variable (yijt ), which represents the
‘‘OFF’’ status of a traffic signal of setting (i) at road (j) at time
period (t). Constraint (3) ensures that for each traffic signal
setting at each road, the summation of green time periods and
red time periods should not exceed the permitted cycle time.
Constraint (4) ensures the maximum green time duration

for a traffic signal setting, for a traffic signal of setting (i)
at road (j), the maximum green time is the subtraction of
the minimum red time duration from the total cycle time.
Constraint (5) determines themaximumqueue length for road
(j). For each road (j), the maximum queue length is repre-
sented by the number of vehicles that the road can absorb. It is
affected by the number of lanes of the road (nj), the number
of vehicles’ types (K ), the length of each type of vehicles (lk ),
and the length of the road (Lj). figure 6 illustrates a numerical
example of how to calculate the maximum queue for a road.
Constraints (6) and (7) ensure that if a traffic signal of any

setting being set to ‘‘ON’’ or ‘‘OFF’’ at any time period, then
it should remain ‘‘ON’’ or ‘‘OFF’’ for a specific number of
successive time periods which is at most equal to (Cmax −

Cred ) according to constraints (4). In practice, a traffic signal
cannot set to be ‘‘ON’’ or ‘‘OFF’’ for a single time period,
it should set to be ‘‘ON’’ or ‘‘OFF’’ for a specific number of
successive time periods which is determined by constraint (4)

FIGURE 6. Maximum queue for a road.

The sets of constraints (8) and (9) are used to avoid the
conflict that may exist due to the different types of traffic
signals settings. For example, constraint (8) ensures that if
a traffic signal of setting three at any road has set to be ‘‘ON’’
at any time period, then all other traffic signals of settings
two or three at the intersection must set to be ‘‘OFF’’ at the
same time period. Also, the set of constraints (9) ensures that,
if a traffic signal of setting two at any road has been set to
be ‘‘ON’’ at any time period, then only the traffic signals of
setting two of the compatible roads could set to be ‘‘ON’’.

FIGURE 7. An example for the outflow of a road given a traffic signal
setting.

Constraint (10) determines the outflow from each road at
each time period. According to the traffic signal setting, there
is a percentage that determines the flow to the other roads.
For example, and as shown in figure 7 road (1) has a traffic
signal of setting three which is set to be ‘‘ON’’ at a given
time period. For instance, the percentage of vehicles which
will be transferred from road (1) to roads (2), (3), and (4) is
0.2, 0.7, and 0.1, respectively. These values could be adapted
according to the nature of the intersection understudy.

Constraint (11) calculates the total number of vehicles that
accumulated at road (j) at time period (t), this number is equal
to the inflow to road (j) at time period (t) and the waiting
vehicles at road (j) from the previous time period (t − 1).
For instance, as shown in figure 8, if the inflow to road (j) at
time period (t) is 2 vehicles, and the total number of waiting
vehicles at the road from the previous time period (t − 1)
is 4, then the total number of accumulated vehicles at road
(j) is 5. According to the outflow from this road, some of
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FIGURE 8. Constraint (11) explanation.

these vehicles will be discharged to other roads and others
will wait for the next time period (t + 1). This process is
repeated for each time period to capture the changes in the
number of accumulated vehicles.

FIGURE 9. Constraint (12) explanation.

Furthermore, the set of constraints (12) determines the
queue length of waiting vehicles at road (j) at time period (t),
the number of wating vehicles is equal to the total number of
accumulated vehicles at road (j) at time period (t) minus the
number of vehicles that leave road (j) at time period (t). For
example, and as shown in figure 9, if the total number of accu-
mulated vehicles at road (j) at time period (t) is 5 vehicles,
and from these 5 vehicles only four vehicles are discharged
to other roads, then the number of waiting vehicles, in this
case, is only 1 vehicle. In the same manner as constraint (11),
this process is repeated for each time period to capture the
changes in the number of waiting vehicles. Constraint (13)
ensures that the queue length of waiting vehicles at road (j) at
time period (t) should not exceed the maximum queue length
of road (j).

Although the mathematical model will generate optimum
solutions when solving small instances, applying such a
model to a real case study is impractical as the computational
time is very high. The results, which will be illustrated in

section 6, show that getting an optimum solution to the case
study will take a very high computational time. Therefore,
there is a need for another method that could provide an effec-
tive and efficient solution. Hence, the ‘‘firefly constructive-
based rolling horizon approach’’ heuristic has been proposed.

