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ABSTRACT Mobile crowdsensing is a promising paradigm to leverage the power of people to collect large-
scale spatially distributed data. This concept has been intensely studied to efficiently and securely complete
sensing tasks at lower cost. The development of a unified platform designed to provide various types
of sensing applications is among the major approaches to economical crowdsourcing. However, existing
previous frameworks were not optimized for shared use amongmultiple organizers because they were largely
vertically integrated systems. Security and user trust and confidence is also a significant issue a crowdsensing
frameworks, given the potential security concerns. Therefore, in this study, we propose a network-side task
allocation (NeSTA) framework to address the existing problems in mobile crowdsensing. The proposed
framework enables the horizontal integration of sensing applications, in which mobile networks mediate
communication among organizers and participants, significantly reducing the installation cost of individual
applications. Privacy preservation is achieved by task distribution and allocation procedures, where the
participants were obscured by organizers. The validity of the proposed NeSTAwas confirmed by simulations
with an analytical model using an open dataset. The results show that the proposed method exhibited
computational efficiency over two orders of magnitude greater than the conventional approach. This
advantage originates from the reduction of problem size by dividing the original problem into subproblems.

INDEX TERMS Crowdsourcing, mobile applications, mobile communication, mobile computing.

I. INTRODUCTION
Rec ent advances in sensor technology have enabled mobile
devices including smartphones and tablets to be equipped
with various embedded sensors such as cameras, gyroscopes,
accelerometer, GPS, microphone, and light sensor. As mobile
devices are increasingly becoming essential tools in our daily
lives, they are expected to provide a powerful platform for
large-scale data collection for human society and surrounding
environments [1]. In this context, mobile crowdsensing is a
promising concept designed to leverage the power of people
to collect large-scale spatially distributed data [2]–[5].

The concept of crowdsensing involves the completion
of large-scale sensing tasks with the cooperation of many
mobile users. The advantage of crowdsensing is that it enables
organizers to easily collect spatially distributed data at a lower
cost, which is impossible for a single individual or a small
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group. Various types of sensing applications can be deployed
based on this paradigm, e.g. monitoring systems for road
surfaces, traffic flows, and urban environments, performing
functions such as street parking availability statistics [2].
It can also be noted that sensing applications can collect data
without participants’ awareness, in contrast to participatory
sensing [6], which behavior is classified as opportunistic
sensing [3]. In other words, for instance, a sensing application
may run as a background process in a mobile device, enabling
it to automatically collect data without the active involvement
of the mobile user.

Many works have reported the advantages of crowdsens-
ing [4], [7], [8] in the recent past. In addition to these
specific sensing applications, the development of unified
platforms is expected to be an economical and efficient
approach to provide various types of sensing applications
[9]–[11]. The concepts of such unified platforms are based
on the strong similarity of various sensing applications.
On such platforms, sensing tasks are allocated to participants.
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A programmable platform called Medusa was developed
in [9], which aimed to construct high-level abstractions of the
crowdsensing task procedures. A distributed runtime system
was employed in this platform to coordinate task execution
between cloud computing systems and smartphones. Opti-
mizing the allocation of sensing tasks among participants is
considered a significant issue in the development of a unified
crowdsensing platform of sensing tasks to the participants.
This is issue is complex because each sensing task has
different requirements, and each mobile user has different
constraints, such as time budgets. Many research efforts have
considered optimal task allocation algorithms to address this
problem [11].

It has been reported that security, privacy, and data
integrity are critical issues for crowdsensing frameworks
[2], [12], because crowdsensing applications collect data
from individuals, including sensitive private data. As a typical
example, is GPS tracking sensors installed on all mobile
devices can easily be utilized to infer private information
such as users’ home and work locations. With regard to
data integrity and confidence, malicious individuals can
easily affect sensing results by reporting erroneous data.
Thus, it is important for sensing platforms to provide
mechanisms to ensure the privacy of participants and the
integrity of the collected data. Moreover, resource limitations
are also important issues in the development of large-scale
crowdsensing platforms [2]. Multiple sensing applications
may share energy and computational resources of devices
as well as the time and cost resources of participants. Thus,
the diverse sensing capabilities and availability of mobile
users and devices should be considered in task allocation
across multiple sensing applications. Recently, methods
relying on edge computing have gained popularity in aiming
to address these resource limitations. The decentralized data
aggregation and processing scheme proposed in [13] is a
typical example.

