
IEEE ELECTRONICS PACKAGING SOCIETY SECTION

Received August 10, 2021, accepted September 7, 2021, date of publication September 13, 2021,
date of current version September 21, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3112134

Transient Simulations of High-Speed Channels
Using CNN-LSTM With an Adaptive Successive
Halving Algorithm for Automated
Hyperparameter Optimizations
CHAN HONG GOAY, NUR SYAZREEN AHMAD , (Member, IEEE), AND PATRICK GOH
School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang 14300, Malaysia

Corresponding author: Patrick Goh (eepatrick@usm.my)

This work was supported by the Ministry of Higher Education, Malaysia, through the Fundamental Research Grant Scheme (FRGS) under
Grant FRGS/1/2020/TK0/USM/02/7.

ABSTRACT Transient simulations of high-speed channels can be very time intensive. Recurrent neural
network (RNN) based methods can be used to speed up the process by training a RNN model on a relatively
short bit sequence, and then using a multi-steps rolling forecast method to predict subsequent bits. However,
the performance of the RNN model is highly affected by its hyperparameters. We propose an algorithm
named adaptive successive halving automated hyperparameter optimization (ASH-HPO) which combines
successive halving, Bayesian optimization (BO), and progressive sampling to tune the hyperparameters of
the RNNmodels. Modifications are proposed to the successive halving and progressive sampling algorithms
for better efficiency on time series data. The ASH-HPO algorithm trains on smaller dataset subsets initially,
then expands the training dataset progressively and adaptively adds or removes models along the process.
In this paper, we use the ASH-HPO algorithm to optimize the hyperparameters of convolutional neural
networks (CNNs), long short-term memory (LSTM) networks, and CNN-LSTM networks. We demonstrate
the effectiveness of the ASH-HPO algorithm using a PCIe Gen 2 channel, a PCIe Gen 5 channel, and a
PAM4 differential channel. We also investigate the effects of several settings and tunable variables of the
ASH-HPO algorithm on its convergence speed. As a benchmark, we compared the ASH-HPO algorithm
to three state-of-the-art HPO methods: BO, successive halving, and hyperband. The results show that the
ASH-HPO algorithm converges faster than the other HPO methods on transient simulation problems.

INDEX TERMS Automated hyperparameter optimization, convolutional neural network (CNN), high-speed
channel, long short-term memory (LSTM) network, progressive sampling, transient simulation.

I. INTRODUCTION
The fast and accurate transient simulations of electrical
interconnects consisting of high-speed channels play an
important role in the design and verification of electrical
devices and circuits [1]–[3]. With the continuous increase in
data throughput and operating frequency, interconnect signal
integrity becomes an important consideration in order to meet
the stringent timing and voltage requirements in modern
systems. Thus, the modeling and simulations for signal
integrity has become a topic which has garnered increasing
attention over the last decade.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wiren Becker .

In the analysis of high-speed systems, an eye diagram
contains information that allows the engineers to evaluate key
performance metrics for signal integrity such as the amount
of intersymbol interference, noise margin, timing jitter, and
timing sensitivity. Traditionally, an eye diagram is generated
by overlaying the voltage waveform obtained from a transient
simulation using a circuit simulator [4]. However, this is
a computationally expensive process especially when the
transient simulation is performed over long bit sequences on
highly non-linear and complex channels. Several methods
such as the peak distortion analysis (PDA) [5], statistical
eye (StatEye) analysis [6], and edge response analysis [7]
are developed to perform fast eye diagram analysis for
linear time-invariant (LTI) systems without generating the

127644 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-2615-8386
https://orcid.org/0000-0002-4514-5065
https://orcid.org/0000-0003-2266-3123

C. H. Goay et al.: Transient Simulations of High-Speed Channels Using CNN-LSTM

long voltage waveforms. However, these methods are only
applicable to LTI systems while the behavior of high-speed
channels can be non-linear due to the presence of non-linear
components such as the I/O drivers and receivers.

Recently, more modern transient simulation and eye
diagram modeling techniques have been pursued, owing
to the advancements in surrogate modeling and machine
learning techniques. The main advantage of these modeling
techniques is that the model, once developed, can be reused
for future computational savings, because the prediction
speed of the model is much faster than the training speed.
For example, [8] uses a short transient simulation to train a
polynomial chaos surrogate model and the surrogate model is
then used to estimate the jitter and eye diagram of the output
signal, while [9] uses Bayesian optimization to perform a
worst-case analysis of the eye diagram. In addition, neural
network based techniques have also been developed such
as in the application of multilayer perceptron (MLP) neural
network for the modeling of the eye diagram [10]–[13],
jitter [14], channel equalization [15], and physical parameters
such as resistance, conductance, inductance, and capac-
itance [16]. However, MLP lacks the ability to capture
sequential information. For these applications, the recurrent
neural network (RNN) is often used instead. RNN is a type
of ANN that specializes in modeling time series data but it
has also been used in the field of circuit design, especially
in the modeling of non-linear devices such as CMOS
receivers [17], power amplifiers [18]–[21], RF mixers [22],
rectangular waveguides, and microstrip filters [23]. In the
area of transient modeling, [24], [25] apply the long short-
term memory (LSTM) network, a type of RNN, to perform
fast transient simulations of high-speed channels. The LSTM
network is trained on a short initial bit sequence, and it is then
used to predict up to hundreds of thousands of bits. It is shown
that the LSTM network outperforms a RNN in terms of the
convergence rate and accuracy when both of them have the
same memory length in various voltage waveform modeling
tasks.

Although recent results have shown the potential of
machine learning methods versus their traditional simulation
counterparts, the amount of time spent for designing the
networks and tuning its hyperparameters are often over-
looked. A hyperparameter is a configuration variable whose
value cannot be determined from training and must be
set before training. The performance of a neural network
does not only depend on the quality of the training data,
but on its hyperparameter choices as well, and a bad set
of hyperparameters can affect the accuracy of the neural
network. The tuning process of these hyperparameters can
be time consuming and often relies on expert engineering
knowledge and know-hows. Thus, automated hyperparameter
optimization (HPO) techniques have been developed, which
aim to find the optimal hyperparameter choices based on the
architecture, regularization, and optimization of the neural
networks. More information on the field of HPO can be found
in [26].

In this research, various types of HPO methods including
the Bayesian optimization (BO), successive halving, and
hyperband are studied. BO is one of the most popular HPO
strategy and has been successfully applied to the field of
signal integrity modeling [27]. The BO algorithm requires a
surrogatemodel of the objective function, and each evaluation
of the objective function usually involves training a neural
network and computing its validation loss. Although BO
has a good reputation of requiring only a small amount
of objective function evaluations, each evaluation of the
objective function can still be computationally expensive for
large dataset or complex ANN models, since each evaluation
involves training a model to completion. This also means
that BO will waste some resources on bad configurations as
it relies entirely on the surrogate models to avoid creating
bad models in the first place. Bandit-based methods such
as successive halving [28] and hyperband [29] avoid this
problem by evaluating the configurations using partially
trained models. Successive halving is a simple yet powerful
HPOmethod where the initial budget is split evenly across all
configurations, and successively, the budget for the half that
performs worse is removed while the budget for the other half
is doubled until only one configuration is left. Thus, resource
spent on bad configurations can be reduced since these
configurations will be removed in the early iterations. Other
than that, some researchers have also proposed methods to
evaluate the configurations based on smaller dataset subsets.
For example, [30] proposes a progressive sampling-based BO
algorithm which uses only a small subset of data for the
objective function evaluation during the initial rounds to drop
unpromising configurations, and allocates more resources on
the promising configurations with larger datasets. However,
the generation of the dataset subsets for the progressive
sampling-based BO algorithm involves a random sampling
strategy, which will destroy the sequence of a time series data.
This makes it unsuitable in transient simulation modeling
where it is important to preserve the original sequence of the
values.

In this paper, we propose a HPO framework named
adaptive successive halving HPO (ASH-HPO) that combines
BO and the successive halving algorithm, while adapting the
progressive sampling method and modifying it to preserve
the original sequence of the time series data. The ASH-HPO
algorithm is developed to perform the HPO task efficiently
for time-series forecasting sequential models. Instead of
sampling randomly, the progressive sampling is modified
to sample along the data sequence starting from the first
time step, and remove part of the training data from the
initial time steps when the size of the training data gets too
large.We apply the proposedASH-HPO algorithm to perform
HPO for the CNN, LSTM, and CNN-LSTM networks. The
CNN-LSTM architecture involves using convolutional neural
network (CNN) layers for feature extraction and LSTM
layers for sequence prediction [31] and it has been reported
that CNN-LSTM outperforms LSTM in various time series
prediction tasks such as household energy consumption

VOLUME 9, 2021 127645

C. H. Goay et al.: Transient Simulations of High-Speed Channels Using CNN-LSTM

prediction [32], visual recognition and description [33],
rainfall prediction [34], and air pollution forecasting [35].
We demonstrate the robustness of the ASH-HPO algorithm
using various problems for transient simulation modeling and
compare its performance to the BO, successive halving and
hyperband algorithms. Moreover, we also present the use of
a multi-step rolling forecast method to reduce the prediction
time of our models.