The firefly algorithm is one of the naturally inspired algo-
rithms, it mimics the behaviour of fireflies to attract mat-
ing partners or preys. Fireflies are communicating together
through a pattern of flashes, these flashes, in addition to their
main function, act as a defence mechanism against predators.
The brighter the firefly, the more attractive it is. The bright-
ness (i.e. intensity of the signal) obeys the inverse square law,
which states that the signal intensity decreases as the distance
between the source and the receiver increases (I∝ 1

r2
), where

(r2) is the distance between the source of the signal and the
receiver [23].

In an optimization context, a firefly could be considered
a solution for an optimization problem, and the brightness
of the firefly could be considered as the value of the objec-
tive function to be optimized. For a maximization problem,
the brighter the firefly, the better the solution. The fireflies
(i.e. solutions) are attracted to the brightest firefly (i.e. best
solution) according to the distance between them. Each firefly
has a position, and its attractiveness to the brightest firefly
depends on its position and the position of the brightest fire-
fly. For more details regarding the firefly algorithm for con-
tinuous optimization problems, the reader is referred to [23].

In this work, the firefly algorithm is adopted to solve the
traffic signal scheduling problem. Furthermore, the firefly
algorithm is combined with the rolling horizon approach to
improve the quality of the constructed solutions as will be
explained later. This heuristic will be called ‘‘FBH’’.

TABLE 1. The best combination of the heuristic’s parameters.

B. THE FIREFLY-BASED HEURISTIC (FBH)
The nomenclature and the Pseudo code of the imple-
mented (FBH) heuristic are as shown in table 1 and FIG-
URE 10. The details of the proposed FBH are illustrated in
the next subsections.
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FIGURE 10. Pseudo code of the firefly constructive heuristic-based rolling
horizon technique.

1) THE WORKING PROCESS OF THE FBH
The following steps describe the working process of the FBH:

1) The FBH starts with generating an initial population
that contains a number of solutions equal to the popu-
lation size (n). each of these solutions is formed using
the ‘‘all possible phases’’ matrix, which is described in
detail in subsection 4. The main objective of the matrix
is to ensure that any generated solution is feasible.
(Subsections 2, 4, and 5)

2) The brightness (e.g. fitness function) of each solution
is calculated, and the solution that has the best fitness
function value is labeled as the ‘‘Best solution’’ of the
‘‘brightest firefly’’. (Subsection 3)

3) For the rest of the solutions in the population, which
are not labeled as the ‘‘best solution’’, calculate the
‘‘attractiveness matrix’’. (Subsection 4 and 6)

4) Improve the solutions according to the ‘‘attractiveness
matrix’’. Each solution is attracted (e.g. modified) to
the ‘‘best solution’’ using a set of equations. (Subsec-
tion 4 and 6)

5) Repeat the steps from 2 to 4 for (N ) number of itera-
tions.

2) SOLUTION REPRESENTATION
Solution representation is crucial to any heuristic. Proper
representation could increase the rate of convergence and the
quality of the solutions [17]. The proposed representation
is as follows, each solution is represented by an N × T
matrix, where N is the number of roads at a given intersec-
tion, and T is the number of time periods. The number of
time periods could be the cycle length (Cmax) in the case
of the traffic-responsive control system, or it could be the
planning horizon in the case of the fixed-time control system.
In the case of the fixed-time traffic system, and to maintain
a reasonable level of computation time, the planning horizon
(T ) is divided into cycles each is equal to the cycle length
(Cmax), and the solution is constructed in a sequence based
on these cycles while considering the interrelation between

these cycles. For instance, if the planning horizon is 100 time
periods, and the cycle length is 10 time periods, then the
solution is constructed by getting the schedule of the first
10 time periods (time periods from 1 to 10 or the first cycle),
then for the second 10 time periods (time periods from 11 to
20 or the second cycle), and so on until constructing the whole
solution. On the other hand, in the case of a responsive-traffic
control system, the planning horizon is equal to the cycle
length.

FIGURE 11. An example of a solution representation.

The intersection between a row and a column result in a cell
representing the traffic signal setting of a road at a given time
period. Figure 11(a) shows the proposed representation for a
solution. For example, and as shown in figure 11(b), z21 = 2,
which means that the second road at the first time period has
an activated traffic signal setting of type 2.

3) SOLUTION QUALITY (BRIGHTNESS)
The quality of each solution is measured by the value of its
fitness function (i.e. brightness). For the considered problem,
the fitness function minimizes the total number of waited
vehicles in the intersection along the planning horizon.

4) THE MATRIX OF THE POSSIBLE PHASES
The possible phases of an intersection are grouped in the
matrix of ‘‘all possible phases’’. This matrix is developed
mainly to avoid any conflict that may arise due to different
traffic signal settings, hence it ensures the feasibility of the
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generated solution. This matrix is used when constructing the
solutions as it will be illustrated in the following subsection.
The matrix of ‘‘all possible phases’’ is as shown in figure 12.
For example, in configuration 2, roads one and three have a
traffic signal setting of one, while roads two and four have a
traffic signal setting of two, this combination will prevent any
conflict that may exist.