Therefore, in this study, we propose a network-side task
allocation framework to address the existing challenges in
mobile crowdsensing. Although the basic idea was intro-
duced in [14], this paper provides a detailed explanation of
the proposed framework and simulation results. The proposed
framework enables the horizontal integration of sensing
applications, where mobile networks mediate organizers and
participants. The installation and running costs for organizers
of individual sensing applications are significantly reduced
by the proposed approach. Privacy preservation is achieved
by task distribution and allocation procedures, where the
participants are obscured from organizers. This procedure is
executed using an edge computing approach with a central
controller and mobile edge nodes. The proposed confidence
mechanism reduces erroneous data by excluding unreliable
participants in subsequent sensing tasks.

The contribution of this work is to propose a horizontal
integrated framework mediated by mobile networks. In the
proposed framework, different organizers can issue their own
tasks and collect data on the same platform. Mobile users

can participate in different sensing applications and report the
results of different tasks on this platform. The key advantage
of the proposed framework is the integration by the minimal
inclusion of a third party, because network connectivity is
a mandatory component in mobile crowdsensing. That is,
a third party is inevitably required to achieve horizontal
integration ofmultiple sensing applications. Because network
connectivity is a mandatory component in mobile crowdsens-
ing, the proposed framework enables a horizontal integrated
system with the minimal inclusion of a third party through
the mediation of mobile networks. The security and privacy
of participants are ensured by the system architecture; thus,
it is not necessary to consider them in the task allocation. The
reliability of the participants was considered in task allocation
in the proposed task allocation algorithm using the proposed
confidence mechanism.

The remainder of this work is organized as follows.
In Section II, we describe the related work and contributions
of this study. Section III introduces the proposed NeSTA
framework. Regarding the proposed framework, we explain
the problem definition for task allocation in Section IV.
Then, the proposed task allocation algorithm is introduced in
Section V. In addition, the confidence mechanism and analyt-
ical results are described in Section VI. Section VII provides
a performance evaluation of the proposed framework with
case studies using an open dataset. Finally, our conclusions
are presented in section VIII.

II. RELATED WORK
Various incentive mechanisms have been proposed to moti-
vated individuals to participate in crowdsensing platforms
and collect sensor data, including both monetary and non-
monetary approaches [15], [16]. A common monetary
approach estimates the reservation wage, which is defined as
the lowest wage rate at which a participant will accept a job.
Non-monetary approaches include the use of social rewards,
competition, and games. The goal of these approaches is to
encourage volunteer participation of specific users. In [17],
a practical reputation system was proposed for pervasive
social networking. A hybrid trust and reputation management
model was developed to evaluate node recommendation trust
and content reputation. A mechanism for sustaining trust
among trusted computing platforms was proposed in [18]
aiming to ensure trust, which has been a significant issue
in cyberspace context. The proposed mechanism establishes
trust relationships based on the root trust module and ensures
its sustainability. To consider the quality of the sensory data
contributed by individual users, the quality of information
aware [19] and a quality-driven auction-based [20] incentive
mechanism was introduced. In [21], two system incentive
mechanisms were developed, including a user-centric model
in which participants have control over the payment, and
a crowdsource-centric model where participants share the
rewards provided by the organizer. In this study, we assume
that both existing monetary and non-monetary approaches
can be employed as incentive mechanisms.
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Privacy has also been a major concern in crowdsensing
methods [22]. In [23], a trade-off between privacy and
accuracy of acquired data was reported. A spatial cloaking
technique for task assignment was proposed to obfuscate
the locations of participants when they did not intend
to share their locations [24]. For auction-based incentive
mechanisms, a differentially private incentive mechanism
was proposed in [25] to preserve the privacy of each
participant’s bids against others. Truth discovery is employed
to identify truthful values from the sensory data. The authors
of [26] proposed a cloud-enabled privacy-preserving truth
discovery framework to protect the private information of
participants and ensure their reliability scores. For location-
privacy protection, a location aggregation method was
proposed in [27], in which users were classified into several
groups to preserve anonymity and mitigate information loss.
An, an incentive mechanism was also developed to select
efficient users based on the clustered groups generated in the
location aggregation procedure. Although these techniques
can improve the privacy of participants, obfuscation is not
a fundamental solution, as it increases the computational
complexity of the task considerably, leading to increased
resource requirements of the associated sensing systems.

