
Received July 30, 2021, accepted September 2, 2021, date of publication September 13, 2021, date of current version September 21, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3112266

Performance Evaluation of Adaptive Autonomous
Scheduling Functions for 6TiSCH Networks
FRANCESCA RIGHETTI , (Member, IEEE), CARLO VALLATI, (Member, IEEE),
ARIANNA GAVIOLI , AND GIUSEPPE ANASTASI, (Member, IEEE)
Department of Information Engineering, University of Pisa, 56126 Pisa, Italy

Corresponding author: Francesca Righetti (francesca.righetti@ing.unipi.it)

This work was supported by the Italian Ministry of Education and Research (MIUR) in the framework of the CrossLab Project
(Departments of Excellence).

ABSTRACT The Internet Engineering Task Force (IETF) has recently defined the 6TiSCH architecture to
enable the Industrial Internet of Things (IIoT), i.e., the adoption of the IoT paradigm for industrial applica-
tions with stringent requirements, in terms of reliability and timeliness. In 6TiSCH networks, the scheduling
of communication resources is of paramount importance to meet the application requirements, and many
different Scheduling Functions have been proposed to cope with the needs of various applications. Recently,
autonomous scheduling has emerged as an efficient and robust approach, as it allows nodes to allocate
communication resources autonomously, i.e., without any negotiation with their neighbors, thus avoiding
the related overhead. Typically, this is obtained through static resource-allocation algorithms that are not
able to adapt to variations in traffic conditions. In this paper, we consider adaptive autonomous scheduling,
and compare the performance of three different algorithms in various IIoT scenarios. We investigate their
ability to adapt to traffic changes, and evaluate them in terms of performance, resource consumption, and
complexity. Based on the results obtained, we also provide a set of guidelines to select the most appropriate
Scheduling Function, and its configuration parameters, depending on the specific use case.

INDEX TERMS 6TiSCH architecture, autonomous scheduling, adaptability, Industrial Internet of Things,
simulation.

I. INTRODUCTION
The Industrial Internet of Things (IIoT) is an evolution of
the traditional Internet of Things to include industrial appli-
cations with stringent requirements, in terms of reliability
and timeliness. It is expected to introduce a radical change
in the way industrial systems are designed and managed, and
to affect many application domains, including manufacturing
and production systems, logistics, transportation, energy, and
many others [1].

To support this trend, the Internet Engineering Task
Force (IETF) has defined the 6TiSCH (IPv6 over the TSCH
mode of IEEE 802.15.4e) architecture that allows to inte-
grate IoT devices into existing IPv6 networks, while ensuring
the stringent requirements of industrial applications [2], [3].
To achieve this goal, 6TiSCH is built on top of the Time
Slotted Channel Hopping (TSCH) mode of operation of the
IEEE 802.15.4 standard [4], which provides time-bounded,

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu-Huei Cheng .

guaranteed-bandwidth, and energy-efficient communication
through time-slotted access, high network capacity through
multi-channel communication, and robustness against inter-
ference and fading through frequency hopping.
In 6TiSCH, an appropriate communication scheduling is

needed to meet the stringent requirements of industrial appli-
cations. Hence, the core of the 6TiSCH architecture is the
Scheduling Function (SF) used to schedule communication
resources (i.e., TSCH cells). Indeed, the 6TiSCH specifi-
cations include a Minimal Scheduling Function (MSF) [5],
that can be assumed as the default SF for 6TiSCH networks.
However, other SFs can be used to cope with the requirements
of specific use cases. Hence, a large number of SFs have been
proposed in the literature ([6]–[15]).

The proposed SFs can be broadly classified according to
the approach they take to allocate TSCH cells to nodes,
namely, centralized, distributed, and autonomous. In central-
ized scheduling, a specific node collects information about
the network topology and traffic patterns, derives the com-
munication schedule, and communicates it to all the other

127576 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-3892-8368
https://orcid.org/0000-0002-8546-9427
https://orcid.org/0000-0002-1468-6686


F. Righetti et al.: Performance Evaluation of Adaptive Autonomous Scheduling Functions for 6TiSCH Networks

nodes. Instead, in distributed scheduling, cells are negotiated
by neighbor nodes, based on their traffic needs, through a spe-
cific negotiation protocol. Finally, in autonomous scheduling
cells are allocated by nodes autonomously, i.e., without any
negotiation.

In this paper, we focus on autonomous scheduling [16],
which has emerged recently as an efficient and robust solu-
tion for the IIoT. Specifically, the autonomous allocation
of cells by nodes does not require any exchange of control
packets, thus avoiding negotiation overhead, inconsistencies
between neighbor nodes, as well as vulnerability to possible
attacks from malicious nodes during the negotiation pro-
cess [17]. For instance, the Contiki operating system1 imple-
ments an autonomous algorithm as its default SF, namely
Orchestra [11].

Autonomous scheduling algorithms traditionally lever-
age a static allocation scheme [11], [12], and, hence,
they are unable to adapt to traffic changes. Recently,
a number of adaptive autonomous SFs have been proposed
[14], [15], [18], that can adapt to traffic changes, without
exchanging control packets and, hence, with minimal, or null,
negotiation overhead. MSF can also be regarded as an adap-
tive autonomous SF, as it uses a basic amount of autonomous
cells, for control traffic only, and allocates additional cells for
data packets dynamically. The latter ones are negotiated using
a neighbor-to neighbor approach.

In the context of autonomous adaptive SFs, it is not easy to
select the best available option, as different SFs take different
approaches to adaptation and are characterized by different
performance and complexity. A comparative evaluation of
different adaptive SFs in different and representative scenar-
ios is still missing, as most of them have been proposed only
recently.

In this paper, we consider three adaptive autonomous
SFs, namely OST [15], ALICE [12] with FP extension
(ALICE-FP), and MSF [5], and perform a comprehensive
simulation study to investigate their suitability to real-world
use cases. To this end, we analyze four representative IoT sce-
narios, characterized by different communication paradigms
(many-to-one, one-to-many, one-to-one) and traffic patterns
(periodic or bursty), and evaluate the considered SFs, in terms
of reliability, timeliness, resource consumption, and com-
plexity. The paper is a continuation of our previous analysis
published in [18], where we investigated the pros and cons
of neighbor-to-neighbor negotiation vs. autonomous alloca-
tion. We observed that a static resource allocation may be a
serious limitation for autonomous scheduling. In this work,
we focus on adaptive autonomous scheduling in order to carry
out a comprehensive evaluation of the most recent adaptive
autonomous SFs proposed in literature. Our results have
shown that none of the considered SFs outperforms the other
ones in all the considered scenarios. Instead, different SFs
exhibit pros and cons under different conditions. Basically,
OST optimizes the resource consumption (i.e., energy and

1https://github.com/contiki-ng/contiki-ng

bandwidth consumption), at the cost of increased end-to-end
delay, while ALICE-FP takes the opposite approach and
favors timeliness, at the cost of a higher energy/bandwidth
consumption. Also, the different SFs have different complex-
ity and react differently to changes in the operating condi-
tions. Hence, deciding the most suitable SF, for the specific
use case, may not be an easy task. Therefore, in the last part
of the paper, we provide a set of guidelines that can help the
designer of IoT systems in the selection of the SF, depending
on the application requirements and operating conditions.

In conclusion, the main contributions provided by this
paper can be summarized as follows:
• A comparison of three adaptive (autonomous) SFs for
6TiSCH networks in four representative IoT scenarios,
characterized by different communication paradigms
(many-to-one, one-to-many, one-to-one) and traffic pat-
terns (periodic or bursty);

• A comprehensive evaluation of the considered SFs,
in terms of performance (reliability and timeliness),
resource consumption (duty cycle), and complexity (con-
trol bits);

• A set of guidelines to select the most appropriate
SF, depending on the specific use case and operating
conditions.

The reminder of this paper is organized as follows.
In Section II, we describe the 6TiSCH architecture.
In Section III, we provide a general overview of SFs for
6TiSCH and the related work, with special focus on the three
SFs considered in our analysis. In Section IV, we present
our simulation methodology. In Section V, we compare the
three SFs in terms of reliability, timeliness and resource
consumption, while in Section VI we analyze their com-
plexity. In Section VII, we summarize the lessons learned
from our study and provide a set of guidelines for selecting
the ‘‘best’’ SF, depending on the specific scenario. Finally,
in Section VIII we conclude the paper.

II. 6TiSCH ARCHITECTURE
The 6TiSCH architecture [2] aims at integrating wireless
networks based on the 802.15.4 TSCH standard [4] into
existing IPv6 infrastructures. The reference architecture and
the complete protocol stack are shown in Figure 1.
At the MAC layer, the TSCH protocol allows wireless

communication with bounded delay, high reliability, and low
energy consumption. To this end, TSCH relies on time-slotted
channel access,multi-channel communication, and frequency
hopping. Time is divided into time intervals of fixed dura-
tion (timeslots), each of which allows the transmission of a
packet and the corresponding acknowledgment. A number of
consecutive timeslots form a slotframe, which repeats period-
ically over time. To increase the network capacity, different
nodes are allowed to transmit simultaneously on the same
timeslot, using a different channel (multi-channel communi-
cation). Specifically, 16 different channels are available, iden-
tified by a channel offset (an integer value in the range 0-15)
and, hence, each cell in this two-dimensional slotframe is

VOLUME 9, 2021 127577



F. Righetti et al.: Performance Evaluation of Adaptive Autonomous Scheduling Functions for 6TiSCH Networks

FIGURE 1. 6TiSCH reference architecture and protocol stack.

identified through a couple of information, namely timeslot,
and channel offset. Finally, to mitigate the negative effects
of multipath fading and interferences, TSCH leverages fre-
quency hopping. A predefined frequency-hopping sequence
is shared among all the nodes in the network, so that they can
select a different operating frequency at each timeslot.

The TSCH protocol provides mechanisms to allocate and
deallocate cells to network nodes, according to a communi-
cation schedule. Among these mechanisms, the TSCH MAC
frame includes the Frame Pending (FP) flag, a bit within the
FrameControl Field, that can be used by the sending device to
signal that it has more data for the recipient. When set to one,
the FP bit indicates that the recipient should remain active in
the next timeslot and on the same channel, unless the next cell
is already allocated for other purposes.

While TSCH provides mechanisms to allocate and deallo-
cate cells, it does not specify how cells are allocated to nodes
for communication. To this purpose, the 6TiSCH architecture
includes the 6TiSCH Operation (6top) sublayer [19] that
provides the abstraction of IP link over TSCH, by managing
the allocation of cells to nodes in such a way to meet the
application requirements.