FIGURE 12. The matrix of ‘‘all possible phases’’.

5) SOLUTION FORMULATION BASED ON ROLLING
HORIZON APPROACH
Based on the solution representation described earlier,
the solution for the traffic signals scheduling problem is
based on a constructive heuristic that uses the rolling horizon
approach to form an initial solution. Rolling horizon is an
approach that splits the whole planning horizon of the main
problem into multiple segments, and then it can be solved
in sequence as different sub-problems [24]. Rolling horizon
has proved to be a worthy choice to deal with different prob-
lems such as; airspace sectorization [25], portfolio optimiza-
tion [26], and scheduling of electric vehicle charging [27].
Based on the rolling horizon approach, the planning horizon
is divided into equal segments. For example, in the traffic-
responsive control system, the planning horizon is equal to
the cycle length (Cmax), and it is divided into equal segments
each is set to (Cred ).
The constructive heuristic selects from the ‘‘matrix of all

possible configurations’’, for each segment, the best combi-
nation of phases that generates the minimum fitness function
value. The term ‘‘best’’ is based on that, for each segment,
a number of iterations (i.e. rolling horizon factor) is per-
formed, and the combination with the best fitness function
value is selected to be the solution of this segment. For better
illustration, and according to figure 13, three iterations are
performed for each segment. For the first segment, the gen-
erated schedule in the first iteration is selected as it has the
minimum fitness function value. This process is repeated
according to the number of segments in the cycle length.

6) SOLUTION IMPROVEMENT USING THE ATTRACTIVENESS
EFFECT
The attractiveness effect of the firefly algorithm is used to
improve each solution (zi) by moving it towards the ‘‘best’’
solution (z∗). This is mainly affected by the distance between

a firefly and the brighter firefly (rzi,z∗ ). Therefore, a solution
can be modified according to equation (14), where (βrzi,z∗ ) is
the attractiveness factor and it depends on the distance (rzi,z∗ )
according to equation (15), where (γ ) is the light absorption
factor.

zinew = ziold + βrzinew,z∗
(z∗ − zi) (14)

β =
1

1+ γ r2
(15)

The attractiveness effect is simulated by generating a prob-
ability (pg) for each solution in each iteration, this probability
is compared with a pre-specified probability (ps). If pg > ps,
then this solution is subjected to improvement. The value of
(ps) can be determined using a pilot study of one of the cases
related to a considered problem. In the presented problem,
a pilot study on one of the cases has been performed to
determine the best value of (ps).
For each solution, an attractiveness matrix A (zi) is gen-

erated. The attractiveness matrix represents the difference
between the traffic signal settings of solution (zi) and the
‘‘best’’ solution (z∗). These differences mimic the distance
effect of the firefly algorithm. figure 14 shows an example
of an attractiveness matrix. If the value in any cell in the
attractiveness matrix is not equal to zero, this means that this
cell is a possible chance for improving the solution.

For example, as shown in figure 14, the traffic signal
settings of solution (zi) in the first eight time periods can
be modified, while the last four time periods could not.
According to a randomly generated position (δ), some time
periods can be modified, and others cannot. In the presented
example, from the first eight time periods, which can be
modified, only the first four are modified, while the other
four are not. Therefore, the attractiveness factor is substituted
by the attractiveness matrix (A (zi)), and the light absorption
factor (γ ) is substituted by the randomly generated position
(δ). Hence, a solution (zi) is modified according to equation
(16), where the attractiveness matrix is calculated according
to equation (17). In the next section, the performance of both
methods will be investigated.

zinew = x iold + A (zi) (16)

A (zi) = δ(ziold − z
∗) (17)

As mentioned earlier, the matrix of ‘‘all possible phases’’
as well as the ‘‘attractiveness’’ matrix guarantee the fea-
sibility of the improved solutions. Any solution subject to
improvement is formed using the matrix of ‘‘all possible
phases’’, which is already designed to eliminate any conflict
that may exist due to unsynchronized settings of the different
traffic signals.

V. RESULTS AND DISCUSSION
A. SOLUTION METHODS VERIFICATION
In order to compare the performance of both methods, it is
important first to verify the methods. For the mathematical
model, the model has been verified using randomly generated
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FIGURE 13. Solution formulation based on the rolling horizon technique.

FIGURE 14. Example of an attractiveness matrix.

instances to ensure that all the constraints are necessary and
sufficient to generate an optimum solution. On the other hand,
the performance of the FBH is affected by four important
parameters, which are: the population size (n), the number
of iterations (N ), the pre-specified probability (ps), and the
rolling horizon factor (g). Hence, it is essential to get the best
combination of these parameters.