II. HYPERPARAMETER OPTIMIZATION (HPO) METHODS
The HPO process is a process of selecting a set of
optimal hyperparameters, H within the search space, S
for a machine learning algorithm. Grid search is the most
basic and traditional HPO method. However, it is only
applicable when the number of hyperparameters in S is
low as it suffers from the curse of dimensionality, where
the number of trials required to fully explore S grows
exponentially with the number of hyperparameters. For a
search space with seven hyperparameters, each with three
possible values, the total required number of trials is then
37 = 2187 which is a prohibitively large number. Random
search can explore S much more effectively than grid
search and usually outperforms the latter because grid search
can sometimes allocate too many trials on unimportant
hyperparameters [26]. Both methods are completely ignorant
of their pass trials, which means that their past decisions
do not help them make better decisions in the future. This
causes the overspending of resources on evaluating bad
hyperparameters. Thus, they are often replaced with more
advanced HPO methods such as BO, successive halving, and
hyperband.

A. BAYESIAN OPTIMIZATION (BO)
BO is very suitable for optimizing expensive objective
functions, which makes it a very good candidate for HPO
of deep neural networks. The steps in performing Bayesian
optimization on a black box function are: (step 1) initialize
the process by sampling the hyperparameter space to generate
a small number of observations; (step 2) create a surrogate
model by fitting it to the observations generated previously;
(step 3) use the maximum value of the acquisition function to
select the next point to sample in S, the acquisition function
balances exploitation and exploration where the acquisition
value of a point is high when the predicted value from the sur-
rogate model is high and the uncertainty about the predicted
value is high; (step 4) evaluate the objective function at the
newly sampled point and add it to the observations. Steps 2 to
4 will be repeated until the goal is met. Tutorials on Bayesian
optimization can be found in [36]. In our work, BO is
used to generate models in the first iteration of successive
halving, and to generate additional models later in ran-
domly selected iterations. Various acquisition functions are
investigated including expected improvement (EI), entropy
search, upper confidence bound (UCB), and probability
improvement (PI) [37].

B. SUCCESSIVE HALVING
Successive halving is conceptually very simple. For a fixed
budget, B and number of initial configurations, n, allocate
the budget evenly across every configuration so that every
configuration gets B/n resources. The budget refers to the
epochs in this work, but can also refer to various types of
resources such as the size of training data, the training time,
and the number of features. At the end of each iteration,
remove half of the configurations that performed worst,
and double the resource of every surviving configurations
and train them again. The process repeats until only one
configuration is left. However, it is unclear whether to use
larger or smaller n. When n is small, each configuration is
given more resources, and that can be problematic when the
resources are wasted on the bad configurations. When n is
large, each configuration is given less resources, and this can
also cause problems when the trainings are terminated before
the potentially good configurations with slow convergence
rates start to reveal themselves. The successive halving
algorithm can be tuned to remove more models in every
iteration by setting a higher value of the elimination factor, λ
which determines the proportion of configurations eliminated
in each iteration. Generally, approximately (λ − 1)/λ of the
models will be removed in each iteration and the budget of
every surviving configuration will be increased by a factor
of λ.

Despite these weaknesses, successive halving is very
suitable in the training of time series data. The time series
dataset can be broken down into several dataset subsets and
the original sequencing of dataset is preserved by using the
first subset in the first successive halving iteration, the second
subset in the second iteration, and so on. The data are
arranged in such a way that the last surviving configuration
learns the full sequence, and other models only need to
learn part of the sequence in each iteration of the successive
halving process to reduce the training time per epoch. In our
work, we apply the successive halving method and propose
several modifications so that it is more efficient on time series
problems.

C. HYPERBAND
Successive halving is based on an assumption that the best
configurations are more likely to be in the top half than the
bottom half of the configurations after a small number of
training iterations. However, there are some exceptions to
that. For example, when the hyperparameter to be optimized
is the learning rate, a model with a smaller learning rate
may lag behind the rest of the pack when the number of
training iterations is small, and still outperform the rest of
the configurations when the number of training iterations is
large.

In order to combat this problem and the problem of the
B/n trade off, many researchers have switched their attention
to the hyperband algorithm [29]. Hyperband is a hedging
strategy that divides the whole HPO problem into several

127646 VOLUME 9, 2021

C. H. Goay et al.: Transient Simulations of High-Speed Channels Using CNN-LSTM

successive halving problems named brackets, each exploring
a unique value of n for a fixed B. The user needs to define two
inputs to the hyperband algorithm,R and λ.R is the maximum
resource that can be allocated to a single configuration in
any iteration, and λ is the elimination factor. In this work,
we compare the ASH-HPO algorithm to the hyperband
algorithm using three applications.

III. ADAPTIVE SUCCESSIVE HALVING AUTOMATED
HYPERPARAMETER OPTIMIZATION (ASH-HPO)
In this section, our proposed ASH-HPO algorithm will be
explained in detail. Subsection IV.A explains the method
for converting the time series data to a supervised learning
problem. Subsection IV.B explains themethod for training the
neural models. Subsection IV.C explains the role of BO in the
ASH-HPO algorithm. Subsection IV.D explains the proposed
modifications on the successive halving algorithm and the
integration of it in the ASH-HPO algorithm. Subsection IV.E
explains the method for retraining the bad performing
models. Subsection IV.F explains the method for expanding
the search space, S. Subsection IV.G introduces penalties
to eliminate the slow training models and bad performing
models. Finally, subsection IV.H summarizes the overall
workflow of the ASH-HPO algorithm.

A. PROGRESSIVE SAMPLING FOR TIME SERIES DATA
This subsection describes how the data are processed into
dataset subsets for the ASH-HPO algorithm to make it
more efficient for time series predictions. The accuracy of
the surrogate model is important for any type of surrogate
model based HPO framework because a good surrogate
model can have a better chance of suggesting a set of good
hyperparameters. The more trials we can afford, the more
accurate our surrogate model is because it will have more
past experience to learn from. However, each trial is usually
computationally expensive when it involves training a model
from scratch on a large dataset. Thus, a progressive sampling
strategy is used so that we start the HPO process with a small
training set, and its size is increased slowly as the process
continues. However, training the models on a small subset of
data can downgrade the quality of the surrogate model. Thus,
new models will be generated using the BO algorithm, not
only at the beginning when the data size is minimal, but also
when the data size becomes larger. This way, there is a chance
to correct the mistakes made by the surrogate model at the
beginning of the algorithm.

In this work, a sliding window transformation method
with a window length or lookback, WLB is used to turn
a time series dataset into a supervised learning problem.
Through this process, the original time series data, D0 will
be normalized within the range of [0, 1] and transformed
into another dataset named D with length tN using the sliding
window transformation method. Also, we name the elements
inD as d , where dt represents the data of the tth time step such
that D =

{
d0, d1, d2, . . . , dt , . . . , dtN

}
. A bracket represents

an iteration in the progressive sampling process and the

training and validation samples are different for each bracket.
We would like to introduce a few terms here. Dt (i) and Dv(i)
are the training and validation data in the ith bracket, where
Dt (i), Dv(i) ⊂ D. Lt0 and Lv0 are a unit size of training and
validation samples, Lt (i) is the size of the training samples
in the ith bracket, and Lmax is the maximum allowable size
of the training samples, where Lmax must be divisible by Lt0.
In this work, the size of Dv(i) is fixed to one unit or (1× Lv0)
regardless of the bracket number. The size ofDt (i) is Lt0 in the
first bracket, and its size is increased by one unit or (1× Lt0)
each time the bracket number increases until its size reaches
Lmax . After that, the training samples from the earlier time
steps will be removed so that Lt does not exceed Lmax .