Above the 6top layer, the 6LoWPAN adaptation protocol
is responsible for encapsulating IPv6 datagrams into TSCH
frames, while the IPv6 Routing Protocol for Low-Power
and Lossy Networks (RPL) ensures multi-hop delivery of
IPv6 datagrams. RPL [20] organizes the network nodes in
a Destination Oriented Directed Acyclic Graph (DODAG),
where every node selects a neighbor, called preferred parent,
as the candidate neighbor for upstream data delivery. The
DODAG is rooted at a single node, the root node, that is
typically the collector of the network to which upstream data
is directed. Although RPL is optimized for upstream data
delivery, downstream data delivery, from the root node to non-
root nodes, is also supported. Finally, the end-to-end delivery
of data packets originated by the application is managed by
the UDP protocol.

The 6top sublayer [19] is a crucial part of the 6TiSCH
architecture, as it determines the schedule used by nodes for
communication. It consists of two main components, namely
a Scheduling Function (SF) to calculate the number of cells
to allocate, depending on the current conditions, and the 6top
(6P) protocol to negotiate the required cells, when a neighbor-
to-neighbor negotiation is used. The main SFs for 6TiSCH
will be discussed in the next Section. We provide below a
brief description of the 6P negotiation protocol, that is used
by MSF.

6P [19] defines the operations and messages to imple-
ment a complete negotiation between two nodes (6P trans-
action). A 6P transaction consists of a Request followed by
a Response. The Request message includes a code to specify
the requested action, namely, ADD (to request a new alloca-
tion), DELETE (to cancel an existing allocation), or CLEAR
(to reset the current negotiation). Similarly, the Response
message includes a SUCCESS or ERROR code, to notify a
successful or failed transaction, respectively.

Typically, a requesting node A sends an ADD request to
the corresponding node B, specifying the number of cells to
allocate and a list of free cells. Then, node B replies with
a SUCCESS response containing the list of allocated cells,
if available. Otherwise, node B replies with an ERROR code.
If a Request/Response message gets corrupted, it is retrans-
mitted after a predefined timeout (6P Timeout). Finally, when
a mismatch is detected by node B (e.g., due to a lost Response
message), it replies with an ERRORmessage that forces node
A to send a CLEAR message and resets the schedule (both
nodes cancel all the allocated cells). Then, node A starts a
new 6P transaction.

III. SCHEDULING FUNCTIONS AND RELATED WORK
In this Section, we provide a classification of the main
approaches to scheduling in 6TiSCH networks, with special
emphasis on autonomous scheduling. This allows us to dis-
cuss also the related work. Then, we will focus on the three
SFs considered in our study.

A. CLASSIFICATION
A significant number of SFs for 6TiSCH networks have been
proposed to cope with the requirements of different use cases.
They can be broadly classified according to the approach
they take to allocate cells to nodes, namely, centralized,
distributed, and autonomous scheduling. In addition, there
are also hybrid solutions that combine some of the previous
approaches.
Centralized scheduling leverages a central entity, referred

to as Point Coordination Element (PCE), that collects infor-
mation about the network topology and traffic patterns and,
based on those, derives the (optimal) communication sched-
ule [6]–[8], [21], [22]. Some of these centralized SFs assume
an interference-free communication channel, or at least,
a limited level of interference. This assumption is not real-
istic as IIoT networks often coexist with other networks
operating on the same frequency band, such as WiFi and

127578 VOLUME 9, 2021



F. Righetti et al.: Performance Evaluation of Adaptive Autonomous Scheduling Functions for 6TiSCH Networks

Bluetooth networks, which results in communication unre-
liability and topology instability. In [7] and [8], the authors
explicitly take interference into account and consider retrans-
mission cells in their schedule. Specifically, [7] proposes
a link-based retransmission scheme, while [8] leverages a
flow-based retransmission policy, which proves to be more
efficient. In general, centralized scheduling provides opti-
mal schedule, but requires a high communication overhead,
especially in large networks. Also, the optimal schedule must
be re-computed whenever the operating conditions change.
Hence, centralized scheduling is unsuitable to large and/or
dynamic networks, i.e., networks where the operating condi-
tions change often, due to traffic variations, link unreliabil-
ity, changes in the network topology (e.g., due to the RPL
protocol).

In distributed scheduling [10], nodes negotiate the allo-
cation of TSCH cells with their neighbors, using the 6P
protocol, and adjust the number of allocated cells, depending
on traffic and network conditions. Typically, the communi-
cation schedule is not optimal, however this approach is very
suitable to large and/or dynamic networks. Among distributed
SFs, OTF [9] was originally considered by the 6TiSCH WG
for standardization as the reference SF. However, OTF has
a number of limitations in estimating the number of cells
required by the application, as well as inmanaging congestion
(e.g., originated by changes in the RPL preferred parent).
These limitations are overcome by E-OTF [10], an enhanced
version of OTF.

B. AUTONOMOUS SCHEDULING
The main drawback of distributed scheduling is the associ-
ated negotiation overhead, due to 6P transactions. To avoid
this overhead, autonomous scheduling [16] was introduced,
where nodes allocate cells autonomously (i.e., without nego-
tiation), using a hash function applied to nodes’ addresses.

Orchestra [11] was the first proposed autonomous SF for
6TiSCH, and is currently the default SF used in the Contiki
operating system. It leverages a node-based approach that
can be declined into two different allocation modes, namely,
receiver-based and sender-based. In the receiver-basedmode,
each node allocates one cell per slotframe to receive packets
from all its neighbors, while in the sender-based mode each
node has only one cell per slotframe to send packets to all its
neighbors.

ALICE (Autonomous Link-based Cell Scheduling) [12]
replaces the node-based allocation approach used in Orches-
tra with a link-based approach, where each node allocates a
separate cell for each of its unidirectional links. Hence, each
node hasmany transmission and reception cells as the number
of its neighbors. This allows nodes to allocate a number of
cells corresponding to the number of links, i.e., to the amount
of traffic tomanage. Hence, ALICE significantly outperforms
both modes of Orchestra [16].

Autonomous scheduling is essentially static, i.e., for each
node, the number of available cells per time unit is constant.
Hence, autonomous SFs, like Orchestra and ALICE, may

be unable to manage efficiently unpredictable changes in
traffic conditions [18]. In addition the allocation is, typically,
not optimal [15]. To overcome these limitations, adaptive
autonomous algorithms have been proposed, where the num-
ber of allocated cells is adjusted over time, depending on traf-
fic conditions. Adaptability requires to exchange information
among neighbor nodes to adjust the current allocation and,
hence, it re-introduces a control overhead. This overhead is
the price to pay to achieve adaptability. However, it should
be kept as low as possible, in order to not destroy the basic
feature of autonomous scheduling.

Information exchange among neighbors to support adap-
tation can be implemented in different ways. The simplest
way is using a hybrid approach that combines autonomous
scheduling with neighbor-to-neighbor negotiation, based on
the 6P protocol. While autonomous scheduling provides a
basic number of cells to the node, additional cells can be
added and removed dynamically, through 6P negotiation
with neighbors, depending on time-varying traffic conditions.
This hybrid approach is used by the Minimal Scheduling
Function (MSF) [5], the reference SF for 6TiSCH networks.
With MSF, nodes use both autonomous and negotiated cells.
Autonomous cells provide a minimal amount of bandwidth
only for control messages, while negotiated cells are used for
managing data traffic.

The main drawback of the hybrid approach is the 6P
protocol used for cell negotiation. Several previous studies
[10], [23] have pointed out that 6P transactions take a consid-
erable time to complete (in the order of seconds) andmay also
fail, leading the corresponding nodes to an inconsistent state.
In addition, 6P transactions are vulnerable to security attacks
that can result in selective jamming of the communication
towards a victim node, and/or useless transmissions (and,
hence, energy wastage) of the victim node [17]. An alter-
native approach for exchanging control information among
neighbors consists in piggybacking such information in data
packets. This reduces the overhead and avoids the drawbacks
of using an independent negotiation protocol, like 6P.

In [18], the authors proposed ALICE-FP, an adaptive ver-
sion of ALICE that leverages the Frame Pending (FP) option
made available by the underlying TSCH protocol [4]. This
allows the sending node to signal its corresponding node
that it has more data to send by setting the FP bit in the
TSCH frame. Hence, a node can get extra cells, in addition to
(autonomously) scheduled cells, thus facing temporary traffic
peaks. Clearly, the adaptability provided by ALICE-FP is
limited; however, it is obtained with no overhead, as the FP
bit is already present in the underlying TSCH frame.

TESLA [14] and OST [15] also exploit piggybacked
information to support adaptability. However, they imple-
ment more complex adaptation schemes that require more
control information than a single bit. As a consequence,
the adaptation-related overhead is not null, as in ALICE-FP;
however, it is still limited due to piggybacking.

TESLA (Traffic-Aware Elastic Slotframe Adjustment) [14]
builds on top of the Orchestra receiver-based version, where

VOLUME 9, 2021 127579



F. Righetti et al.: Performance Evaluation of Adaptive Autonomous Scheduling Functions for 6TiSCH Networks

each node allocates a single (reception) slot per slotframe for
receiving data packets from all its neighbors, which results in
static scheduling with globally identical slotframe. Since net-
work nodes have different and time-varying traffic require-
ments, TESLA allows each node to self-adjust its slotframe
size, depending on its incoming traffic. To this end, each
node receives information about its incoming traffic piggy-
backed in the underlying MAC frame and, hence, without
any additional control overhead. Based on this information,
the node periodically estimates the contention level of its
neighbors, and adjusts its slotframe size accordingly. Specif-
ically, the slotframe size is decreased when the contention
level is high (to reduce the collision probability and improve
reliability), and increased when it is low (to avoid idle listen-
ing and save energy). Upon a slotframe size change, the node
communicates the new size to all its one-hop neighbors
(i.e., preferred parent and children). This is the price to pay
for dynamic adaptation.

OST (On-demand Scheduling with Traffic awareness) [15]
is more similar to ALICE and implements an adaptive allo-
cation scheme with traffic awareness. It aims at minimizing
energy consumptionwhile guaranteeing reliable packet deliv-
ery. Specifically, to meet the different traffic requirements
efficiently, OST leverages two different allocation mecha-
nisms, namely Periodic Provisioning and On-demand Pro-
visioning. Periodic Provisioning allocates a periodic cell for
each unidirectional link, as in ALICE, but adjusts the period
dynamically, according to the average traffic load on the link.
Instead, On-demand Provisioning is used to allocate tem-
porarily additional consecutive cells to cope with unexpected
traffic bursts. A negotiation procedure between neighbors is
necessary to agree on the parameters of the Periodic Provision
mechanism (namely, period and time offset). Control infor-
mation is exchanged through regular data or ACK packets,
without any additional control packet. However, the negoti-
ation procedure introduces a certain overhead. In addition,
it may fail, due to lack of available resources at the receiver
or sender side (see Section III-C for details).