From a system perspective, mobile data cost and energy
consumption are important factors that affect mobile users’
willingness to participate in crowdsensing. An adaptive data
uploading framework within fixed data uploading cycles was
developed to improve energy and cost efficiency [28]. In [29],
a hybrid framework combining mobile devices with static
sensor nodes was proposed to address the issue of inadequate
sensing opportunities caused by incentive mechanisms, that
is, existing users in the target regions being fewer than
the number of participants required for the sensing task. A
framework called CCS-TA was developed in [30] to reduce
the number of required tasks while ensuring data quality
by leveraging the temporal and spatial correlations among
the data collected in different sub-areas. A system frame-
work that integrated data aggregation, data perturbation,
and an incentive mechanism was developed in [31], [32].
In the proposed incentive mechanism, participants who
were more likely to report reliable data were selected. The
data perturbation scheme also ensured the privacy of the
participants and suitable accuracy for the perturbed results.
To effectively allocate dynamic and heterogeneous tasks to
participants from a large number of mobile users, a dynamic
participant recruitment scheme was developed to minimize
cost while ensuring coverage [33]. An efficient participant
selection scheme that aims for multitask environments was
also proposed in [34]. In addition to the conventional
approach, the concept of fog-based vehicular crowdsensing is
an emerging paradigm. The goal of this concept was to meet
the requirements for location-specific applications with com-
munication between vehicular ad hoc networks and fog nodes
that provide location-aware data management functions [35].
The proposed framework has a similar feature, using a fog-
based approach allocate location-specific tasks. However,

previous frameworks, including fog-based approaches, have
not considered the development of an efficient method
to integrate multiple organizers and applications using a
horizontal integration approach. Therefore, in this study,
we propose a novel horizontal integrated framework in
which a mobile network mediates communications between
organizers and participants in crowdsensing operations.

III. NeSTA FRAMEWORK
This section introduces the proposed NeSTA framework for
mobile crowdsensing.

A. CONCEPT
The concept and advantages of the proposed framework
are summarized here. The difference between the proposed
NeSTA and conventional crowdsensing schemes is shown
in Fig. 1 and is introduced in the following.

FIGURE 1. Relationship between organizer and participants in
crowdsensing frameworks.

1) CONVENTIONAL CROWDSENSING FRAMEWORK
Fig. 1a shows the general crowdsensing framework.
It includes two components; participants and an organizer. A
sensing application is arranged by the organizer to acquire
required data. A sensing application defines and issues
sensing tasks. A sensing task is composed of multiple
spatially distributed targets and required specifications, such
as required sampling frequencies and coverage. Here we
define participants as the people who registered with this
sensing application. The participants register their attributes,
e.g. their spatial and temporal availability, restrictions for
data acquisition, and smart device specifications. An issued
sensing task is allocated to the participants considering
their registered attributes. Then, the participants started to
collect data according to the results of task allocation using
the sensors of their mobile devices. The collected data are
automatically reported to the organizer.

Privacy, confidence, and cost are the major concerns for
this conventional approach. First, the privacy issue is caused
by data management schemes in which organizers can easily
obtain and utilize the private information of participants
included in the collected data, for example, time and spatial
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movement records of the participants. With regard to confi-
dence, the quality of data deteriorates if there are unreliable
participants, such as malicious individuals and mobile users
whose devices are equipped with inoperable sensors. The
cost issue originates from the vertically integrated system
architecture. With this architecture, the cost of installing and
running sensing applications cannot be shared among multi-
ple organizers. That is, when an organizer arranges an appli-
cation, they must deploy a new application, even if a similar
application has already been deployed. It is also required for
each organizer to register mobile users for the sensing task.