Fig. 1 illustrates the sliding window process. As can be
seen from the figure, (1× Lt0) of earlier time steps are
removed from Dt in bracket 4, (2× Lt0) of earlier time
steps are removed from Dt in bracket 5 and so on. This
figure also visualizes the arrangements of Dt (i) and Dv(i)
with the assumption that there is no new model created
after the first bracket. However, if there is a new model
created in any other bracket, the training data will always
start at the beginning of all time steps even if the Lt (i) will
exceed Lmax . This is to ensure that every new model can
learn from the exact same dataset as the old models without
any missing information. This method for arranging Dt and
Dv is very similar to that of the blocked cross validation.
Since all the Dv must be placed after the Dt to prevent
data leakage from the future, data arrangement methods that
splits Dt and Dv randomly, such as the regular k-fold cross
validation method is not suitable for time series data. Fig. 2
shows a flowchart for generating Dt (i) and Dv(i) and the
function is named GenerateTrainingAndValidationData(). <
is a random positive integer between two and six which
decides in which bracket to generate new models by utilizing
the BO algorithm, ta and tb are the beginning and the end of
the training data sequence where Lt (i) = (tb − ta), tc and td
are the beginning and the end of the validation data sequence
where Lv(i) = Lv0 = (td − tc). There is a special case when
the counter is equal to<, where newmodels will be generated
through BO and ta will be set to one automatically so that the
newly generated model can learn from the beginning of the
dataset. We compute ta, tb, tc, and td as follows:

ta =


1, Counter = <
1, i× Lt0 ≤ Lmax(
i−

Lmax

Lt0

)
× Lt0 + 1, i× Lt0 > Lmax

(1)

tb = (i+ 1)× Lt0 (2)

tc = tb + 1 (3)

td = tc + Lv0. (4)

B. TRAINING THE MODELS
In this subsection, the method used to train the models with a
minimal amount of budget will be explained. In order to keep
the training time of the models roughly consistent across all

VOLUME 9, 2021 127647

C. H. Goay et al.: Transient Simulations of High-Speed Channels Using CNN-LSTM

FIGURE 1. Arrangements of Dt and Dv with the progression of successive
halving and progressive sampling.

FIGURE 2. Flowchart for generating validation and training dataset.

brackets, the number of epochs, Ep is set to be larger when
the size of Dt (i) is small, and smaller when the size of Dt (i)
is large. Generally, Ep is computed as follows:

Ep = Ep0 ×
len (M1)

len (Mi)
×
Lmax

Lt (i)
(5)

where Ep0 is a positive integer, len(·) is the length of a
list, and Mi is the collection of models in the ith bracket.
In this work, the total number of models generated in the first
bracket, len (M1) isK0, and the value of Ep0 is one. The early
stopping technique is implemented to prevent overfitting
during training. We try to train every model for at least
10 epochs, before applying the early stopping technique. This
means that we do not use early stopping when Ep ≤ 10, and
only use early stopping when Ep > 10. The patience, P is
defined as the number of epochs that we allow the model to
be trained for, when the validation loss does not improve, and

FIGURE 3. Flowchart for training the models.

P is calculated as follows:

P = min
(
ceil

(
Ep
10
− 1

)
, 6
)

(6)

wheremin(·) is the smallest number in a list, and ceil(·) means
rounding towards positive infinity. With this, we ensure that
we do not terminate the training prematurely when Ep is
small, while preventing overfitting and saving the budget
when Ep is large. The maximum value of P is limited to six to
reduce the overall training time. Other than that, the training
time per epoch per length of training dataset, tp of the kth
model is recorded as:

tp =
tm

Ep × Lt (i)
(7)

where tm is the total training time of that model, M .
Fig. 3 shows the flowchart of the training process named
TrainModel(). We use the mean squared error (MSE) as the
loss function and the Adam optimizer [38] to update the
network weights.

C. BAYESIAN OPTIMIZATION IN THE BRACKETS
In this work, BO is used for two purposes; first to generate
models in the first bracket of the proposed ASH-HPO
algorithm, and second to add additional models in random
brackets so that the surrogate model of the later brackets can
contribute by generating some models as well. The surrogate
model of the later brackets will be more reliable than the
first brackets since it is updated on a larger training dataset.
Thus, adding models generated by the surrogate model of
the later brackets can help to improve the robustness of the
ASH-HPO algorithm by correcting the mistakes made in
the first bracket. In this work, we use a Gaussian process
regression (GPR)model as the default surrogate model. In the
first bracket, we will create and train 10 models where their
hyperparameters values are generated by random sampling

127648 VOLUME 9, 2021

C. H. Goay et al.: Transient Simulations of High-Speed Channels Using CNN-LSTM

FIGURE 4. Flowchart for building the initial models.

within the hyperparameter space, S with N hyperparameters.
We denote the kth vector of hyperparameters as Hk where
H1,H2, . . . ,H10 ∈ H, the kth model as Mk where
M1,M2, . . . ,M10 ∈ M, the validation loss of Mk as Ev(k)
where Ev(1),Ev(2), . . . ,Ev(10) ∈ Ev, and the training time
per epoch per length of training dataset as tp(k) where
tp(1), tp(2), . . . , tp(10) ∈ Tp.
We will then fit the GPR model, G to the observations

made in the first ten models. In other words, we will use
M1 to M10 to initialize the GPR model and this model will
be used by the BO. The BO process will start by generating
an additional model, with its hyperparameters selected by G.
Once the training of that model is complete, H , M , Ev and
Tp are appended with the respective new members, and G is
updated with the new observations before it is used to select
the hyperparameter values of the next model. This process is
repeated until we generate a total of K0 − 10 models through
the BO process, which means the total number of models is
now K0 since there are 10 initial models. Fig. 4 shows the
flowchart for the function to build the initial models M1 to
M10 named BuildInitialModels().

A variable counter is assigned zero initially, and increased
by one at the end of each bracket. As described previously,
BO will be performed when the counter=<, before resetting
the counter back to zero. For each subsequent time BO is
called after the initial models were created, it will generate
two less models, starting from 10 and decreasing to one. Let
Km be the number of models generated during the mth time

the BO is performed. Km can be defined as:

Km =


K0 − 10, m = 1
14− 2m, 2 ≤ m ≤ 6
1, m > 6.

(8)

In addition, we double the Ep calculated using (5) during
the BO process after the first one (m > 1). This is because
the models generated during the earlier stage will be trained
with more Ep than the newly generated models, thus doubling
the Ep prevents a premature termination of training. This
also makes the comparison between the old and new models
fairer. An open source Python package pyGPGO is used to
implement Bayesian Optimization [39].

D. MODIFIED SUCESSIVE HALVING
In this work, we propose a modification to the successive
halving algorithm where in each iteration or bracket there
are two stages; an odd stage which is a determination stage,
and an even stage which is an elimination stage. In the
odd stage, we train every surviving model, and record its
validation loss. In the even stage, we remove the under
performing models by a factor of λ and continue training the
surviving models. There is a special case where stage one
in bracket one is actually used for BO to generate models.
Also, when the counter = <, the even stage in that bracket
is also used to perform BO to generate new models after
eliminating (λ − 1)/λ of the bad performing models so that
only 1/λ of the models survive. Fig. 5 compares the number
of surviving models of the modified and original successive
halving algorithms across the brackets. It can be seen that
the modified successive halving ensures that each model
will be trained on the two different training subsets from
the current bracket and the previous bracket before being
removed, except in the first elimination stage where models
are only trained on the dataset of stage 1. This improves
the stability of the algorithm at the earlier stages when the
training dataset is very small.

Fig. 6 shows an example where Lmax is (3× Lt0),K1 = 16,
λ = 2, K2 is 4 during the second BO, K3 = 2 during the
third BO, and < is initially 4. As can be seen, 16 models are
generated in stage one in bracket one through the combination
of random search and BO. At the end of the even stage in
each bracket, or to be exact after eliminating half of the
models, the counter is increased by one. Then, in stage eight
of bracket four where the counter =<, four additional models
are generated. After that, the counter is reset to zero again and
< is given a new random value of two. The counter is equal
to < once again in stage 12 of bracket 6 and only two new
models are generated.

However, it can be a challenge to decide on how to update
the surrogate model, G. Since we will remove the worst
performing models in every bracket, the validation losses of
the models that are removed in the earlier brackets will not be
updated anymore. Thus, the Ev of models that are terminated
in the earlier brackets no longer accurately represent their

VOLUME 9, 2021 127649

C. H. Goay et al.: Transient Simulations of High-Speed Channels Using CNN-LSTM

actual validation losses. This is because if the models survive,
they will be trained with larger training datasets and with
more epochs compared to if they do not. Therefore, it is
reasonable to assume that their actual validation losses are
much lower than their recorded Ev. In order to solve this
problem, we employ a similar method as found in [30] where
we use a term named error rate, Er which is defined as
the ratio between the mean of the validation losses of the
surviving models in the jth stage, µj and the previous stage
µj−1 and can be computed as

Er =

1, len (Mi) ≤ 4
µj

µj−1
, otherwise. (9)

Every time a model,Mk is deleted fromM, we will delete
its validation loss Ev(k) as well from Ev. In order to keep track
of the validation losses of the deleted models, we will create
another list named E ′v, where E ′v = {E ′v(1),E ′v(2),E ′v(3), . . .}
keeps all the validation losses of deleted and surviving
models. At the end of each stage, wewill update the validation
losses of the removed models as follow:

E ′v(k) = E ′v(k)× Er ,E
′
v(k) ∈ E ′v (10)

where E ′v(k) is the validation loss of the kth model. As shown
in (9), we set Er to be one if the number of surviving models
is less than or equal to four because the Er can be unstable
when the number of surviving models is too small.