A performance evaluation comparing OST with Orchestra
and ALICE was performed in [15], using a 72-node testbed.
The results showed that OST outperforms both Orchestra
and ALICE, in terms of reliability and energy efficiency.
The reason is that Orchestra and ALICE implement static
autonomous scheduling, and are thus unable to adapt to
changes in traffic conditions, while OST is adaptive. A com-
prehensive comparison of adaptive autonomous SFs is still
missing.

In this paper, we focus on adaptive autonomous scheduling
and compare three SFs that leverage different approaches
to adapt the autonomous scheduling to traffic changes.
Specifically, we consider OST as the representative of
fully adaptive autonomous SF, ALICE-FP as an example
of autonomous SF with limited adaptability but zero over-
head, and MSF as an example of hybrid SF combining
autonomous scheduling with neighbor-to-neighbor negotia-
tion (MSF is also the default SF for 6TiSCH networks).

In the following, we present a brief presentation of the three
considered SFs.

C. ON-DEMAND SCHEDULING WITH TRAFFIC
AWARENESS (OST)
OST [15] is a traffic-aware adaptive scheduling technique that
manages communication cells separately for each directional
link, adjusting the number of cells to the traffic requirements
of the link. The goal is to allocate the right amount of
bandwidth, in order to avoid both under-provisioning, which
would result in packet loss, and over-provisioning, which
would result in energy wastage.

The adaptive cell allocation process takes a two-step
approach, based on Periodic Provisioning and On-demand
Provisioning, respectively. The former mechanism allocates
a periodic cell for each unidirectional link, and adjusts the
period dynamically, based on the average traffic load expe-
rienced by the link. Instead, the On-demand Provisioning
mechanism is used to allocate temporarily additional cells
to cope with unexpected traffic bursts. Before describing the
two mechanisms in detail, it is worthwhile to introduce the
different slotframes used in OST.

1) SLOTFRAME ARCHITECTURE
To support robust TSCH and RPL operations under dynamic
conditions, OST maintains two control slotframes, namely
EB slotframe and RPL slotframe (like in Orchestra and
ALICE), both with constant periodicity and offset. Instead,
adaptive scheduling is handled through the following three
slotframes:
• Periodic-provisioning Tx Slotframe (PTS): is used
for unicast transmission to a neighbor. Its periodicity
and channel offset are variable, and set by the Periodic
Provisioning mechanism. Each node maintains a PTS
for each of its neighbors.

• Periodic-provisioning Rx Slotframe (PRS): is analo-
gous to PTS, but it is used for reception.

• Autonomous Unicast Slotframe (AUS): is used for
both control and data transmissions; it has constant peri-
odicity and a dedicated channel offset. Each node has
one AUS.

Specifically, AUS is used for unicast TSCH/RPL control
packets to alleviate the contention on the shared EB and RPL
slotframes that handle the broadcast control transmissions
from all nodes. In addition, AUS can temporarily handle
data traffic when a pair of PTS/PRS is not yet installed for
a directional link. For instance, when a node selects a new
preferred parent, it uses AUS to send data packets to the
parent until a PTS/PRS pair is installed on that link.

To better understand how PTS and PRS work, let us con-
sider a directional link from node A to node B. A maintains
a dedicated PTS for node B with a single transmission cell,
while B must have a corresponding PRS for node A with
a reception cell matching the transmission cell in A’s PTS.
Node A can adjust dynamically its PTS, based on the traffic
demand towards node B, and node B must adjust its PRS

127580 VOLUME 9, 2021



F. Righetti et al.: Performance Evaluation of Adaptive Autonomous Scheduling Functions for 6TiSCH Networks

FIGURE 2. An example of binary resource tree.

size accordingly. Whenever a parent change occurs, two new
PTS/PRS pairs must be installed for the two unidirectional
links between the node and its new parent, while the previous
PTS/PRS pairs with the old parent are removed.

2) PERIODIC PROVISIONING
The Periodic Provisioning mechanism activates periodically,
with a period T , to adapt the PTS/PRS size, based on the aver-
age traffic loadmeasured, during T , on the link. The PTS/PRS
adaptation procedure occurs at the sender side, since the
transmitting node can easily compute the average traffic of
the link, and derive the suitable PTS/PRS size. Let us consider
a directional link from node A to node B. When the Periodic
Provisioning starts, node A computes: (i) the traffic load on
the link during the last period T , L(A,B), as the number of
data packets enqueued for transmission to B during T ; and
(ii) the Inter-Packet Slots, IPS(AB), as the total number of
cells in T divided by L(A,B). Then, A select the next PTS
size as 2N (A,B), such that 2N (A,B)

≤ IPS(AB) < 2N (A,B)+1.
This means that the sender is given a chance to transmit either
with the same frequency, or even with a larger frequency,
than the estimated average transmission frequency. Finally,
node A piggybacksN (A,B) on the next packets directed to B,
so that node B can update its PRS accordingly.

Setting the slotframe size to a power of two allows to
exploit a binary resource tree to easily select a cell in the
schedule, among the available ones. Each node maintains a
binary resource tree and each directional link can use one of
the resources in it. Figure 2 shows an example of such a binary
resource tree, where nodes with dashed borders (e.g., node
(2,3)) designate resources assigned to links. A resource (n, t)
in the tree represents a periodic cell with slotframe size 2n and
time offset t . Each resource (n, t) can be divided equally into
two resources, namely (n + 1, t) and (n + 1, t + 2n). Due to
the parent-child relationship, a resource (n, t) always collides
with its predecessors and partially collides with the resources
in its sub-tree. This characteristic must be considered when
selecting a resource for a link in the binary tree, in order to
avoid collisions.

Specifically, considering again the generic directional
link [A→B], whenever node B detects a new size N (A,B)
in a packet from node A, it selects a collision-free resource
(n, t) in its binary tree, such that n = N (A,B), and updates its
PRS with size 2N (A,B) and time offset t . The selected time
offset is then piggybacked on an ACK for the data packet
received from A. It is noteworthy to highlight that, at this
point, the resource (n, t) is guaranteed to be collision-free
only on the receiving side and that PRS is updated regardless
of whether the sender A has an available matching resource
or not. When node A receives the time offset t proposed
by B, it analyzes its binary resource tree to check whether
the resource (N (A,B), t) is available or not. If available,
node A simply updates its PTS with size 2N (A,B) and with
time offset t .

Since the selection of the PTS/PRS size and time offset
occurs at the sender and receiver side, respectively, two pos-
sible allocation failures may occur: (i) the receiver B does
not have a free resource with the proposed n = N (A,B);
or (ii) the resource (N (A,B), t), proposed by node B, is not
available at node A. In both cases, a negotiation procedure
is started.

If there is no available resource with n = N (A,B) in
the binary resource tree of the receiver, the latter simply
maintains the current PRS configuration and piggybacks an
allocation failure code to A. Note that even though node A
proposed a new PTS size, the PTS size has not been updated
yet. Hence, the PTS and PTR sizes still match. When node A
is notified that the node B does not have an available resource
with the proposed size, it increments N (A,B) and repeats the
whole process again, until A and B find a matching resource.

When the resource proposed by the receiver B is not avail-
able at node A, the situation is a little bit more complex.
Specifically, node A removes the PTS previously used for
transmissions towards B (as node B has already updated its
PRS) and sends a failure code to B to notify that the proposed
resource is not available, asking for another resource. The
negotiation procedure is repeated until a matching time offset
is found.

VOLUME 9, 2021 127581



F. Righetti et al.: Performance Evaluation of Adaptive Autonomous Scheduling Functions for 6TiSCH Networks

It is important to point out that no valid PTS/PRS pair
exists from when node A removes the current PTS to when
nodes A and B agree upon a valid time offset. Hence, during
this time interval all packets destined to Bmust be transmitted
through the AUS slotframe.

3) ON-DEMAND PROVISIONING
The Periodic Provisioning mechanism aims at allocating the
appropriate number of cells to meet the average traffic load.
Even if it can adapt to traffic changes, however it reacts
slowly, and is thus unable to manage unexpected traffic
bursts. Hence, OST also includes the On-demand Provision-
ing mechanism that allows a node to allocate temporarily
additional cells to accommodate extra packets queued in the
local buffer.

With reference to the directional link [A→B], whenever
A is about to send a data packet towards B, it first checks
whether there are other packets queued for B. If this is the
case, A computes its Subsequent Timeslot Schedule (STS) and
piggybacks it on the packet destined to B (that is transmitted
with the FP bit set). The STS is an array containing a certain
number of bits indicating whether the next cells are allocated
or free. To better clarify this point, let us assume that the
current Absolute Slot Number is ASN = t∗. Then, in the STS,
the k th bit will be set to 1 if the cell with ASN = t∗ + k is
already reserved for a scheduled communication, and will be
set to 0 otherwise.

When node B receives the packet, it computes its own STS,
in turn. Then, node B compares the two arrays and selects the
earliest common 0. If this occurs to the mth bit, it means that
both A and B have a free cell at ASN = t∗+m and, therefore,
that cell can be used to accommodate an extra transmission
for the link [A→B]. Then, B piggybacks the position m in
the ACK of the received packet, and schedules a temporary
receiving cell in ASN = t∗+m. Similarly, upon receiving the
ACK, node A schedules a transmission in the same cell.

The On-demand Provisioning mechanism is activated
repeatedly, whenever there are one or more queued packets.
As for Periodic Provisioning, all the information exchanged
between nodes is piggybacked on data or ACK packets and,
therefore, the mechanism does not require additional con-
trol packets. The overhead is limited to the size of STS
(e.g., 2 bytes).