Here we explain the difference in horizontally and
vertically integrated systems. A horizontal integrated frame-
work provides a platform for various sensing applications.
Different organizers can issue their own tasks and collect the
required data on the same platform. In addition, users can par-
ticipate in different sensing applications and report the results
of different tasks on this platform. A vertical framework aims
to provide a single or specific sensing application easily and
efficiently. Most existing frameworks have worked on task
allocation algorithms considering a wide variety of indices,
such as computational efficiency, requirements of sensing
applications, and user privacy. The contribution of this work
is the proposal of a horizontal integrated framework mediated
by mobile networks. A major advantage of the proposed
framework is the integration of the minimum inclusion of
a third party, because network connectivity is a mandatory
component in mobile crowdsensing.

2) NeSTA FRAMEWORK
Fig. 1b shows the proposed NeSTA framework. Its key
difference from the conventional framework is the existence
of the mobile network as a third component. The participants
and the organizers are mediated by the mobile network in
the NeSTA. In other words, the deployment, registration,
and data collection of sensing applications are executed via
a mobile network. This framework enables the horizontal
integration of sensing applications. Because a single unified
platform is shared among multiple organizers, the installation
and running costs of individual sensing applications are
drastically reduced. Also, the proposed framework employs
an edge computing approach. The task allocation and data
collection procedure are processed in mobile networks, and
thus the private information of participants is obscured
by organizers. If there are unreliable participants, they
can be excluded in subsequent sensing tasks because the
unreliability flag for each participant is updated with the error
reports from the mobile edges.

The goal of the NeSTA framework is to address the
challenges of conventional approaches.

Privacy The privacy of the participants is ensured by
obscuring their data from the organizer. The
organizer requests a sensing task and receives
the processed data without any participant
information. The mobile edge allocates sensing
targets that compose a sensing task to the

participants based on mobile user information.
Spatially distributed targets were allocated to
neighboring participants of the applications
included in the mobile users. The collected data
are anonymized, and then sent to the organizer.
With this framework, the private information,
e.g., movement records and spatial and temporal
availability) of the participants are hidden
from the organizer. Importantly the third-party
included in the proposed approach is a mobile
network operator, i.e. mobile edge nodes are
deployed and operated by a mobile network
operator. Because mobile network operators
generally collect and store mobile users’ data,
including their profiles and locations, no addi-
tional private information of mobile users is
collected with the proposed scheme. As long
as the stored data are properly maintained by
mobile edge nodes in the same way as existing
mechanisms, privacy protection is not a concern
for the proposed approach.

Confidence The horizontal integration of multiple crowd-
sensing applications also improves the con-
fidence of the acquired data. Because the
list of participants is stored in the central
controller, the allocation results of the sensing
application can be utilized in other applications.
The unreliability flag for each participant was
updated with the error reports from the mobile
edges at the end of the allocation sequence.
That is, unreliable participants can be excluded
from subsequent sensing tasks. This feature
improves the confidence by excludingmalicious
users and mobile users with broken sensors.
Also, the proposed framework can improve the
confidence considering the network environ-
ment. If there aremultiple candidate participants
for task allocation, mobile users in unstable
environments are excluded to minimize network
errors. In addition, the mobile network can set
the optimum quality of service (QoS) setting
for the data flow based on the requirements of
the application, such as bandwidth and latency.
The collected data are forwarded in the network
based on QoS policies.

Cost The horizontal integration of multiple crowd-
sensing applications drastically reduces the
installation cost of sensing applications. Fig. 2
depicts the proposed horizontal integration
model. Different organizers provide their own
sensing applications through the same mobile
network. The mobile network manages the
registration information for the mobile users.
Mobile users can individually select whether to
participate in each sensing application in a uni-
fied manner. With this model, the deployment
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FIGURE 2. Proposed horizontal integration model.

cost of a sensing application for an organizer is
significantly lower than that of a conventional
vertically integrated crowdsensing model. The
mobile network operator receives charge from
the organizers to provide the sensing plat-
form service. The organizers decide and offer
the incentive for sensing that the participants
receive. The priority of sensing applications for
the participants can be differentiated with the
incentive setting; higher incentives attract more
people. The incentive is paid for the partici-
pants by totaling the mobile bill. Furthermore,
the proposed model improves the efficiency
of task allocation for multiple applications by
considering the participation states, spatial and
temporal availability, and movement cost of
mobile users.