E. IMPROVING THE BAD MODELS
In this subsection, the process of identifying and retraining
the bad models, and removing those that fail to improve are
explained. We will only search for the bad models when a
special condition, Er > 1 occurs. A value of Er < 1 means
that the models are improved on average as compared to
the previous stage. Specifically, a value of Er > 1 means
that the average validation loss of the current stage is worse
than the previous stage. We define a bad model as a model
whose validation loss is greater than µj. Once a bad model
is found, it is retrained with the function TrainModel(). If the
model performance improves after the first attempt, it will
be updated. Otherwise, we will make two more attempts
to improve the model. If the model performance does not
improve after the third attempt, the model is removed. This
process is completed after we iterate through all the bad
models. If at least one model is removed, we will increase
Lmax by Lt0. This is because we detect at least one model
that cannot be improved by training, which can indicate a
deficiency of training data. Thus, we will try to use larger
training datasets in the future brackets. The flowchart for
improving the bad models is presented in Fig. 7 and is named
ImproveBadModels().

F. EXPANDING THE SEARCH SPACE
Traditionally, the search space of a HPO process is fixed
throughout the process. In this work, we propose a method
to expand the search space to make the selection of initial

search space less critical to the final performance of the ASH-
HPO algorithm. For an N dimensional search space, S =
{S1, S2, . . . , Si, . . . , SN } where Si represents the search range
of the ith hyperparameter, let Sl(i) and Su(i) be the lower and
upper bounds of Si respectively, where {Sl(i), Su(i)} = Si.
If the ith hyperparameter, Hk (i) of the best performing model
(we assume that the kth model is the best performing model)
is close to Sl(i) or Su(i), we will expand Si in the direction of
Sl(i) or Su(i) by 10%. Hk (i) is said to be close to Sl(i) if

Sl(i) ≤ Hk (i) ≤ Sl(i)+ 0.1× [Su(i)− Sl(i)] (11)

and close to Su(i) if

Su(i)− 0.1× [Su(i)− Sl(i)] ≤ Hk (i) ≤ Su(i). (12)

In these cases, we will expand our search space as follows:

Sl(i) = Sl(i)− 0.1× [Su(i)− Sl(i)] (13)

if Hk (i) is close to Sl(i) and

Su(i) = Su(i)+ 0.1× [Su(i)− Sl(i)] (14)

if Hk (i) is close to Su(i). For certain hyperparameters, con-
ditions are also imposed to prevent nonphysical parameters.
For example, the learning rate and number of hidden neurons
must be greater than zero.

G. PENALTIES
In order to guide our surrogate model, we impose penalties
on models with unwanted characteristics. First, we punish
models with long training times. Let tp(k) be the training
time per epoch per length of training dataset of the kth model
which is calculated as in (7). Usually tp(k) is in the order of
milliseconds. For this penalty, the validation loss of the kth
model is updated as follows:

E ′′v (k) =
E ′v(k)

ln(tp(k))
(15)

where E ′v(k) is the validation loss of that model before the
penalty, and E ′′v (k) is the validation loss of that model after
the penalty. In order to enhance the impact of this penalty,
E ′′v is also used to decide the surviving models in every
elimination stage so that the slow training models will have
higher chances of being eliminated.

Second, we punish the bad models and their neighbors.
As discussed earlier, we will remove (λ − 1)/λ of the worst
performing models at the end of every even stage. Then,
we will also select the worst 10 percent of the members of E ′′v ,
and append the original indices of those members to a special
list named Ibad . The kth model is identified as a neighbor to
another model, the mth model, when the hamming distance
between them, Dham(k,m) is less than a certain threshold τ
(τ = 3 in this work). The hamming distance between two
models in S, with N hyperparameters is computed as

Dham(k,m) =
N∑
i=1

di(k,m) (16)

127650 VOLUME 9, 2021

C. H. Goay et al.: Transient Simulations of High-Speed Channels Using CNN-LSTM

FIGURE 5. Number of surviving models of the modified and original successive halving processes across different brackets.

FIGURE 6. Visualization of the change in data arrangement and number of models as the successive halving algorithm progresses.

di(k,m) =

1,
|Hk (i)− Hm(i)|
Su(i)− Sl(i)

0, otherwise
(17)

where Hk (i) and Hm(i) is the ith hyperparameter of the kth
and mth model. If the kth model is either a bad model, or it
is a neighbor to at least one bad model, we will multiply

VOLUME 9, 2021 127651

C. H. Goay et al.: Transient Simulations of High-Speed Channels Using CNN-LSTM

FIGURE 7. Flowchart for improving/retraining the bad models.

its validation loss after the first penalty, E ′′v (k) by a penalty
factor, Fp (Fp = 1.2 in this work). Otherwise we keep its
validation loss the same. We compute the validation loss after
the second penalty, E ′′′v (k) ∈ E ′′′v as follows:

E ′′′v (k) = Fp × E ′′v (k). (18)

Basically, both penalties modify the optimization problem
from optimizing E ′v which is the validation loss, to optimizing
E ′′′v which is a function of the validation loss, training
time, and how close the hyperparameters are to the bad
configurations. The first penalty is used to guide the G
away from slower training configurations, and the second
penalty is used to guide the G away from bad performing
configurations and other configurations that are very close
to them. Table 1 shows how the values of E ′v(k) and tp(k)
can affect the value of E ′′v (k), which is directly related to the
objective function to be optimized. It can be seen that the
model with lower E ′v(k) and lower tp(k) has higher E ′′v (k).
Fig. 8 shows the flowchart for implementing BO, named
function BayesianOptimization().

H. OVERALL WORKFLOW
The remaining functions are summarized here. Fig. 9 shows
a flowchart for training all surviving models named function
TrainAllModels(). This function is used to call function

TABLE 1. Comparisons between different values of Ev (k) and tp(k).

TrainModels() repeatedly to train every models in M.
Fig. 10 shows a flowchart for initialization of the overall
workflow named function Initialize(). This function is used
to define every input to the ASH-HPO algorithm. Finally,
the flowchart for the whole process is shown in Fig. 11.
The termination criteria of the ASH-HPO algorithm is based
on two conditions: when the goal is met (terminated and
converged) or when the budget is used up (terminated but
not converged). Each time the validation loss is updated,
the ASH-HPO algorithm will compare it to the goal and
terminate itself if the validation loss is lower than the goal.
The budget is limited to prevent the algorithm from running
indefinitely.

IV. RNN, LSTM, CNN, AND CNN-LSTM
A RNN is a type of a neural network that has an internal
memory. Unlike a feedforward network, the RNN has a

127652 VOLUME 9, 2021

C. H. Goay et al.: Transient Simulations of High-Speed Channels Using CNN-LSTM

FIGURE 8. Flowchart for implementing BO.

feedback loop connected to its past decisions, which means
that its outputs from the previous time steps will be used
as inputs for the current time step. This is what allows it
to have memory, and this memory is what makes it a great
candidate for dealing with time series data. RNNs can be very
challenging to train due to vanishing or exploding gradient
problem [24], [40]. This is because the gradients in deeper
layers are calculated as products of differentials. Trained
over a long time, this can lead to an exploding or vanishing
gradient, depending on whether the individual gradients are
more than or less than one. Thus, RNNs may be unsuitable
for long sequences and long-term dependencies.

The LSTM neural network is a type of RNN which was
developed to solve the training problems in traditional RNNs.
An LSTM cell has 3 gates: a forget gate, an input gate, and
an output gate. The forget gate, ft decides which information
needs attention and which can be ignored. The input gate, it
decides what information is relevant to update in the current
cell state, ct . The output gate, ot determines the value of the
next hidden state, ht . An LSTM network can be controlled to

FIGURE 9. Flowchart for training every model in M.

FIGURE 10. Flowchart for initializing the ASH-HPO algorithm.

remember or forget the dependency on individual inputs by
changing the values of it , ft , and ot . Further background on
RNN and LSTM can be found in [40]–[42].

The CNN-LSTM is a hybrid network created by combining
a CNN and an LSTM network [31]. The CNN-LSTM
network consists of one ormore one-dimensional convolution
layer, followed by a max pooling layer, and the output
is then flattened to feed into one or more LSTM layers.
Finally, the outputs of these layers are fed into one or more

VOLUME 9, 2021 127653

C. H. Goay et al.: Transient Simulations of High-Speed Channels Using CNN-LSTM

FIGURE 11. Overall workflow for the ASH-HPO algorithm.

fully-connected/dense layers. The last dense layer is the
output layer, and its nodes have linear activation functions.