D. ALICE-FP
ALICE [12] was originally proposed to enhance Orches-
tra [11], especially in large and/or dense networks. Like
Orchestra (and OST), ALICE decouples data transmissions
from control packet transmissions, using separate channels
with dedicated channel offsets. Specifically, it uses an EB
slotframe for TSCH control packets, an RPL slotframe for
RPL control packets, and a unicast slotframe for data packets.
However, ALICE replaces the node-based allocation scheme
used in Orchestra with a link-based scheme, where each node
allocates a cell in the unicast slotframe for each unidirectional
link. In addition, ALICE re-calculates the cell schedule at

every slotframe to minimize the impact of possible conflicts
(see below). An example of ALICE unicast slotframe is
shown in Figure 3.
Let us consider a directional link from node A to node B,

namely [A→B]. Both nodeA and node B, autonomously, will
allocate a cell (toffset , coffset ) in the unicast slotframe, whose
time offset and channel offset are derived as follow:

toffset (A,B) = h(α ∗ ID(A)+ ID(B))%Ssf (1)

coffset (A,B) = h(α ∗ ID(A)+ ID(B))%(LCH − 1)+ 1 (2)

where h is a hash function, α is used to differentiate the
traffic direction, Ssf is the unicast slotframe length, and LCH
is the number of channel offsets used within the unicast
slotframe. It may happen that the hash function returns the
same value for different links, resulting in a conflict. Since
this is unavoidable, ALICE re-computes the cell scheduling
at each slotframe tominimize the negative impact of conflicts.
Cell rescheduling can be easily obtained by introducing the
Absolute Slotframe Number (ASFN) in the computation of
the time offset and channel offset, as follows:

ASFN = γ = bASN/Ssf c (3)

toffset (A,B) = h(α ∗ ID(A)+ ID(B)+ γ )%Ssf (4)

coffset (A,B) = h(α ∗ ID(A)+ID(B)+γ )%(LCH−1)+1 (5)

The allocation scheme used in ALICE is static and, hence,
it is not able to manage efficiently temporary bursts of pack-
ets. Specifically, for each unidirectional link, there is one
reserved cell per slotframe. If the number of packets to be
transmitted on the link exceeds temporarily this fixed amount
of bandwidth, packets must be buffered in a local queue.
This results in increased latency and, in extreme cases, packet
dropping.

To make ALICE adaptive without introducing negotiation
overhead, the authors of [18] proposed ALICE-FP that lever-
ages the Frame Pending (FP) bit made available by the under-
lying TSCH protocol [4]. When set to 1, the FP flag indicates
that the recipient should remain active in the next timeslot and
on the same channel, unless the next cell is already allocated
for other purposes. Using this very simple mechanism, a node
can transmit more data packets than the number of scheduled
cells, thus facing temporary traffic peaks.

As a final remark, we observe that the adaption mechanism
used in ALICE-FP is similar to the On-demand Provisioning
mechanism used in OST. However, it is simpler as it uses a
single bit instead of a bitmap. As a consequence, it is less
efficient but introduces zero overhead (the FP bit is already
present in the Frame Control Field of the TSCH frame).

E. MINIMAL SCHEDULING FUNCTION (MSF)
As emphasized above, the 6TiSCH Minimal Scheduling
Function [5] takes a hybrid approach, as it combines
autonomous and distributed scheduling and allocates both
autonomous and negotiated cells. Autonomous cells are
allocated autonomously (i.e., without neighbor-to-neighbor

127582 VOLUME 9, 2021



F. Righetti et al.: Performance Evaluation of Adaptive Autonomous Scheduling Functions for 6TiSCH Networks

FIGURE 3. An example of ALICE scheduling.

negotiation), using a hash function to compute their times-
lot and channel offset, and are used for control informa-
tion. Instead, negotiated cells are allocated (and deallocated)
through the 6P protocol and allow to adapt to time-varying
traffic conditions.

Specifically, MSF uses the three following slotframes:

• Slotframe 0: used for the bootstrap traffic. It follows
the Minimal 6TiSCH Configuration [24] and provides
a single shared cell for all kinds of traffic. Data pack-
ets are sent in unicast and acknowledged. Since the
cell is shared by all the nodes, the collision probability
increases with the node density. However, this single
shared cell is intended to provide a basic connectivity
when no other cells are scheduled.

• Slotframe 1: used to schedule autonomous cells.
• Slotframe 2: used for cells negotiated through the 6P
protocol.

MSF specifications [5] recommend to use the same length
for all of the three slotframes, so as to avoid collisions
between autonomous and negotiated cells. Following this
approach, the collision can be prevented by avoiding using
the same cell.

At bootstrap time, each node can use the static cell on
Slotframe 0 to join the network. Once the node has selected
a preferred parent, two autonomous cells are instantiated in
Slotframe 1, namely an Autonomous Rx Cell (AutoRxCell)
and an Autonomous Tx Cell (AutoTxCell). The AutoRxCell
is used for receiving control messages and is permanently
allocated at joining time, while the AutoTxCell is allocated
only after the node has selected its preferred parent and
changes when a new parent is chosen. In addition, it is
shared with all the other children of the same parent. Finally,
it is not permanently scheduled, but added when there is
a control message to send, and deleted just after. Both the
autonomous cells are allocated by means of a shared hash
function.

Negotiated cells are allocated and deallocated dynamically,
based on traffic requirements, following a utilization-
based approach. Initially, each node negotiates a sin-
gle cell with its parent node. Then, MSF periodically
(every MAX_NUM_CELLS) checks the utilization of
the node, defined as the percentage of used cells with

Algorithm 1MSF Algorithm
Input:

NCE = Number of elapsed negotiated cells
MAX_NUM_CELLS = Max number of elapsed
negotiated cells
NCU = Number of negotiated cells used for
transmission
LIM_NUMCELLSUSED_HIGH = Threshold to
add negotiated cell
LIM_NUMCELLSUSED_LOW = Threshold to
delete negotiated cell

Output:
ADD/DEL one negotiated cell

if NCE > MAX_NUMCELLS then
if NCU > LIM_NUMCELLSUSED_HIGH then

trigger 6P to ADD one negotiated cell
if NCU < LIM_NUMCELLSUSED_LOW then

trigger 6P to DEL one negotiated cell

respect to scheduled cells. The algorithm considers two
thresholds to decide when to add, or remove, a cell.
As shown in Algorithm 1, if the cell utilization is higher
than the upper threshold (LIM_NUMCELLSUSED_HIGH),
one more cell is negotiated with the parent node.
Instead, if the utilization falls below the lower threshold
(LIM_NUMCELLSUSED_LOW), one cell is deleted from
the current schedule.

MSF is designed to operate in a wide range of applica-
tion domains. However, it is optimized for applications with
upstream traffic from the nodes to the root [5]. Downward
traffic is assumed to be sporadic and its management is not
specified. In the implementation used for our experiments,
downward traffic is managed through shared cells.

As a final remark, it may be worthwhile pointing out that,
according to MSF specifications [5], autonomous cells are
used only for control packets, while negotiated cells carry
data packets. However, this limitation could be removed by
allocating more autonomous cells and/or using them also for
data packets. Of course, this would reduce the overhead due
to 6P negotiations. In our analysis we did not investigate this
option.

VOLUME 9, 2021 127583



F. Righetti et al.: Performance Evaluation of Adaptive Autonomous Scheduling Functions for 6TiSCH Networks

IV. EVALUATION METHODOLOGY
To compare the performance of the selected SFs we used sim-
ulation and considered a number of different scenarios that
are representative of different real-world use cases.We imple-
mented the three selected SFs in the Contiki-NG Operating
System (OS), a popular OS for IoT networks that runs on
a wide range of hardware platforms. Contiki-NG already
supports the 6TiSCH basic operations, which simplifies the
implementation of the SFs. Specifically, for our simulations
we exploited Cooja [25], a simulator for IoT networks that
is part of the Contiki-NG suite. It supports the emulation
of hardware components of IoT nodes on which the same
code written for real devices can be run. In all the simulation
experiments, we used the RPL routing protocol (with default
parameters) to allow multi-hop communication.

To compare the performance of the considered adaptive
autonomous SFs, we considered the following metrics.
• Packet Delivery Ratio (PDR), defined as the ratio
between the overall number of (data) packets received by
the final destination and the number of packets sent by
all the nodes in the network. It measures the end-to-end
reliability provided by the SF.

• End-to-end Latency, defined as the time interval
between the generation of a (data) packet at the source
node and its correct reception at the final destination.
This metric measures the timeliness of the SF in deliver-
ing data.

• Duty Cycle, defined as the ratio between the number of
cells in which a node remains awake to receive/transmit
a data packet and the slotframe size. Thismetric provides
an indication of the amount of communication resources
consumed by a node when using a given SF, as well as
an indirect measurement of its energy consumption.

• Control Overhead, defined as the number of control
bits transmitted, on average, by each node to adapt to
traffic conditions. It measures the adaptation overhead
introduced by each SF.

In some experiments we also measured additional metrics
to provide a further insight in the behavior of the considered
SF. These metrics will be introduced below, when used.

In our analysis, we considered four different scenarios,
characterized by different communication paradigms (many-
to-one, one-to-many, many-to-many) and traffic patterns
(periodic or bursty), so as to investigate different IoT use
cases. In the first two scenarios, we considered the case where
all the nodes send their data to a collection point, i.e., the
root node (many-to-one communication). They both refer to
data collection applications (e.g., monitoring applications),
but differ in the traffic generation pattern. In the first scenario
nodes report data periodically, as in environmental monitor-
ing applications. In the second scenario, the traffic pattern
is bursty, i.e., nodes occasionally send a burst of packets,
while for the rest of the time they remain idle. This scenario
is representative of event-driven applications (e.g., an alert
system), in which the detection of a certain event triggers the
generation of a number of packets (e.g., an image taken from

FIGURE 4. Grid topology with average packet delivery probabilities.

a camera). In the third scenario we consider the case where
the root sends packets to all (or many) nodes in the network
(one-to-many communication). This happens, for instance,
when the root needs to send commands/updates to sensor or
actuator nodes. Finally, in the last scenario we consider one-
to-one communication, where a device (e.g., a sensor) sends a
flow of data packets to another device (e.g., an actuator). This
occurs in all those applications (e.g. industrial instrumenta-
tion) that require a direct communication between devices,
i.e. machine-to-machine (M2M) communication.

Simulation experiments were run for a fixed period of time,
namely, 1 hour. In order to obtain statistically sound results,
we performed 10 independent replicas for each simulation
experiment. For each metric, we computed the confidence
interval on all the replicas, with a 95% confidence level.
In some cases, the confidence interval is very small and
difficult to appreciate in the plots shown below.

V. PERFORMANCE ANALYSIS
In this Section, we present the results obtained in our
study. In our experiments, we considered the network
depicted in Figure 4, namely a grid topology with a num-
ber of nodes (N ) distant 33m from each other. To simu-
late the unreliability of wireless communications, each link
was modeled through the Multi-path Ray-tracer Medium
(MRM) model [25]. MRM implements ray-tracing tech-
niques with various propagation effects (e.g., multi-path,
refraction, diffraction, etc.) and associates a Packet Delivery
Probability (PDP) to each link. Obviously, the PDP of a link
depends on the distance between the connected nodes. Also,
it changes over time, due to propagation effects and concur-
rent transmissions. Figure 4 shows, for each link, the asso-
ciated average PDP value. Each node is configured to send
UDP data packets with a certain generation period (P).