A pilot experiment has been performed to determine the
best combination of these parameters for the given problem.
Different values for each parameter have been tested, and the
results show that the best combination is shown in Table 2.
The details of this experiment are shown in Table 3, for each
combination, ten runs have been performed, and the average
value has been reported. Each value in the table shows the
average gap between the reported solution and the optimum

solution which resulted from solving the mathematical model
using the branch and boundmethod. The runs of the best com-
bination are summarized in figure 15. This combination of
parameters keeps the average gab at 1.18% from the optimum
solution with a standard deviation of 1.2%.

For the number of iterations, and as shown in figure 16,
the number of iterations is selected to be 500 as the value of
the fitness function already converges starting from the 200th

iteration, hence the number of iterations is set to 500 to make
sure that the solution has converged to the minimum value.

B. SOLUTION METHODS VALIDATION
The proposed methods have been applied to one of the most
important intersections in the city of Alexandria, the inter-
section is shown in figure 17 and figure 18. The data for the
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TABLE 2. The results of the pilot experiment.

TABLE 3. Data for the considered intersection.

FIGURE 15. The results of the ten runs of the best combination.

intersection understudy is as shown in Table 4. These data
have been acquired by field visits and google earth measuring
tools.

FIGURE 16. The convergence curve for one of the test runs.

The planning horizon was selected to start from 12:00 P.M
to 6:00 P.M, which includes the rush hours for this inter-
section (i.e. between 2:00 P.M to 4:00 P.M). All the exper-
iments were done using 2.4 GHz Quad-Core Intel Core
i5 CPU with 8 GB of Ram, and Gurobi R©was used as an
optimization software to solve the proposed model which
uses the branch-and-bound algorithm in solving such types of

128324 VOLUME 9, 2021



H. Abohashima et al.: Mathematical Programming Model and Firefly-Based Heuristic

TABLE 4. The summary of the results of applying the proposed methods to the case study.

FIGURE 17. Top view for the considered intersection, Alexandria, Egypt.

models. Moreover, the FBH has been developed using Python
3.8. The code of the FBH as well as the data for the case
study can be found at (https://github.com/hanaasoliman/-
Real-time-traffic-signal-scheduling-using-firefly-heuristic).

FIGURE 18. A google earth photo for the intersection.

The solutions generated by both methods have been simu-
lated using SUMO traffic simulation software to validate the
solutions as shown in figure 19. Table 5 shows the summary
of the results of applying the proposed methods to the case
study. The average values of the performance measure which
are stated in the table represent the average during the plan-
ning horizon of six hours. The mathematical model failed to
get an optimum solution within a reasonable time. Therefore,

FIGURE 19. Snapshot from SUMO traffic simulator.

a time limit of 10 seconds is set for the mathematical model,
and the best solution is reported. The time limit of 10 seconds
was selected as in the traffic-responsive control systems it is
desired to get the schedule of traffic signals in a very short
time.

The FBH heuristic can get better performance measures
than that of the mathematical model. as for the presentation
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TABLE 5. Nomenclature of the proposed (FRHH).

FIGURE 20. Instantaneous number of waiting vehicles for one hour
simulation time (2:30 P.M to 3:30 P.M).

FIGURE 21. Instantaneous waiting time for one hour simulation time
(2:30 P.M to 3:30 P.M).

FIGURE 22. Instantaneous travel time for one hour (2:30 P.M to 3:30 P.M).

purposes, figure 20, figure 21, II, show the instantaneous
number of waiting vehicles, the instantaneous waiting time,
and the instantaneous travel time, respectively for one hour
of the simulation run. The interesting remark is that the
FBH shows almost a steady behaviour according to the used
measures.

VI. CONCLUSION AND FUTURE WORK
In this work, the traffic signal scheduling problem consid-
ering the traffic-responsive control system was investigated.
A new mathematical model for the traffic signal schedul-
ing problem was proposed, the model captures the physical
constraints of the problem as well as the main aspects of
the traffic signals scheduling problem. For real-time traffic
control, a firefly-based heuristic has been proposed to solve
the problem effectively and efficiently. Different parame-
ters’ values have been tested and the best combination has
been selected for the proposed heuristics. Both methods have
been validated using a case study and their performance
was compared using three different measures: the average
number of waiting vehicles, the average waiting time, and the
average travel time. The results show that the performance
of the proposed FBH outperforms the performance of the
mathematical model. Therefore, it is recommended to apply
such approximate solution methods in case of using traffic-
responsive control systems as it needs efficient solutions.
As for future work, the proposed firefly-based algorithm is to
be compared against other metaheuristics, and both methods
will be used to investigate the real-time control of a network
not only of an intersection.
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