Fig. 12 shows the structure of a CNN-LSTM model. The
figure also shows the visual representation of an LSTM cell,

127654 VOLUME 9, 2021

C. H. Goay et al.: Transient Simulations of High-Speed Channels Using CNN-LSTM

FIGURE 12. The structure of a CNN-LSTM model and an LSTM cell.

FIGURE 13. The PCIe Gen 2 topology.

FIGURE 14. Rolling forecast method.

which is the building block of the LSTM layers. Compared to
the CNN-LSTM network, a CNN model can be constructed
in a similar method by connecting its flatten layer directly to
the first dense layer since it has no LSTM layers.

V. NUMERICAL EXAMPLES
In this section, we present three examples to illustrate the
strengths of the proposed ASH-HPO algorithm. The first

example uses a PCIe Gen 2 channel, the second example
uses a PCIe Gen 5 channel, and the third example uses
a PAM4 differential channel. The effects of the different
settings of the algorithm such as the penalties and parameters
of the algorithm are also investigated. As a benchmark,
the ASH-HPO algorithm is also compared to the BO,
successive halving, and hyperband methods. All experiments
in this paper are performed using a computer with an Intelr
CoreTM i7-10700k Processor @3.8GHz, 32 GB RAM, and
NVIDIA GeForce RTX 2080 SUPER.

A. PCIe GEN 2 CHANNEL
The PCIe Gen 2 topology is shown in Fig. 13. VTX is the
output voltage of the transmitter (TX), VRX is the input
voltage to the receiver (RX), and VTX0 is the output voltage
of TX when it is terminated with a 100 � resistor. The TX
outputs a PRBS bit sequence with a rate of 5 Gbps with

VOLUME 9, 2021 127655

C. H. Goay et al.: Transient Simulations of High-Speed Channels Using CNN-LSTM

FIGURE 15. Rolling forecast method with WLA = 4.

an 8b/10b encoding. The voltage waveforms are sampled
with a sampling rate of 10 samples per bit during a transient
simulation. The dataset for this example is generated from the
voltage waveforms of a million bits, where we use the earlier
bits for training and validation, and the remaining bits for
testing. We define our problem as using VTX0 and VRX from
a time step of (t − 1) to (t −WLB) to predict YRX (t) ≈ VRX (t)
where the look back window, WLB = 200. Using a larger
value of WLB will give a better performance, but it requires
more time for data preprocessing and training, and we find
200 to be a suitable number as it gives a good performance
while not being computationally expensive.

During the prediction process, we will use the rolling
forecast method, which involves feeding the current predic-
tion back into the window to make a prediction at the next
time step. Fig. 14 shows the formulation of this problem
and demonstrates the rolling forecast method that predicts
a single time step into the future. This method can also
be applied for multi-step forecasting problems by defining
a look ahead window, WLA as the number of time steps
into the future during the rolling forecasting process. For
example, Fig. 15 demonstrates the rolling forecast prediction
process for WLA = 4. The single time step rolling forecast
method is basically the multi-step rolling forecast method
with WLA = 1. The S is an 12-dimensional search space
which includes the learning rate, number of convolution
layers, number of LSTM layers, number of LSTM nodes,
dropout rate, filter size, kernel height, pool size, choices
of activation functions where the choices are the rectified
linear unit (ReLU), hyperbolic tangent (tanh), exponential
linear unit (ELU), and scaled exponential linear unit (SELU),
number of dense layers, number of dense nodes, and batch
size. VTX0 and VRX are normalized before being fed to the
neural networks. The goal is: validation loss ≤ 1e-4. All the
experiments are repeated 10 times to obtain better estimations
of the results.

We investigate the effects of different algorithm parameters
and settings on the performance of the ASH-HPO algorithm.
First, we investigate the effects of penalties by using four
cases: no penalty, punish slow models only, punish bad
models only, and both penalties. We set the number of initial
models, K0 = 81, elimination factor, λ = 3, Lt0 = Lv0 = 2k,

FIGURE 16. Validation losses of the ASH-HPO algorithm with different
penalty settings versus training time.

TABLE 2. The effect of penalties on the ASH-HPO algorithm.

TABLE 3. The effect of WLA on the ASH-HPO algorithm.

acquisition function = EI, and initial Lmax = (3 × Lt0).
Table 2 shows the results and the convergence rate plots are
visualized in Fig. 16, where it can be seen that the case ‘‘both
penalties’’ converges the fastest, and the case ‘‘no penalty’’
converges the slowest. It can be seen from the table that the
first penalty can reduce the training time despite using more
training data as the training time per time step is shorter, and
the second penalty can reduce the amount of training data
required to reach the goal. Combining both penalties gave the
best results. Thus, we will apply both penalties for the ASH-
HPO for the rest of this paper.

Then, we investigate the effects of the WLA value (WLA =

1, 20, 50, 100) on the ASH-HPO algorithm. We maintain all

127656 VOLUME 9, 2021

C. H. Goay et al.: Transient Simulations of High-Speed Channels Using CNN-LSTM

FIGURE 17. Validation losses of the ASH-HPO algorithm with different
initial Lmax versus training time.

FIGURE 18. Validation losses of the ASH-HPO algorithm using CNN, LSTM
and CNN-LSTM models versus training time.

FIGURE 19. Validation losses of the ASH-HPO algorithm and BO
algorithm with different Lt versus training time.

other algorithm parameters from the case ‘‘both penalties’’
and only change the value of WLA. The results are tabulated
in Table 3. As the value of WLA increases, the ASH-HPO
algorithm requires more time to converge due to the increase
in complexity of the models. Other than that, increasing the
value of WLA also increases the total time steps of training
data required to reach the goal, which can slow down the
convergence rate even more. However, using larger WLA
values can greatly improve the prediction time per time step

FIGURE 20. Validation losses of the ASH-HPO algorithm and successive
halving algorithm with different Lt versus training time.

FIGURE 21. Validation losses of the ASH-HPO algorithm and hyperband
algorithm with different Lt versus training time.

TABLE 4. The effect of acquisition functions on the ASH-HPO algorithm.

because each prediction can be used to predict more time
steps ahead, thus requiring fewer predictions to predict the
whole sequence. For the PCIe Gen 2 example, we useWLA =

20 because it gives the best trade-off between the training and
prediction processes.

Next, we investigate the effects of the initial Lmax value,
using 3 cases: Lmax = (1 × Lt0), Lmax = (2 × Lt0), and
Lmax = (3 × Lt0). In these cases, we maintain all other
algorithm parameters. Lmax is a variable that decides the
maximum length of the training subset in each bracket, and
its value is increased when the function ImproveBadModels()
detects any bad model that cannot be improved. The results
are visualized in Fig. 17, which shows that the case Lmax =
(3 × Lt0) is slightly faster than the rest of the pack in terms
of the convergence rate, and it requires the least number of
training data, using only 38k time steps as compared to 79k
time steps for the case Lmax = (1 × Lt0), and 62k time
steps for the case Lmax = (2 × Lt0). The results also show
that the convergence rate of the ASH-HPO algorithm is only

VOLUME 9, 2021 127657

C. H. Goay et al.: Transient Simulations of High-Speed Channels Using CNN-LSTM

FIGURE 22. True and predicted normalized VRX waveforms of the PCIe Gen 2 channel for time step, t = 1 to t = 5k of the testing dataset,
testing loss = 1.04e-4.

FIGURE 23. True and predicted normalized VRX waveforms of the PCIe Gen 2 channel for time step, t = 9900k + 1 to t = 9905k of the
testing dataset, testing loss = 1.03e-4.

TABLE 5. The hyperparameters search space and the best configurations for the CNN, LSTM, and CNN-LSTM models for the PCIe Gen 2 example.

FIGURE 24. Eye diagrams generated using the (a) simulated and
(b) predicted voltage waveform for the PCIe Gen 2 channel.

marginally affected by the choice of initial Lmax as all three
cases have very similar training times. A case with smaller
initial Lmax trains the models with a smaller data subset, but
requires more brackets to reach the goal, which increases the
size of data required for the convergence.

Then, we compare the performance of the ASH-HPO
algorithm when it is used with different types of neural
networks. In this work, we investigated the CNN, LSTM,
and CNN-LSTM models. Fig. 18 compares the convergence
rates of the cases using the CNN, LSTM, and CNN-LSTM

networks. We use WLA = 1 for all the cases since higher
values require very high computational time and memory
for the LSTM case. We remove the hyperparameters of the
LSTM layers from S for the CNNmodels and we remove the
hyperparameters of the convolutional layers from S for the
LSTM models. We maintain the other algorithm parameters.
It can be seen that the ASH-HPO algorithm with CNN-
LSTM converges much faster than the ASH-HPO algorithm
with LSTM. This is because the training time per epoch
for the CNN-LSTM models is much shorter than that of
the LSTM models. The convergence rate for CNN-LSTM
is also slightly faster than that of the CNN. The CNN-
LSTM models require only 8.01e-4 second on average to
perform prediction for each time step. On the other hand,
the LSTM models require 1.53e-2 second to predict one
time step which is approximately 19 times slower than the
CNN-LSTM models. The prediction time of CNN is about
6.34e-4 second per time step, which is slightly faster than the
CNN-LSTM model. However, the testing loss of the CNN-
LSTMmodel is 1.03e-4, which is lower than the CNN, which
is 1.16e-4.