Table 1 shows the parameter values used in our exper-
iments. For general parameters, we considered the same
values used in previous simulation analysis [18], [23]. For

127584 VOLUME 9, 2021



F. Righetti et al.: Performance Evaluation of Adaptive Autonomous Scheduling Functions for 6TiSCH Networks

TABLE 1. Parameter settings.

parameters characterizing the three SFs, we used the same
values suggested by the authors, whenever possible. To make
the comparison fair, we considered all the 16 available
channels for all the SFs. Finally, since the performance of
ALICE-FP is strongly influenced by the slotframe size (while
both MSF and OST are not sensitive to this parameter),
we performed a set of preliminary experiments to select the
slotframe size in the scenarios under consideration. Specif-
ically, we ran a number of experiments in the scenarios
analyzed in the paper, with different slotframe sizes (we
considered values suggested by the standard). We observed
that the best performance is obtained by ALICE-FP when the
slotframe size is equal to 29. Hence, below we will use this
value.

In our study, we compared the three considered SFs,
both in terms of performance (end-to-end reliability and
delay), resource consumption (duty cycle) and complex-
ity (control bits), with respect to different factors, such as
number of IoT nodes and traffic rate. In the following,
we first discuss the results obtained in the scenarios char-
acterized by Many-to-One communication, with both peri-
odic traffic (Section V-A) and bursty traffic (Section V-B).
Then, we will analyze the scenarios with One-to-Many com-
munication (Section V-C) and One-to-One communication
(Section V-D). The complexity of the considered SFs will be
discussed in Section VI.

A. MANY-TO-ONE COMMUNICATION WITH PERIODIC
TRAFFIC
In this scenario, each IoT node generates an UDP packet of
fixed size (60 bytes), destined to the root node, with a constant
period P. We start our performance comparison by analyzing
the behavior of the considered SFs with respect to the number
of IoT nodes in the network. To this end, we considered an
increasing number of nodes, in the range [16-64]. In this
first set of experiments, the packet generation period (P) was
constant and equal to 10s [26]. In a second set of experiments,
described later, we will investigate the behavior of the same
SFs, with respect to the traffic rate, by changing the P value
in a range typical for industrial applications [26].

Figure 5 shows the Packet Delivery Ratio (PDR), end-
to-end delay, and average duty cycle for the three considered
SFs, with different networks sizes. The average duty cycle
is computed on all the nodes, and indicates the percentage
of time during which nodes remain active for transmitting
or receiving data packets. Hence, as mentioned above, this
metric is an indirect measurement of energy efficiency. Also,
it provides an indication of the amount of bandwidth con-
sumed by a given SF.

In terms of end-to-end reliability (Figure 5-a), in this sce-
nario, all the considered SFs perform quite well, as the PDR
is always very close to 100%. As expected, the performance
of ALICE-FP decreases slightly when the number of IoT
nodes increases over a certain threshold. This is because,
with a high number of nodes, it may happen that some links
have to manage more than one packet per slotframe. Since
the adaptation mechanism in ALICE-FP is very simple, it is
unable to provide a significant amount of additional band-
width, resulting in increased delay (see also Figure 5-b) and
a small fraction of dropped packets.

In terms of resource consumption, OST is the most effi-
cient option, as it exhibits the lowest average duty cycle
(Figure 5-c). This can be easily justified by observing that
OST allocates the minimum number of cells required to
manage the traffic on the link, while ALICE-FP allocates a
fixed amount of bandwidth, irrespective of the traffic load on
the link. MSF has the highest average duty cycle, as the latter
also considers, in addition to cells used for data packets, also
cells used by the 6P protocol, i.e., the negotiation overhead
that is not present in OST and ALICE-FP.

The minimum average duty cycle in OST comes at the
cost of an increased end-to-end delay experienced by data
packets. As observed, OST tries to allocate the minimum
number of cells required to manage the traffic on the link,
while MSF and, above all, ALICE-FP tend to overprovision
nodes. Hence, typically OST exhibits the largest end-to-end
delay and ALICE-FP the lowest one.

Since both OST and ALICE-FP leverage different alloca-
tion mechanisms, it may be interesting to analyze the con-
tribution of each such allocation mechanism. To this end,
we measured the percentage of data packets transmitted in
the different kinds of cells. The results obtained, are shown
in Figure 6, for both OST (a) and ALICE-FP (b). As a general
remark, we can observe that, in this scenario, the percentage
of packets transmitted through on-demand cells (FP cells
with ALICE-FP) is approximately the same in OST and
ALICE-FP. Focusing on OST, we can observe that, AUS cells
are used very rarely (as expected). Instead, the percentage
of packets transmitted in cells allocated through On-demand
Provisioning is surprisingly high (about 50% with 64 IoT
nodes). We would expect a lower percentage, since the traf-
fic pattern is Periodic and, hence, the Periodic Provisioning
mechanism should adapt the slotframe size to the link traffic
rate.

We investigated this point and found that the observed
result is mainly due to the allocation policy used by the

VOLUME 9, 2021 127585



F. Righetti et al.: Performance Evaluation of Adaptive Autonomous Scheduling Functions for 6TiSCH Networks

FIGURE 5. (a) Packet delivery ratio, (b) End-to-end delay, and (c) Duty cycle for increasing number of IoT nodes. Many-to-One communication,
Periodic traffic, P = 10s.

FIGURE 6. Contribution of the different allocation mechanisms in OST
(a) and ALICE-FP (b).

Periodic Provisioning mechanism (see Section III-C for
details). It may be worthwhile recalling here that, to derive
the appropriate slotframe size for a certain link, the sender
node estimates the Inter-Packet Slots (IPS), and then selects
the slotframe size as 2N , such that 2N ≤ IPS < 2N+1.
However, if no time offset is available at the receiver side
for the proposed slotframe, the sender is forced to double the
slotframe size (2N+1), which results in under-provisioning.
Now, if the number of allocated cells is lower than the number
of generated packets, packets will accumulate in the local

buffer, and the On-demand Provisioningmechanismwill acti-
vate very often. Obviously, the more the nodes are, the higher
the probability is of having no time offset available at the
receiver. This explains why the percentage of packets using
on-demand cells increases as the number of nodes in the
network grows up.

So far, we have analyzed the performance of the consid-
ered SFs with an increasing number of IoT nodes. In order
to assess the impact of the traffic rate, we carried out an
additional set of simulation experiments, where we varied
the packet generation period P, while keeping the number
of nodes constant. Specifically, we considered two network
sizes, namely 25 and 64 IoT nodes.

Figure 7 shows the considered metrics vs. the Packet Gen-
eration period (i.e., traffic rate) in a network of 25 nodes.
We can see that, in such a network, the traffic rate has no
significant impact on the performance of the three considered
SFs. The delivery ratio is almost the same for all of them and
very close to 100%, except when the traffic rate is very high
(i.e., 1 packet/sec), whenALICE-FP degrades andMSF tends
to slightly outperform OST. The impact of the traffic rate on
the average duty cycle is also very light, and OST confirms
to be the most efficient option, in terms of resource consump-
tion, followed by ALICE-FP and MSF. Finally, in terms of
end-to-end delay, ALICE-FP behaves in a very different way,
with respect to both MSF and OST.

Specifically, the end-to-end delay of ALICE-FP does not
depend on the traffic rate, mainly due to the static allocation
that typically results in overprovisioning. Only when the
traffic rate is high, there is an increase in the delay because the
traffic load at more loaded links exceeds the allocated band-
width and the FP bit is not able to provide the required extra
bandwidth. Instead, for both MSF and OST, the end-to-end
delay tends to increase when the packet generation period
increases (i.e., the traffic rate decreases). This is because they
tend to allocate fewer resources when the traffic rate is light
and, hence, packets tend to accumulate in the local buffer.
In particular, OST introduces the highest delay because its
Periodic Provisioning mechanism adjusts the slotframe size,
depending on the packet generation period, in order to min-
imize the number of allocated cells. The step-wise behavior
of the end-to-end delay in OST is due to the inter-dependence

127586 VOLUME 9, 2021



F. Righetti et al.: Performance Evaluation of Adaptive Autonomous Scheduling Functions for 6TiSCH Networks

FIGURE 7. (a) Packet delivery ratio, (b) End-to-end delay, and (c) Duty cycle for increasing packet generation period (P). Many-to-one
communication, Periodic traffic, N = 25 nodes.

FIGURE 8. (a) Packet delivery ratio, (b) End-to-end delay, and (c) Duty cycle for increasing packet generation period (P). Many-to-one communication,
Periodic traffic, N = 64 nodes.

between the packet generation period and the slotframe size
used by the Periodic Provisioning mechanism.

Also Figure 8 analyzes the impact of the traffic rate on
the performance of the considered SFs, however, it refers to
a larger network size (64 nodes). The general trend is the
same as that observed in Figure 7, with some significant
differences, which are discussed in the following. In terms
of end-to-end reliability, we observe that ALICE-FP is not
able to provide 100% delivery ratio, even when the traf-
fic rate is light (this behavior was already observed and
explained, with reference to Figure 5), while both OST and
MSF provide almost full reliability, unless the traffic rate
is high (i.e., P < 5s). When the traffic rate is high, all the
SFs exhibit a significant drop in the delivery ratio, however,
MSF significantly outperforms both OST and ALICE-FP.
The delivery ratio provided by OST, in such conditions is
similar to (if not lower than) that provided by ALICE-FP.
We found that this behavior is mainly due to the instability of
the RPL protocol, which results in frequent parent changes.
These parent changes, however, are much more frequent with
OST and ALICE-FP, as shown in Figure 9-a (which refers
to the case when P = 1s). We can observe, that the num-
ber of parent changes, with OST and ALICE-FP, increases
considerably with the network size. Hence, the performance
of OST and ALICE-FP is affected significantly by the RPL

protocol, when traffic rate is high. This can be explained con-
sidering the limited number of shared timeslots allocated by
ALICE-FP andOST for the transmission of controlmessages,
includingRPLmessages.WhileMSF allocates a certain num-
ber of shared timeslots for control message transmissions,
as it is needed for 6P messages, ALICE-FP and OST allocate
only a few shared timeslots. Specifically, ALICE-FP andOST
statically allocate a single cell in a dedicated slotframe for the
management of broadcast control messages. The difference
between ALICE-FP and OST, instead, can be explained with
the different approach used to handle unicast RPL messages.
While ALICE-FP transmits such messages by exploiting the
same cells used for data traffic, OST uses the AUS slotframe.
The latter, following the node-based scheduling of Orchestra-
RB, does not allow a management of unicast control mes-
sages as efficient as that of ALICE-FP. The reduced number
of transmission opportunities results in a less efficient circu-
lation of RPL messages (delayed messages plus collisions),
thus resulting in more frequent preferred parent changes.