These advantages originate from themodel of the proposed
NeSTA framework, in which the spatially distributed mobile
network manages and links mobile users with spatially
distributed sensing tasks. Furthermore, the spatial distribution
in the proposed task allocation provides the benefit of
reducing the allocation problem size.

A third party is inevitably required to achieve horizon-
tal integration of multiple sensing applications. Because
network connectivity is a mandatory component in mobile
crowdsensing, the proposed framework enables a horizontal
integrated system with the minimum inclusion of a third
party through the mediation of mobile networks. If the
organizers collaborate to allocate tasks, some information
of the participants must be shared among the organizers.
With the proposed framework, each organizer can virtually
collaborate on the platform without sharing participants’
information. This scheme has significant merit because it
is difficult to evaluate the confidence of each organizer.
In addition, because the time and location of the collected
data themselves include private information of participants,
it is beneficial not to report them to the organizers with the
proposed framework.

B. SEQUENCE FLOW
Fig. 3 depicts the sequence flow of the proposed framework.
The controller and application server are installed in the
mobile core network. The application server provides the

FIGURE 3. Sequence flow of NeSTA framework.

platform for installing sensing applications. The controller
establishes control channels with the mobile edges linked
with each network node. A network node was assumed to
be a mobile base station (BS). If the centralized radio access
network (C-RAN) architecture is employed, a network node
is a remote radio head (RRH).

The sequence is performed as follows.
1) A sensing application which is installed in an applica-

tion server issues a sensing task. The issued task was
forwarded to the controller.

2) The controller distributes the received task to mobile
edges based on the spatial distribution of the targets
included in the task.

3) Each mobile edge assigns the received targets to the
participants in the coverage area.

4) The participants collect data for the allocated targets
and report the results to mobile edges.

5) The mobile edges process the received data including
anonymization and statistical processing, and send the
results to the controller.

6) The controller aggregates the received data and send
the results to the application server.

The issued task is competed with the sequence above.

C. DATA MANAGEMENT
The data management in the proposed NeSTA framework is
explained here with the detailed sequence shown in Fig. 4).
Based on the received task, the controller distributes the task
into a set of targets in each mobile cell. The controller stores
the user database (DB), which records user information such
as participant states and incentive settings. In other words,
the registration data for eachmobile user are stored in the user
DB. The mobile users register or update their attributes in the
user DB. The user attributes include participation states for
each application, spatial and temporal availability, and smart
device specifications.

When a mobile edge node receives a sensing task, it sends
a user DB query to the controller with the list of user IDs in
the cell. As a result, it receives a query result from the user
DB that contains the list of mobile users who participate in
the task. Based on the received participant list, the mobile
edge allocates the sensing task to the participants using the
proposed task allocation algorithm. The participants send
the ACK to let the mobile edge know the acceptance of the
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FIGURE 4. Data management in proposed sequence.

allocated tasks. Note that if a moving user is assigned a target
that is not located in the direction of movement, he/she can
simply decline the offer by sending NACK. If the mobile
edge receives NACK, which indicates that the allocation was
refused, or timeout occurs, that is, themobile edge receives no
ACK/NACK from a participant in a certain time, these tasks
are re-allocated. Moreover, if there are not enough partici-
pants in the cell, the mobile edge requests a task redistribution
to the controller. The participants then collect and report data
in accordance with the result of allocation. The mobile edge
processes the collected data, including anonymization, and
sends the processed data to the controller. Finally, the appli-
cation server receives the aggregated data from the controller.
At the same time, the mobile edge reports a list of user IDs
who send erroneous or unreliable data. With this process,
the proposed scheme improves the confidence of the acquired
data in sensing tasks by excluding unreliable participants such
as malicious users and mobile users with broken sensors.