127658 VOLUME 9, 2021

C. H. Goay et al.: Transient Simulations of High-Speed Channels Using CNN-LSTM

FIGURE 25. The PCIe Gen 5 topology.

Next, we investigate the effects of different acquisition
functions which are EI, entropy search, UCB, and PI on
the performance of the ASH-HPO algorithm. The results
are tabulated in Table 4. It can be seen that the ASH-
HPO algorithm using EI outperforms the other acquisition
functions, as it converges the fastest, requires the smallest
size of training data to reach the goal, and has the lowest
testing loss.

Besides that, we also compare the proposed ASH-HPO
algorithm to other existing methods. Firstly, we compare
the ASH-HPO algorithm to the BO algorithm without the
progressive sampling strategy. For the BO method, we use
10 random configurations to initialize the algorithm, and
we terminate the BO algorithm when the total number of
models exceeds 100. Each model is trained up to Ep = 100
with P = 6. We test the BO algorithm using 10 cases,
each case with a different training dataset length, Lt =
5k, 10k, 15k, . . . , 50k and a fixed validation dataset length,
Lv of 2k. The progressive sampling method is not applied to
any of them. The convergence plots are shown in Fig. 19.
We only show Lt ≥ 30k in the figure because all the cases
of Lt < 30k fail to reach the goal. The graph shows that
the ASH-HPO algorithm converges faster than all of the BO
cases.

Next, we compare the ASH-HPO algorithm with the
successive halving algorithm. We set the successive halving
algorithm to start with 81 initial models, with λ = 3,
Ep0 = 1, and P calculated as in (6). The successive halving
algorithm is tested using 10 cases, each with a different

Lt = 5k, 10k, 15k, . . . , 50k value and a Lv value of 2k.
The convergence plots are shown in Fig. 20. We only show
Lt ≥ 35k in the figure because all the cases of Lt < 35k
fail to reach the goal. The graph shows that the ASH-HPO
algorithm converges faster than all of the successive halving
cases.

Finally, we compare the ASH-HPO algorithm with the
hyperband algorithm. For the hyperband algorithm, we set
the inputs of the hyperband algorithm to be K0 = 81,
λ = 3, and P is calculated using (6). The hyperband
algorithm is tested using 10 cases, each with a different
Lt = 5k, 10k, 15k, . . . , 50k value and a Lv value of 2k.
The convergence plots of cases that reach the goal are shown
in Fig. 21. The graph shows that the ASH-HPO algorithm has
a faster convergence speed than all of the hyperband cases.

In addition to faster convergence speed shown in these
examples, a main advantage of the ASH-HPO algorithm over
the other three algorithms is that it does not require the
user to input the value of Lt , since it uses a progressive
sampling strategy. This is a significant advantage as different
Lt values can have a large impact on the convergence speed
and testing loss as can be seen from the examples, and the
optimal Lt value cannot be known without performing the
actual training. In other words, the ASH-HPO algorithm is
able to perform a fast and accurate automated training of the
neural models, while limiting trial and error.

Since the ASH-HPO algorithm uses 38k training samples
for training and validation, we will use the remaining samples
for testing. We use the CNN-LSTM model generated by the

VOLUME 9, 2021 127659

C. H. Goay et al.: Transient Simulations of High-Speed Channels Using CNN-LSTM

FIGURE 26. True and predicted normalized VRX waveform of the PCIe Gen 5 channel for time step, t = 1 to t = 5k of the testing dataset,
testing loss = 6.97e-5.

FIGURE 27. True and predicted normalized VRX waveform of the PCIe Gen 5 channel for time step, t = 9800k + 1 to t = 9805k of the
testing dataset, testing loss = 7.13e-5.

FIGURE 28. Eye diagram generated using the (a) simulated and
(b) predicted voltage waveform for the PCIe Gen 5 channel.

FIGURE 29. Validation losses of multiple HPO algorithms versus time for
the PCIe Gen 5 channel.

ASH-HPO algorithm with both penalties, initial Lmax =
(3 × Lt0), acquisition function = EI, WLB = 200, and
WLA = 20. Fig. 22 and Fig. 23 show the comparisons
between the actual and predicted normalized VRX of the PCIe
Gen 2 channel for time step, t = 1 to t = 5k and t =
9900k+1 to t = 9905k respectively. No significant accuracy
degradation is observed from the first testing data subset to
the last. The prediction speed is about 42 microseconds per
time step. Fig. 24 compares the eye diagrams constructed

FIGURE 30. The PAM4 differential channel topology.

using the voltage waveforms generated from a transient
circuit simulator and from the CNN-LSTM network, and
both of them are almost identical. The normalized eye
heights for the simulated and predicted eye diagrams are
both 0.343, while the eye widths for the simulated and
predicted eye diagrams are 14.69 × 10−11 second and
14.60 × 10−11 second respectively. The hyperparameters
search space and the best configurations for the CNN, LSTM,
and CNN-LSTM networks for the PCIe Gen2 example are
tabulated in Table 5.

B. PCIe GEN 5 CHANNEL
The PCIe Gen 5 topology used in this example is shown
in Fig. 25. The TX outputs a PRBS bit sequence with a rate
of 32 Gbps. The TX uses a feed-forward equalizer (FFE)
whereas the RX uses a decision feedback equalizer (DFE)
and a continuous time linear equalizer (CTLE). There are
two transmission channels, both with 36 dB losses, and a
retimer connects the two. VTX is the output voltage of the
TX, VRX is the output voltage of the RX, and VTX0 is the
output voltage of TX when it is terminated with a 100 �

127660 VOLUME 9, 2021

C. H. Goay et al.: Transient Simulations of High-Speed Channels Using CNN-LSTM

FIGURE 31. True and predicted normalized VRX waveform of the PAM4 differential channel for time step, t = 1 to t = 5k of the testing
dataset, testing loss = 1.65e-5.

FIGURE 32. True and predicted normalized VRX waveform of the PAM4 differential channel for time step, t = 400k + 1 to t = 405k of the
testing dataset, testing loss = 1.67e-5.

resistor. The voltage waveforms are sampled with a sampling
rate of 20 samples per bit during a transient simulation. The
modeling problem is defined as using VTX0 and VRX from
time steps (t − 1) to (t − WLB) to predict the values of
VRX from time steps t to (t + WLA − 1), where the look
back window, WLB = 800, and the look ahead window,
WLA = 10. The CNN-LSTMmodel is generated by the ASH-
HPO algorithm with the settings: apply ‘‘both penalties’’,
number of initial models = 81, λ = 3, initial Lmax =
(3 × Lt0), acquisition function = EI, and a termination goal
of validation loss ≤ 7.5e-5. A training dataset with 116k
time steps is used with a training time of 1561 seconds and
a validation loss of 5.10e-5. Fig. 26 and Fig. 27 show the
comparisons between the actual and predicted normalized
VRX of the PCIe Gen 5 channel for time step, t = 1 to t = 5k
and t = 9800k + 1 to t = 9805k of the testing dataset
respectively. The prediction speed is about 110 microseconds
per time step. No significant accuracy degradation is observed
from the first to the last testing set. Fig. 28 compares the eye
diagrams generated using the simulated and predicted voltage
waveforms. The normalized eye heights for the simulated
and predicted eye diagrams are 0.176 and 0.160 respectively,
while the eye widths for the simulated and predicted eye
diagrams are 2.28× 10−11 second and 2.21× 10−11 second
respectively. Fig. 29 shows a comparison between the ASH-
HPO algorithm and other HPO algorithmswhichwere trained
using the same 116k time steps, where it can be seen that the
ASH-HPO algorithm converges the fastest.

C. PAM4 DIFFERENTIAL CHANNEL
The PAM4 channel topology used in this example is
shown in Fig. 30. The transmission channel is a differ-
ential microstrip line with a line width = 10 mil, line
length = 1000 mil, separation between two lines = 5 mil,

FIGURE 33. Eye diagram generated using the (a) simulated and
(b) predicted voltage waveform for the PAM4 differential channel.