B. MANY-TO-ONE COMMUNICATION WITH BURSTY
TRAFFIC
In this Section, we still consider many-to-one communication
(i.e., upward traffic), but assume that the traffic pattern is
bursty, as in the case of event-driven monitoring applications.

VOLUME 9, 2021 127587



F. Righetti et al.: Performance Evaluation of Adaptive Autonomous Scheduling Functions for 6TiSCH Networks

FIGURE 9. Average number of parent changes, for different network sizes. Many-to-one communication. Periodic traffic, P = 1s (a); Bursty traffic (b).

The goal is to assess the performance of the considered
SFs in a case where IoT nodes alternate between inactive
periods and periods characterized by high traffic intensity.
More specifically, each node alternates between OFF periods,
when no packets are generated, andONperiods, duringwhich
100 UDP packets, of fixed size (60 bytes), are generated
(with destination the root node) with a period of 0.5 seconds.
After sending the last UDP packet the node stops, until the
beginning of the next ON period. The duration of OFF periods
is a random variable with uniform distribution between 1 and
20 minutes. In all the experiments, we considered a network
with increasing size, from 16 to 64 IoT nodes.

Figure 10 shows the performance of the considered SFs,
with an increasing number of IoT nodes, in the scenario
with bursty traffic. As above, OST has the lowest average
duty cycle, since it tries to minimize the amount of allocated
resources. This comes at the cost of an increased latency
and, in fact, OST experiences the highest end-to-end delay.
From the analysis of this scenario it also emerges that, when
the traffic is bursty, OST is not able to provide full reliabil-
ity, even when the network is small (e.g., with 25 nodes).
As shown in Figure 10-a, OST exhibits the lowest packet
delivery ratio, even below ALICE-FP. This is because the
Periodic Provisioning mechanism takes some time to adapt to
the new conditions when a node passes from theOFF state (no
transmissions) to the ON state (periodic transmissions with
P = 0.5s), and the On-demand Provisioning is of limited help
in such conditions. Instead, ALICE-FP can leverage the basic
amount of bandwidth, provided by the static allocation mech-
anism, increased through the additional cells provided by the
FP mechanism in a rapid manner. Finally, MSF provides the
highest delivery ratio, as it is able to adapt more quickly than
the others to traffic variations. However, it uses much more
cells, also due to 6P negotiation messages, as shown by the
highest average duty cycle, and introduces a delay larger than
ALICE-FP. Figure 9-b shows that, even in this scenario, OST
and ALICE-FP experience more parent changes than MSF.

However, now the difference is not so apparent as before.
Overall, in the bursty traffic scenario, ALICE-FP is the best
option.

C. ONE-TO-MANY COMMUNICATION
In the previous sections we have analyzed the considered
SFs when the traffic is directed upward, i.e., from IoT nodes
to the root. In this Section we want to investigate the case
when the traffic flows downward, i.e., from the root to nodes.
This is not so frequent in IoT environments. However, it hap-
pens when the root needs to send a command to sensors
(e.g., updated parameter values, configuration changes, etc.)
or actuators (e.g., actions to be performed). In our exper-
iments, we assumed that the root sends UDP packets of
fixed size (60 bytes) in the network, with a certain period P.
As above, we considered a network with increasing number
of IoT nodes (from 16 to 64).

In the first set of experiments, we simulated the case of
sporadic downward traffic, which is the typical case of down-
ward traffic in IoT networks. We assumed that the packet
generation period is very large (i.e., 1minute) and each packet
is directed to a single destination, randomly selected among
all nodes. Under such conditions, we observed that all the
considered SFs perform reasonably well, irrespective of the
network size. Specifically, in the worst case (i.e., with N=64),
we observed a PDR above 95% for all the considered SFs, and
an end-to-delay of about 2s and 4s for ALICE-FP and OST,
respectively. MSF introduces a higher, yet acceptable, delay
(about 13s). The reasons for this larger delay for MSF will
become clear with the second set of experiments.

In the second set of experiments, we increased significantly
the downward traffic injected into the network, in order to
investigate how the considered SFs behave in high workload
conditions. To this end, we decreased the packet generation
period (P) at the root and assumed that each packet is sent
to a certain number of destinations. Figure 12 shows the per-
formance of the three considered SFs, for different network

127588 VOLUME 9, 2021



F. Righetti et al.: Performance Evaluation of Adaptive Autonomous Scheduling Functions for 6TiSCH Networks

FIGURE 10. (a) Packet delivery ratio, (b) End-to-end delay, and (c) Duty cycle for increasing number of IoT nodes. Many-to-one communication,
bursty traffic.

FIGURE 11. Contribution of the different allocation mechanisms, with
Bursty traffic, in OST (a) and ALICE-FP (b).

sizes, when P = 30s and a copy of each packet is sent by the
root node to all the nodes in the network. This corresponds to
a very high aggregate downward traffic.

We can observe that, in this specific scenario,MSF exhibits
very poor performance as the delivery ratio is very low, even
with small network sizes. This behavior can be explained by
recalling that MSF is optimized for upward traffic. Specif-
ically, cells are allocated only for communication from the
children to the parent, while communication in the reverse

direction is managed through shared cells. Instead, both
ALICE-FP and OST allocate cells in both directions and this
explains their better performance in this scenario.

OST and ALICE-FP have similar performance, in terms
of delivery ratio. As above, OST provides a lower (aver-
age) duty cycle and a larger end-to-end delay. Comparing
the results in Figure 12 with those obtained with upstream
periodic traffic (Figure 5), we can observe that the end-
to-end delay with downstream traffic is significantly lower
than that with upstream traffic, for both OST and ALICE-FP
(we verified that this behavior also holds when the packet
generation period is 30s in both cases). The different values
of the end-to-end delay, with upward and downward traffic,
can be explained as follows. When the traffic flows upward,
all the children of the same parent must compete for using
the resources of their parent. Instead, when the traffic is
downward, each node receives packets only from its parent,
without competing with other nodes, and this results in a
lower waiting time.

In conclusion, both OST and ALICE-FP perform quite
well in this scenario. The former minimizes energy/resource
consumption at the cost of increased end-to-delay, while the
latter takes the opposite approach.

D. ONE-TO-ONE COMMUNICATION
In this final scenario, we consider the case of device-to-device
communication. This is a very common situation in IIoT envi-
ronments, where the source device may be a sensor sending a
data flow to an actuator. In this scenario, the path followed by
a packet includes both an upward component and a downward
component. A packet sent by a source device is forwarded
upward, along the RPL DODAG, until it reaches the root
of the subtree including the destination node. Then, it is
forwarded downward to the destination node, again following
the DODAG.

In our experiments, we assumed four device-to-device
simultaneous communications, with source and destination
nodes located at opposite locations in the grid, so that packets
have to travel upward from the source to the root and, then,
downward from the root to the destination. For instance, with
reference to the 4 × 4 grid shown in Figure 4, nodes 1, 2, 3,

VOLUME 9, 2021 127589



F. Righetti et al.: Performance Evaluation of Adaptive Autonomous Scheduling Functions for 6TiSCH Networks

FIGURE 12. (a) Packet delivery ratio, (b) End-to-end delay, and (c) Duty cycle for increasing number of IoT nodes. One-to-many communication,
periodic traffic, P = 30s.

and 4 are the source nodes, while nodes 13, 14, 15 and 16 are
the corresponding destinations. Each source node generates a
periodic flow of UDP packets, of fixed size (60 bytes), with a
period P of 30s. As in the previous scenarios, we considered
increasing network sizes (from 16 to 64).

Figure 13 shows the performance of the three SFs in
this scenario, which is a mix of the previously consid-
ered scenarios, as it includes both upstream and down-
stream traffic. As expected, MSF performs quite badly, also
in this scenario, due to the downward traffic component.
OST and ALICE-FP exhibit a similar delivery ratio, with
OST slightly outperforming ALICE-FP, when the network
size (and, consequently, the aggregate workload) tends to
increase.Moreover, as above, OST provides a lower (average)
duty cycle, at the cost of an increased end-to-end delay,
while ALICE-FP takes the opposite approach and favors the
timeliness in packet delivery, at the cost of a higher resource
consumption.

VI. COMPLEXITY ANALYSIS
In the previous Section we have evaluated the three con-
sidered SFs in terms of performance (end-to-end reliability
and delay) and resource consumption (duty cycle). To give
a complete picture of the situation, it is also important to
look at the complexity of each SF. A quantitative evaluation
of the complexity may not be an easy task, as the three SFs
take different approaches, and also because complexity may
be regarded from different points of view (i.e., computation
complexity or communication overhead).

A quantitative comparison of the computation complexity
associated with the three SFs is almost impossible to per-
form, since the considered SFs perform different actions,
whose computational cost is very difficult to evaluate and
compare. Hence, we just provide a qualitative evaluation,
based on the analysis of the actions performed by the three
SFs. ALICE-FP has the lowest complexity, as a node just
sets the FP bit in the underlying TSCH frame, whenever
there are queued packets. In OST, in case of queued packets,
a node computes the Subsequent Timeslot Schedule (STS) and
piggybacks it on the packet destined to B. In addition, each

node continuously estimates the optimal PTS/PRS size, for
each link it is involved in, and piggybacks the new size in the
packet. On the other side, the receiver node must check the
availability of a time offset for the requested slotframe size
and notify it to the sender. Otherwise, a negotiation is started.
Finally, in MSF, each node periodically computes the cell
utilization and, depending on its value, decides to allocate or
deallocate one cell, through a 6P transaction. The 6P protocol
is also part of the complexity associated with MSF. Based on
the above analysis, we can conclude that ALICE-FP has an
almost-zero computation complexity, while the complexity of
both OST and MSF is non-negligible.

The communication overhead (or control overhead) of the
three SFs can be quantified in terms of number of additional
control information transmitted, by each node, for adapting to
changing traffic conditions. To this end, we need to consider
the number (and type) of adaption actions performed by
each node when using a specific SF, and the associated cost,
in terms of additional number of control bits transmitted by
the node. For the sake of space, in our (complexity) analysis,
we only consider the case of Many-to-One communication
with Periodic (P = 10s) and Bursty traffic. However, follow-
ing the same approach, the analysis can be easily extended to
the other scenarios.