In the sequence above, the controller only receives the
list of mobile users in each cell, which is included in the
user DB query. The allocation results and collected data
are only stored in the mobile edge nodes. Thus, although
the controller has a user DB, it cannot link mobile users
with the allocation results and collected data. In addition,
the application server only receives aggregated results,
where no private information of participants is included.
Therefore, the proposed data management can achieve
privacy protection of the participants.

IV. PROBLEM DEFINITION
A. VARIABLES
Table. 1 summarizes the variables used to explain the
proposed framework. The details of each variable are
introduced in the following sections.

B. SENSING TASK
A crowdsensing application issues a sensing task, which is
denoted as T . Multiple sensing targets are included in a
sensing task. It is necessary for participants to acquire data
at all sensing targets using mobile devices to complete the

TABLE 1. Variables.

task. Here, we define ST as the set of sensing targets for the
T th task. Let s ∈ ST denote the identifier for the targets.
Let cs denote the required coverage for the sth target, which
represents the required number of allocated participants. This
coverage requirement is defined to ensure redundancy in
sensing to guarantee the quality of the acquired data by
reducing the effect of measurement errors.

C. MOBILE USERS
The relationship between mobile users and participants is
shown in Fig. 5. Mobile network nodes are assumed to be
widely deployed by mobile network operators to provide
mobile connectivity to users. Let J denote the set of mobile
network nodes, their coverage areas, and the corresponding
mobile edges. They are identified with j ∈ J . The
mobile users are potential participants for deployed sensing
applications. They can selectively join or leave each sensing
task considering their purpose, incentive, burden, and so
forth. Note that a mobile user can join different tasks at
the same time. Let Uj denote the set of mobile users in jth
coverage area. The set of mobile users who join T th task is
described as UT . The set of participants in the T th task in
the jth coverage area is defined as P j

T := UT ∩ Uj. They
are identified with p ∈ P j

T . Unreliable participants can be
excluded from P j

T to improve data quality, as described in
the following sections.

D. PROBLEM DEFINITION
The problem definition for task allocation in the proposed
NeSTA is introduced here. The task allocation in the proposed
framework consists of two steps, including Step 1) task
distribution to the mobile edges by the controller, and
Step 2) task allocation to participants in each mobile cell.
That is, the original task allocation problem is divided
into subproblems to be solved in each mobile cell. This
procedure ensures the privacy of mobile users. Moreover,
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FIGURE 5. Mobile users and participants.

the computational efficiency and scalability of the allocation
problem is improved.

1) TASK DISTRIBUTION
The controller distributes the targets of the T th task to
the mobile network edges based on their location. The set
of sensing targets for the T th task in the jth coverage is
denoted as S jT . Obviously, S

j
T is a subset of ST . The targets

in S jT are identified with sj. This task distribution process
can automatically and easily be executed with inside/outside
determination based on the coverage areas and coordinates of
the targets.

2) TASK ALLOCATION
The sensing targets in mobile cell j ∈ J , that is, S jT , are
allocated to the participants P j

T . Because the mobile cell
size is spatially limited, targets are assigned to neighboring
participants. That is, the original problem is divided into
subproblems to be solved independently in each mobile cell.
This problem-size reduction is a great advantage of the
NeSTA. The travel cost of participants to assigned targets is
negligible because of the limited cell size, which simplifies
the allocation algorithm. We define qsp as the incentive paid
when the sth target is reported by the pth participant. The
goal of the task allocation problem is to minimize the total
incentive, which is equivalent to minimizing the cost of
the organizers. The participants can define the acceptable
range of incentive values based on the characteristics of
sensing applications. The minimum acceptable value of the
pth participant is denoted as qp,Min, which is stored in the user
DB and obtained by mobile edges using the user DB query.
The required coverage cs must be satisfied for all the targets.
Let xsp denote a binary variable that represents the allocation
state. If the sth target is assigned to the pth participant xsp = 1;
and otherwise, xsp = 0. Therefore, the objective function and
the constraints are formulated as