TABLE 6. Eye diagram metrics for the PAM4 differential channel.

substrate thickness = 10 mil, relative dielectric constant =
3.7, relative permeability = 1, conductor conductivity =
5.8e7 S/m, conductor thickness= 1.4 mil, and dielectric loss
tangent = 0.002. VTX is the output voltage of the transmitter
(TX), VRX is the input voltage to the receiver (RX), and VTX0
is the output voltage of TX when it is terminated with a
100 � resistor. The TX outputs a PRBS bit sequence with
a rate of 14 GBd with a rise/fall time of 30 picoseconds.
The sampling rate of the voltage waveforms is 10 samples
per symbol. The modeling problem is defined in the same
way as in the previous two examples. The CNN-LSTM
model is generated from the ASH-HPO algorithm with the
settings: WLB = 1600, WLA = 5, apply ‘‘both penalties’’,
number of initial models = 81, λ = 3, initial Lmax =
(3 × Lt0), acquisition function = EI, and a termination
goal of validation loss ≤ 2e-5. A total of 72k training

VOLUME 9, 2021 127661

C. H. Goay et al.: Transient Simulations of High-Speed Channels Using CNN-LSTM

FIGURE 34. Validation losses of the ASH-HPO and successive halving
algorithms versus time for the PAM4 differential channel. Note that the
BO and hyperband algorithms both fail to reach the goal in this example.

data is used with a training time of 1500 seconds and a
validation loss of 1.64e-5. Fig. 31 and Fig. 32 show the
comparisons between the actual and predicted normalized
VRX of the PAM4 differential channel for time step, t = 1
to t = 5k and t = 400k + 1 to t = 405k of the
testing dataset respectively. The prediction speed is about
310 microseconds per time step. No significant accuracy
degradation is observed from the first to the last testing set.
Fig. 33 shows the eye diagrams generated using the simulated
and predicted voltage waveforms. Table 6 compares the
eye diagram metrics for both eye diagrams. The ASH-HPO
algorithm is also compared to other HPO algorithms in this
example using the same 72k training data. Fig. 34 shows that
the ASH-HPO algorithm converges faster than the successive
halving algorithm, while the BO and hyperband algorithms
both fail to reach the goal.

VI. CONCLUSION AND FUTURE WORK
In this paper, we presented the ASH-HPO algorithm for
automated hyperparameter optimization of CNN-LSTM
models for transient simulations and demonstrate it using
three high-speed channels. It is shown that our proposed
method converges faster than three state-of-the-art HPO
methods: BO, successive halving, and hyperband algorithms.
We investigated the different aspects of the algorithm and
show that our algorithm can be further improved by applying
two penalties, which punishes slow training models and bad
models and their neighbors, and show that the method can
converge with a similar speed even with different choices
of initial lengths of training data. Although the ASH-HPO
algorithm has its own parameters such as the WLA, initial
Lmax0, choice of acquisition function, Lv0, and Lt0, these
paramaters have a much less significant impact on the
convergence rate of the algorithm, compared to the effect of
the hyperparameters of the neural models.

For future research, the ASH-HPO algorithm can be used
in combination with other advanced and recent models such
as the LSTM with attention mechanism and the transformer
model. Other than that, the high-speed channel modeling
problem can be broken down into several smaller problems,

where each problem focuses on the transient modeling of
a certain part of the whole channel. Then, whenever that
part of the channel is changed during the design process,
another neural model can be swapped in or out. In this
case, the ASH-HPO algorithm can be scaled up to select
the combination of models that can successfully model the
whole system. In this work, a rolling forecast method is
employed for the training and prediction of the transient
waveform. If the sequence to be predicted is indefinitely long,
accumulation of errors can become an issue to the accuracy of
the predictions. In such a case, the network can be retrained
after a certain number of bits, and the presented ASH-HPO
algorithm would be very well suited to simplify and automate
the whole process. As the neural networks are deterministic
in nature, only deterministic components are considered in
this work. If necessary, a common practice is to add random
components in a postprocessor as Gaussian distributions, and
the modeling and subsequent hyperparameter optimization
of these systems can be investigated as well. Finally,
although the examples presented here focused on the transient
simulations of high-speed channels, the developed algorithm
is not limited to this field. Other applications in time series
forecasting problems such as stock price prediction can be
pursued as well.

REFERENCES
[1] T.-L. Wu, F. Buesink, and F. Canavero, ‘‘Overview of signal integrity and

EMC design technologies on PCB: Fundamentals and latest progress,’’
IEEE Trans. Electromagn. Compat., vol. 55, no. 4, pp. 624–638,
Aug. 2013.

[2] E. Sicard, ‘‘Recent advances in electromagnetic compatibility of 3D-
ICs–Part I,’’ IEEE Electromagn. Compat. Mag., vol. 4, no. 4, pp. 79–89,
4th Quart., 2015.

[3] E. Sicard, W. Jianfei, R. Shen, E. P. Li, E.-X. Liu, J. Kim, and
J. Cho, ‘‘Recent advances in electromagnetic compatibility of 3D-ICs—
Part II,’’ IEEE Electromagn. Compat. Mag., vol. 5, no. 1, pp. 65–74, 1st
Quart. 2016.

[4] S. H. Hall and H. L. Heck, Advanced Signal Integrity for High-Speed
Digital Designs. Hoboken, NJ, USA: Wiley, 2011.

[5] B. K. Casper, M. Haycock, and R. Mooney, ‘‘An accurate and efficient
analysis method for multi-Gb/s chip-to-chip signaling schemes,’’ in Proc.
Symp. VLSI Circuits. Dig. Tech. Papers, Jun. 2002, pp. 54–57.

[6] A. Sanders, M. Resso, and J. D. Ambrosia, Channel Compliance
Testing Using Novel Statistical Eye Methodology. Santa Clara, CA, USA:
DesignCon, 2004.

[7] M. Tsuk, D. Dvorscak, C. S. Ong, and J. White, ‘‘An electrical-
level superposed-edge approach to statistical serial link simulation,’’
in IEEE/ACM Int. Conf. Comput.-Aided Design-Dig. Tech. Papers,
Nov. 2009, pp. 717–724.

[8] M. Ahadi Dolatsara, J. A. Hejase, W. D. Becker, and M. Swaminathan,
‘‘A hybrid methodology for jitter and eye estimation in high-speed serial
channels using polynomial chaos surrogate models,’’ IEEE Access, vol. 7,
pp. 53629–53640, 2019.

[9] M. A. Dolatsara, J. A. Hejase, W. D. Becker, J. Kim, S. K. Lim, and
M. Swaminathan, ‘‘Worst-case eye analysis of high-speed channels based
on Bayesian optimization,’’ IEEE Trans. Electromagn. Compat., vol. 63,
no. 1, pp. 246–258, Feb. 2021.

[10] T. Lu, K. Wu, Z. Yang, and J. Sun, ‘‘High-speed channel modeling with
deep neural network for signal integrity analysis,’’ inProc. IEEE 26th Conf.
Elect. Perform. Electron. Packag. Syst. (EPEPS), San Jose, CA, USA,
Oct. 2017, pp. 1–3.

[11] N. Ambasana, G. Anand, D. Gope, and B. Mutnury, ‘‘S-parameter
and frequency identification method for ANN-based eye-height/width
prediction,’’ IEEE Trans. Compon., Packag., Manuf. Technol., vol. 7, no. 5,
pp. 698–709, May 2017.

127662 VOLUME 9, 2021

C. H. Goay et al.: Transient Simulations of High-Speed Channels Using CNN-LSTM

[12] N. Ambasana, G. Anand, B. Mutnury, and D. Gope, ‘‘Eye height/width
prediction from S-parameters using learning-based models,’’ IEEE Trans.
Compon., Packag., Manuf. Technol., vol. 6, no. 6, pp. 873–885, Jun. 2016.

[13] C. H. Goay, A. Abd Aziz, N. S. Ahmad, and P. Goh, ‘‘Eye diagram contour
modeling using multilayer perceptron neural networks with adaptive
sampling and feature selection,’’ IEEE Trans. Compon., Packag., Manuf.
Technol., vol. 9, no. 12, pp. 2427–2441, Dec. 2019.

[14] C. K. Ku, C. H. Goay, N. S. Ahmad, and P. Goh, ‘‘Jitter decomposition
of high-speed data signals from jitter histograms with a pole–residue
representation using multilayer perceptron neural networks,’’ IEEE Trans.
Electromagn. Compat., vol. 62, no. 5, pp. 2227–2237, Oct. 2020.

[15] Y. Chu, F. Chen, J. Lang, and B. Lee, ‘‘Equalization with neural
network circuitry for high-speed signal link,’’ in Proc. IEEE Int.
Symp. Electromagn. Compat., Signal Power Integrity (EMC+SIPI), New
Orleans, LA, USA, Jul. 2019, pp. 625–628.