Figure 14 shows the average number of adaptation actions,
per second, performed by each node. The actions performed
by a node depend on the particular SF, as listed below:
• ALICE-FP: request of an on-demand cell
(FP mechanism);

• OST-PP: request to set up a new PTS/PRS size (Periodic
Provisioning);

• OST-ODP: request of an on-demand cell (On-Demand
Provisioning);

• MSF: request to allocate/deallocate one cell
(6P transaction).

From the analysis of Figure 14, we can observe that
MSF performs a very low number of 6P transactions, basi-
cally those required initially for allocating the appropriate
number of cells. This is because the traffic is periodic and
the utilization-based approach used in MSF avoids frequent

127590 VOLUME 9, 2021



F. Righetti et al.: Performance Evaluation of Adaptive Autonomous Scheduling Functions for 6TiSCH Networks

FIGURE 13. (a) Packet delivery ratio, (b) End-to-end delay, and (c) Duty cycle for increasing number of IoT nodes. One-to-one communication,
periodic traffic, P = 30s.

FIGURE 14. Average number of adaptation actions performed by each
node in a second, Many-to-one communication, periodic traffic, P = 10s.

FIGURE 15. Average number of control bits transmitted by each node in a
second, Many-to-one communication, periodic traffic. P = 10s.

allocations and deallocations (at the cost of overprovision-
ing). Similarly, the number of slotframe adjustments in OST
is extremely limited. Instead, the On-demand Provisioning
mechanism is activated very frequently, and the same also
occurs for the FP mechanism in ALICE-FP (these results
are in accordance with those shown in Figure 6). Overall,

the frequency of adaptation actions performed by OST is
similar to that of ALICE-FP, and even larger in case of low
number of nodes.

The rate of actions performed by each node does not
provide a clear measurement of the control overhead intro-
duced by each SF, as different actions require a differ-
ent number of control bits to be implemented. Hence,
we need to consider the number of control bits transmitted
for each of the above-mentioned actions. Specifically, for
ALICE-FP there is no additional control information trans-
mitted, as the Frame Pending bit is always present in the
TSCH frame and must be set appropriately at each transmis-
sion. In OST, the transmission of the Subsequent Timeslot
Schedule requires 16 bits (and 16 additional bits for the
response). Similarly, the request of a new PTS/PRS size asks
for 16 bits for the request, and 16 more bits for the acknowl-
edgment (assuming that there is no negotiation). Finally, for
MSF, the request of a cell allocation/deallocation requires
the transmission of two 6P messages, namely a 6P Request
and the corresponding 6P Response. Since 6P messages are
transmitted as separate control messages, the control over-
head corresponds to two TSCH cells, under the optimistic
assumption that the Request is always successful. Assum-
ing that each cell has a duration of 10ms, the correspond-
ing number of bits, per cell, is 2500 (assuming a bit rate
of 250 Kbps).

Based on these remarks and leveraging the results in
Figure 14, Figure 15 shows the number of control bits per sec-
ond transmitted, on average, by each node, when using the
three considered SFs. As expected, MSF introduces the high-
est control overhead, as it uses separate 6Pmessages for nego-
tiation. The total control overhead introduced byOST is lower
than MSF, but significant, due to frequent activations of the
On-demand Provisioning mechanism. Finally, as anticipated,
ALICE-FP has zero control overhead.

Finally, we also measured the control overhead when the
traffic is bursty (still considering Many-to-One communica-
tion). Figure 16 and 17 show the average number of actions
per second and the associated control overhead, for the con-
sidered SFs. As a general comment, we can observe that

VOLUME 9, 2021 127591



F. Righetti et al.: Performance Evaluation of Adaptive Autonomous Scheduling Functions for 6TiSCH Networks

FIGURE 16. Average number of adaptation actions performed by each
node in a second, Many-to-one communication, bursty traffic.

FIGURE 17. Average number of control bits transmitted by each node in a
second, Many-to-one communication, bursty traffic.

all the SFs perform more adaptation actions than before
(i.e., with Periodic traffic), as this scenario is more dynamic.
In terms of control bits per second, now MSF predominates
over OST, due to high communication overhead associated
with 6P transactions. As above, ALICE-FP has zero control
overhead.

VII. LESSONS LEARNED
In this Section, we summarize the lessons we have learned,
through our analysis, about the behavior of the considered
SFs and present a set of guidelines for helping the designer
of IoT-based systems in selecting the most appropriate SF,
depending on the specific use case.

As a general remark, it may be worthwhile observing
that OST and ALICE-FP are both adaptive autonomous
SFs, but they take a different approach in cell alloca-
tion. ALICE-FP is basically static and leverages a sim-
ple adaptation mechanism to manage light traffic changes,
while OST is fully dynamic and tries to allocate the mini-
mum number of cells to satisfy the reliability requirements.
Hence, ALICE-FP is less complex, more stable, and pro-
vides a shorter end-to-end delay; however, it consumes more

resources (i.e., bandwidth and energy). Instead, OST min-
imizes the resource consumption at the cost of increased
end-to-end delay. Based on these results, as a general guide-
line, ALICE-FP may be more appealing for (soft) real-time
applications, where guaranteed bandwidth, timeliness, sta-
bility of operations, and low complexity are typically key
requirements, while a larger resource consumption is the
unavoidable price to pay for those. On the other hand, OST
appears to be more suited for less critical applications, where
timeliness is not the main issue, while energy efficiency is
important.

In scenarios characterized by many-to-one (i.e., upward)
communication with periodic traffic, as in monitoring appli-
cations with periodic data reporting, the behavior of the SFs is
influenced by the aggregate workload on the network. When
the aggregate workload is low-to-moderate, all the considered
SFs exhibit similar performance and, hence, ALICE-FP is
the preferred option, especially in industrial use cases, due
to its low complexity, zero control overhead, and long-term
stability. It may be worthwhile emphasizing that real-world
deployments are typically characterized by low-to-moderate
workload. Moreover, in ALICE-FP the static allocation can
be adjusted by setting appropriately the slotframe size.
This allows to allocate more or less bandwidth at design
time.

When the aggregate workload is high (e.g., due to large
number of nodes and/or high traffic rate), ALICE-FP is not
the best option, because the traffic on more loaded links
typically exceeds the available (static) bandwidth and the FP
mechanism cannot help so much. However, in these condi-
tions, also OST performs worse than MSF, in terms of end-
to-end reliability, mainly due to the high number of parent
changes generated by the RPL protocol. Hence, among the
considered SFs, MSF is the best option in this scenario.
However, it is based on 6P negotiation and, in a previous
paper [23], it was shown that E-OTF, another 6P-based algo-
rithm, performs even better than MSF in high workload
conditions.

When the traffic conditions are very dynamic, as in sce-
narios with (upward) bursty traffic, OST does not work
very well, because the Periodic Provisioning mechanism is
slow and takes some time to adapt when the traffic conditions
change, while the On-demand Provisioning is of limited help
in such a dynamic scenario. Among the considered SFs, MSF
has the best performance, especially in terms of end-to-end
reliability. However, it consumes much more resources than
ALICE-FP, due to the negotiation mechanism based on the
6P protocol. Hence, ALICE-FP can be a good compromise
also in this scenario.

In scenarios characterized by One-to-Many communica-
tion (i.e., downward traffic), MSF exhibits very poor per-
formance, because it is optimized for upstream traffic. OST
andALICE-FP have similar performance, in terms of delivery
ratio, but ALICE-FP provides a better timeliness at the cost of
a larger resource consumption, while OST takes the opposite
approach.

127592 VOLUME 9, 2021



F. Righetti et al.: Performance Evaluation of Adaptive Autonomous Scheduling Functions for 6TiSCH Networks

Finally, similar conclusions also hold for the One-to-One
scenario characterized by a mix of upward and downward
traffic, as in device-to-device communications.

VIII. CONCLUSIONS
In this paper, we have focused on adaptive autonomous
scheduling for 6TiSCH networks. Specifically, we have com-
pared three SFs that take different approaches in allocating
cells for communication and adapting to traffic conditions,
namely OST, MSF, and ALICE-FP. We have analyzed the
above-mentioned SFs, in four different scenarios, representa-
tives of many real-world use cases, in terms of performance,
resource consumption, and complexity.

From our study, it emerges that no SF outperforms the other
ones in all the considered scenarios. Instead, different SFs
exhibit pros and cons under different conditions. Therefore,
in Section VII, we have provided a set of guidelines to select
the most appropriate (autonomous) SFs, depending on the
specific scenario and operating conditions.

Intuitively, one would expect OST to outperform
ALICE-FP, as the former takes a fully adaptive approach,
while ALICE-FP has only a limited adaptation capability.
In fact, we observed that OST tends to minimize the resource
consumption, at the cost of a larger end-to-end delay, while
ALICE-FP takes the opposite approach. However, OST is
much more complex than ALICE-FP, not only from a com-
putational point of view, but also in terms of additional num-
ber of control bits transmitted. Indeed, ALICE-FP provides
adaptation with zero overhead, according to the philosophy
of autonomous scheduling. Instead, OST has a non-negligible
control overhead. In addition, ALICE-FP relies on a basic
static allocation. This, typically, results in a non-optimal
resource utilization, but provides long-term stability, robust-
ness, guaranteed bandwidth, and timeliness, which are key
requirements in industrial settings. Based on these remarks,
we believe that ALICE-FP is a very good candidate for real-
world industrial IoT applications.

Our comparative analysis is completely based on simula-
tion. We used simulation as it allows to analyze a large num-
ber of scenarios and to investigate the impact on performance
ofmany different factors (such as network size, traffic pattern,
traffic rate). This is very difficult, if not impossible, tomanage
through real experiments. At the same time, we are aware
that simulation may not capture all the details of the real-
world. Therefore, as a future work, we plan to carry out some
experiments on a real IIoT testbed available at our CrossLab
for Industry 4.0.

ACKNOWLEDGMENT
This work was supported by the Italian Ministry of Education
and Research (MIUR) in the framework of the CrossLab
project (Departments of Excellence).

REFERENCES
[1] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, ‘‘Industrial

Internet of Things: Challenges, opportunities, and directions,’’ IEEE Trans.
Ind. Informat., vol. 14, no. 11, pp. 4724–4734, Nov. 2018.

[2] P. Thubert, An Architecture for IPv6 Over the Time-Slotted Channel Hop-
ping Mode of IEEE 802.15.4 (6TiSCH), document RFC 9030, May 2021.