[16] H. Kim, C. Sui, K. Cai, B. Sen, and J. Fan, ‘‘An efficient high-speed
channel modelingmethod based on optimized design-of-experiment (DoE)
for artificial neural network training,’’ IEEE Trans. Electromagn. Compat.,
vol. 60, no. 6, pp. 1648–1654, Dec. 2018.

[17] Z. Naghibi, S. A. Sadrossadat, and S. Safari, ‘‘Time-domain modeling of
nonlinear circuits using deep recurrent neural network technique,’’ AEU-
Int. J. Electron. Commun., vol. 100, pp. 66–74, Feb. 2019.

[18] B. O’Brien, J. Dooley, and T. Brazil, ‘‘RF power amplifier behavioral
modeling using a globally recurrent neural network,’’ in IEEE MTT-S Int.
Microw. Symp. Dig., San Francisco, CA, USA, Jun. 2006, pp. 1089–1092.

[19] Y. Cao and Q.-J. Zhang, ‘‘A new training approach for robust recurrent
neural-network modeling of nonlinear circuits,’’ IEEE Trans. Microw.
Theory Techn., vol. 57, no. 6, pp. 1539–1553, Jun. 2009.

[20] C. Zhang, S. Yan, Q.-J. Zhang, and J.-G. Ma, ‘‘Behavioral modeling of
power amplifier with long term memory effects using recurrent neural
networks,’’ in Proc. IEEE Int. Wireless Symp. (IWS), Beijing, China,
Apr. 2013, pp. 1–4.

[21] Y. Fang, M. C. E. Yagoub, F. Wang, and Q.-J. Zhang, ‘‘A new
macromodeling approach for nonlinear microwave circuits based on
recurrent neural networks,’’ IEEE Trans. Microw. Theory Techn., vol. 48,
no. 12, pp. 2335–2344, Dec. 2000.

[22] H. Sharma and Q. J. Zhang, ‘‘Transient electromagnetic modeling using
recurrent neural networks,’’ in IEEE MTT-S Int. Microw. Symp. Dig.,
San Francisco, CA, USA, Jun. 2005, pp. 1597–1600.

[23] D. Luongvinh and Y. Kwon, ‘‘A fully recurrent neural network-based
model for predicting spectral regrowth of 3G handset power amplifierswith
memory effects,’’ IEEE Microw. Wireless Compon. Lett., vol. 16, no. 11,
pp. 621–623, Nov. 2006.

[24] T. Nguyen, T. Lu, J. Sun, Q. Le, K. We, and J. Schut-Aine, ‘‘Transient
simulation for high-speed channels with recurrent neural network,’’ in
Proc. IEEE 27th Conf. Electr. Perform. Electron. Packag. Syst. (EPEPS),
San Jose, CA, USA, Oct. 2018, pp. 303–305.

[25] T. Nguyen, T. Lu, K. Wu, and J. Schutt-Aine, ‘‘Fast transient simu-
lation of high-speed channels using recurrent neural network,’’ 2019,
arXiv:1902.02627. [Online]. Available: http://arxiv.org/abs/1902.02627

[26] M. Feurer and F. Hutter, ‘‘Hyperparameter optimization,’’ in Automated
Machine Learning (The Springer Series on Challenges in Machine
Learning), F. Hutter, L. Kotthoff, and J. Vanschoren, Eds. Cham,
Switzerland: Springer, 2019, doi: 10.1007/978-3-030-05318-5_1.

[27] D. Lho, J. Park, H. Park, S. Park, S. Kim, H. Kang, S. Kim, G. Park,
K. Son, and J. Kim, ‘‘Bayesian optimization of high-speed channel for
signal integrity analysis,’’ in Proc. IEEE 28th Conf. Electr. Perform.
Electron. Packag. Syst. (EPEPS), Montreal, QC, Canada, Oct. 2019,
pp. 1–3.

[28] K. Jamieson and A. Talwalkar, ‘‘Non-stochastic best arm identification
and hyperparameter optimization,’’ 2015, arXiv:1502.07943. [Online].
Available: http://arxiv.org/abs/1502.07943

[29] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and
A. Talwalkar, ‘‘Hyperband: A novel bandit-based approach to
hyperparameter optimization,’’ 2016, arXiv:1603.06560. [Online].
Available: http://arxiv.org/abs/1603.06560

[30] X. Zeng and G. Luo, ‘‘Progressive sampling-based Bayesian optimization
for efficient and automatic machine learning model selection,’’ Health Inf.
Sci. Syst., vol. 5, no. 1, p. 2, Dec. 2017.

[31] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, ‘‘Convolutional, long
short-term memory, fully connected deep neural networks,’’ in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), Brisbane, QLD,
Australia, Apr. 2015, pp. 4580–4584.

[32] T.-Y. Kim and S.-B. Cho, ‘‘Predicting residential energy consumption
using CNN-LSTM neural networks,’’ Energy, vol. 182, pp. 72–81,
Sep. 2019.

[33] J. Donahue, L. A. Hendricks, M. Rohrbach, S. Venugopalan, and S.
Guadarrama, ‘‘Long-term recurrent convolutional networks for visual
recognition and description,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 39, no. 4, pp. 677–691, Apr. 2017.

[34] X. Shi, Z. Chen, H. Wang, D. Y. Yeung, W. K. Wong, and W. C.
Woo, ‘‘Convolutional LSTM network: A machine learning approach for
precipitation nowcasting,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 28,
2015, pp. 802–810.

[35] T. Li, M. Hua, and X. Wu, ‘‘A hybrid CNN-LSTM model for forecasting
particulate matter (PM2.5),’’ IEEE Access, vol. 8, pp. 26933–26940, 2020.

[36] E. Brochu, V. M. Cora, and N. de Freitas, ‘‘A tutorial on Bayesian opti-
mization of expensive cost functions, with application to active user mod-
eling and hierarchical reinforcement learning,’’ 2010, arXiv:1012.2599.
[Online]. Available: http://arxiv.org/abs/1012.2599

[37] J. T. Wilson, F. Hutter, and M. Peter Deisenroth, ‘‘Maximizing acquisition
functions for Bayesian optimization,’’ 2018, arXiv:1805.10196. [Online].
Available: http://arxiv.org/abs/1805.10196

[38] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic
optimization,’’ 2014, arXiv:1412.6980. [Online]. Available:
http://arxiv.org/abs/1412.6980

[39] J. Jiménez and J. Ginebra, ‘‘PyGPGO: Bayesian optimization for Python,’’
J. Open Source Softw., vol. 2, no. 19, p. 431, Nov. 2017.

[40] Y. Yu, X. Si, C. Hu, and Z. Jianxun, ‘‘A review of recurrent neural networks:
LSTM cells and network architectures,’’ Neural Comput., vol. 31, no. 7,
pp. 1235–1270, Jul. 2019.

[41] A. Sherstinsky, ‘‘Fundamentals of recurrent neural network (RNN)
and long short-term memory (LSTM) network,’’ Phys. D: Nonlinear
Phenomena, vol. 404, Mar. 2020, Art. no. 132306.

[42] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

CHAN HONG GOAY was born in Bukit
Mertajam, Penang, Malaysia, in 1992. He received
the B.Eng. and M.Eng. degrees from the School of
Electrical and Electronic Engineering, Universiti
Sains Malaysia, in 2016 and 2019, respectively,
where he is currently pursuing the Ph.D. degree.

Since 2019, he has been a Research Assistant
with the School of Electrical and Electronic Engi-
neering, Universiti Sains Malaysia. His current
research interests include artificial intelligence-

based circuit modeling and signal integrity.

NUR SYAZREEN AHMAD (Member, IEEE)
received the B.Eng. (Hons) degree in electrical
and electronic engineering and the Ph.D. degree
in control systems from The University of Manch-
ester, U.K., in 2009 and 2012, respectively.

She is currently with the School of Electri-
cal and Electronic Engineering, Universiti Sains
Malaysia. Her current research interests include
robust constrained control, intelligent control sys-
tems, computer-based control, and autonomous
mobile systems in wireless sensor networks.

PATRICK GOH received the B.S., M.S., and Ph.D.
degrees in electrical engineering from the Univer-
sity of Illinois at Urbana–Champaign, Champaign,
IL, USA, in 2007, 2009, and 2012, respectively.

Since 2012, he has been with the School of
Electrical and Electronic Engineering, Universiti
Sains Malaysia, where he currently specializes
in the study of signal integrity for high-speed
digital designs. His research interest includes
development of circuit simulation algorithms for

computer-aided design tools. He was a recipient of the Raj Mittra Award,
in 2012, and the Harold L. Olesen Award, in 2010. He has served on
the technical program committee and international program committee for
various IEEE and non-IEEE conferences around the world.

VOLUME 9, 2021 127663

http://dx.doi.org/10.1007/978-3-030-05318-5_1