[3] X. Vilajosana, T. Watteyne, T. Chang, M. Vucinic, S. Duquennoy, and
P. Thubert, ‘‘IETF 6TiSCH: A tutorial,’’ IEEE Commun. Surveys Tuts.,
vol. 22, no. 1, pp. 595–615, 1st Quart., 2020.

[4] IEEE Standard for Low-Rate Wireless Networks, Standard 802.15.4-
2015 Std 802.15.4-2011, 2016.

[5] T. Chang, M. Vucinic, X. Vilajosana, S. Duquennoy, and A. R. Dujovne,
6TiSCH Minimal Scheduling Function (MSF), document RFC 9033,
May 2021.

[6] P. Thubert, M. R. Palattella, and T. Engel, ‘‘6TiSCH centralized schedul-
ing: When SDN meet IoT,’’ in Proc. IEEE Conf. Standards for Commun.
Netw. (CSCN), Oct. 2015, pp. 42–47.

[7] Y. Jin, P. Kulkarni, J. Wilcox, and M. Sooriyabandara, ‘‘A centralized
scheduling algorithm for IEEE 802.15.4e TSCH based industrial low
power wireless networks,’’ in Proc. IEEE Wireless Commun. Netw. Conf.,
Apr. 2016, pp. 1–6.

[8] O. Harms and O. Landsiedel, ‘‘MASTER: Long-term stable routing
and scheduling in low-power wireless networks,’’ in Proc. 16th
Int. Conf. Distrib. Comput. Sensor Syst. (DCOSS), May 2020,
pp. 86–94.

[9] M. R. Palattella, T. Watteyne, Q. Wang, K. Muraoka, N. Accettura,
D. Dujovne, L. A. Grieco, and T. Engel, ‘‘On-the-fly bandwidth reservation
for 6TiSCH wireless industrial networks,’’ IEEE Sensors J., vol. 16, no. 2,
pp. 550–560, Jan. 2016.

[10] F. Righetti, C. Vallati, S. K. Das, and G. Anastasi, ‘‘An evaluation of the
6TiSCH distributed resource management mode,’’ ACM Trans. Internet
Things, vol. 1, no. 4, pp. 1–31, Oct. 2020.

[11] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, ‘‘Orchestra:
Robust mesh networks through autonomously scheduled TSCH,’’ in Proc.
13th ACM Conf. Embedded Networked Sensor Syst., New York, NY, USA,
Nov. 2015, pp. 337–350.

[12] S. Kim, H.-S. Kim, and C. Kim, ‘‘ALICE: Autonomous link-based cell
scheduling for TSCH,’’ in Proc. 18th Int. Conf. Inf. Process. Sensor Netw.,
Apr. 2019, pp. 121–132.

[13] A. Karaagac, I. Moerman, and J. Hoebeke, ‘‘Hybrid schedule management
in 6TiSCH networks: The coexistence of determinism and flexibility,’’
IEEE Access, vol. 6, pp. 33941–33952, 2018.

[14] S. Jeong, J. Paek, H.-S. Kim, and S. Bahk, ‘‘TESLA: Traffic-aware
elastic slotframe adjustment in TSCH networks,’’ IEEE Access, vol. 7,
pp. 130468–130483, 2019.

[15] S. Jeong, H.-S. Kim, J. Paek, and S. Bahk, ‘‘OST: On-demand TSCH
scheduling with traffic-awareness,’’ in Proc. IEEE Conf. Comput. Com-
mun., Jul. 2020, pp. 69–78.

[16] A. Elsts, S. Kim, H.-S. Kim, and C. Kim, ‘‘An empirical survey
of autonomous scheduling methods for TSCH,’’ IEEE Access, vol. 8,
pp. 67147–67165, 2020.

[17] G. Carignani, F. Righetti, C. Vallati, M. Tiloca, and G. Anastasi, ‘‘Eval-
uation of feasibility and impact of attacks against the 6top protocol in
6TiSCH networks,’’ inProc. Int. Symp.WorldWireless, MobileMultimedia
Networks, Aug. 2020, pp. 68–77.

[18] F. Righetti, C. Vallati, S. K. Das, and G. Anastasi, ‘‘Analysis of dis-
tributed and autonomous scheduling functions for 6TiSCH networks,’’
IEEE Access, vol. 8, pp. 158243–158262, 2020.

[19] Q. Wang, X. Vilajosana, and T. Watteyne, 6TiSCH Operation Sublayer
(6top) Protocol (6P), document RFC 8480, Nov. 2018.

[20] O. Gaddour and A. Koubáa, ‘‘RPL in a nutshell: A survey,’’Comput. Netw.,
vol. 56, no. 14, pp. 3163–3178, Sep. 2012.

[21] R. Soua, P. Minet, and E. Livolant, ‘‘MODESA: An optimized multi-
channel slot assignment for raw data convergecast in wireless sensor
networks,’’ in Proc. IEEE 31st Int. Perform. Comput. Commun. Conf.
(IPCCC), Dec. 2012, pp. 91–100.

[22] M. R. Palattella, N. Accettura, L. A. Grieco, G. Boggia, M. Dohler, and
T. Engel, ‘‘On optimal scheduling in duty-cycled industrial IoT appli-
cations using IEEE802.15.4e TSCH,’’ IEEE Sensors J., vol. 13, no. 10,
pp. 3655–3666, Oct. 2013.

[23] F. Righetti, C. Vallati, S. K. Das, and G. Anastasi, ‘‘An experi-
mental evaluation of the 6top protocol for industrial IoT applica-
tions,’’ in Proc. IEEE Symp. Comput. Commun. (ISCC), Jun. 2019,
pp. 1–6.

[24] X. Vilajosana, K. Pister, and T. Watteyne, Minimal IPv6 Over the TSCH
Mode of IEEE 802.15.4e (6TiSCH) Configuration, document RFC 8180,
May 2017.

[25] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, ‘‘Cross-level
sensor network simulation with COOJA,’’ in Proc. 31st IEEE Conf. Local
Comput. Netw., Nov. 2006, pp. 641–648.

VOLUME 9, 2021 127593



F. Righetti et al.: Performance Evaluation of Adaptive Autonomous Scheduling Functions for 6TiSCH Networks

[26] T. Watteyne, J. Weiss, L. Doherty, and J. Simon, ‘‘Industrial
IEEE802.15.4e networks: Performance and trade-offs,’’ in Proc. IEEE Int.
Conf. Commun. (ICC), Jun. 2015, pp. 604–609.

FRANCESCA RIGHETTI (Member, IEEE) rec-
eived the master’s and Ph.D. degrees in computer
engineering from the University of Pisa, Pisa,
Italy, in 2017 and 2021, respectively. She is cur-
rently a Postdoctoral Research Fellow with the
Information Engineering Department, University
of Pisa. She took part in national and international
projects, including the SmarT INtelliGent RAil-
waY (STINGRAY) project with the ISTI-CNR,
Pisa, and the ‘‘ECOAP: Experimental assessment

of congestion control strategies for the Constrained Application Protocol’’
project. Her research interests include wireless sensor networks, and their
applications, the Internet of Things (IoT), and the Industrial Internet of
Things (IIoT). She has served as a TPC for different international conference
and workshops, including IEEE SMARTCOMP 2020 and 4th International
Workshop on Pervasive Smart Living Spaces, PerLS.

CARLO VALLATI (Member, IEEE) is currently
an Assistant Professor (Tenured) of computer sys-
tems engineering with the University of Pisa, Italy.
He is the Coordinator of the Cloud Computing,
Big Data and Cybersecurity Crosslab, founded in
the framework of the Departments of Excellence
funded by the Italian Ministry of Education, Uni-
versity and Research. He is the coauthor of more
than 50 international publications. His research
activities include different areas, such as wireless

and sensor networks, protocols and platforms for the Internet of Things,
algorithms and architectures for edge/fog computing. He has been involved
in different national and international projects, including in particular the
FP7-ICT project ‘‘BETaaS: Building the Environment for the Things as a
Service.’’ He has been the Principal Investigator of the project ‘‘ECOAP:
Experimental assessment of congestion control strategies for the Con-
strained Application Protocol,’’ funded with a grant of 45000 euro by the
European Project WiSHFUL under the Fifth Open Call for experiments
(WiSHFUL-OC5).

ARIANNA GAVIOLI received the master’s degree
(cum laude) in embedded computing systems from
the University of Pisa, Italy, in June 2021. She
prepared her master’s thesis under the supervision
of Prof. Giuseppe Anastasi. Her main research
interests include the Industrial Internet of Things
(IIoT), cyber-physical systems, and their applica-
tions in the industrial field.

GIUSEPPE ANASTASI (Member, IEEE) worked
as the (Founding) Director of the CINI (Smart
Cities National Laboratory), a nation-wide com-
petence center on smart cities and communities,
consisting of 29 nodes (local labs) located at differ-
ent Italian universities, from 2015 to 2018. From
2016 to 2020, he was the Head of the Depart-
ment of Information Engineering (DII), University
of Pisa. He is currently a Professor of computer
engineering with the Department of Information

Engineering (DII), University of Pisa, Italy. He is also the Director of the
Industry 4.0 CrossLab, funded by the Italian Ministry of Education and
Research (MIUR) in the framework of the ‘‘Departments of Excellence’’
Program, which consists of six interdisciplinary and integrated research
laboratories (CrossLabs) covering all the key areas of Industry 4.0. He has co-
founded many successful international workshops and conferences. He has
published more than 150 research articles in the area of computer net-
working and distributed systems. His publications have received more than
10,000 citations, according to Google Scholar (H-index=43). His current
research interests include the Internet of Things, fog/edge computing, cyber-
physical systems, cybersecurity, and smart environments. He is also serving
as a Steering Committee Member for the IEEE SMARTCOMP Confer-
ence. He served as the General Chair for IEEE SMARTCOMP 2018 and
IEEE WoWMoM 2005; a Program Chair for IEEE SMARTCOMP 2016,
IEEE MSN 2015, IFIP/IEEE SustainIT 2012, IEEE PerCom 2010, and
IEEE WoWMoM 2008; and a Vice Program Chair for IEEE MASS 2007.
He served as an Area Editor for Pervasive and Mobile Computing (PMC,
2007–2016); an Associate Editor for Sustainable Computing (SUSCOM,
2010–2015); and an Area Editor for Computer Communications (ComCom,
2008–2010). He is a Co-Editor of two books: Advanced Lectures in Network-
ing (LNCS 2497, Springer, 2002), and Methodologies and Technologies for
Networked Enterprises (LNCS 7200, Springer, 2012).

127594 VOLUME 9, 2021