Min
∑
s∈S j

T

∑
p∈P j

T

qspxsp (1)

s.t.
∑
p∈P j

T

xsp ≥ cs ∀s ∈ S jT

xsp ∈ {0, 1}. (2)

V. NeSTA ALGORITHM
Based on the problem definition, this section introduces the
task allocation algorithm in the proposed framework. Fig. 6
depicts the overall sequence of the proposed algorithm.When
the controller distributes sensing targets to mobile edges,
each mobile edge independently executes this sequence. The
allocation problem solved by each edge is a subproblem of
the entire problem, and thus, the computational complexity
for each mobile edge is limited by the size of the coverage
area. In addition, the private information of mobile users is
hidden from organizers, as introduced in III-C.

FIGURE 6. Sequence of NeSTA algorithm.

A. TASK DIVISION
The set of sensing targets of task T is defined as ST .
A task division process is executed when the controller
distributes the sensing targets s ∈ ST to the network
edge j ∈ J . The purpose of the task division is to
reduce the problem complexity while satisfying the coverage
constraint formulated in (2). In this process, the sth target
is further divided into cs independent targets, all of which
are associated with the same location in the same manner
as in [11]. For example, if the required coverage of the sth
target is cs = 3, it is divided into three targets that are located
at the same position. The new sensing targets generated
from the sth target are denoted as sk (k = 1, 2, . . . , cs).
For ensuring data quality, these new targets are assigned to
different participants. Let yskp denote a binary variable that
represents the allocation state; if the sk th target is assigned to
the pth participant, yskp = 1; otherwise, yskp = 0.

B. TASK ALLOCATION
A mobile edge node starts the task allocation based on the
received list of participants in the cell. The jth edge has P j

T ,
which is the participant list of T in the coverage area. First,
the incentive qsp is determined based on the base value bT ,
which is determined by the organizer. If bT is higher than
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other tasks, the task T is more attractive to the participants,
and thus this task is likely to be completed quickly and
smoothly. To improve the acceptance rate of the allocation,
a target is allocated only if the offered incentive exceeds
the minimum acceptable value, that is, qsp ≥ qp,Min. With
the base value bT , the incentive can be determined using
the existing mechanisms described in Section II.

Regarding the task allocation problem, the proposed
NeSTA framework employs load balance as a novel concept
in the field. The concept of load balance is introduced to
fully utilize the horizontal integration of multiple sensing
applications, which is enabled by the proposed framework.
The load for each participant can be balanced by allocating
additional tasks, considering the tasks currently allocated
to each participant. A newly issued task is expected to be
completed smoothly and quickly by considering the load
balance. Let wp denote the weight for the pth participant,
which is determined by the allocation status managed by the
mobile edge. A simple example of the weight determination
process is that wp is formulated as

wp = αnp, (3)

where np is the number of allocated tasks, and α is a
parameter. np is stored and updated at each mobile edge.
Equation (3) represents that

the weight is incremented when a new task is allocated and
decremented when an allocated task is finished. The load-
balancing effect is intensified with larger α.
With divided tasks and redefined variables, the task

allocation problem is reformulated as.

Min
∑
s∈S j

T

cs∑
k=1

∑
p∈P j

T

qspwpyskp (4)

s.t.
∑
p∈P j

T

yskp = 1 ∀s ∈ S jT , 1 ≤ k ≤ cs (5)

cs∑
k=1

yskp ≤ 1 ∀s ∈ S jT , ∀p ∈ P j
T (6)

qspyskp ≥ qp,Minyskp ∀s ∈ S jT , ∀p ∈ P j
T

yskp ∈ {0, 1}. (7)

The task allocation problem defined above is a 0-1 integer
programming problem (ILP), which is well-known as being
NP-complete [36]. There have been significant research
efforts on this problem, such as heuristics, and high-
performance solvers are available [37]. Note that the problem
size is significantly reduced from its original size owing to
the task distribution. Thus, the solution for (4) – (7) can be
obtained in a short time using an available solver.

C. TASK REDISTRIBUTION
If an overload of sensing targets occurs in the jth cell,
the jth edge requests the redistribution of targets to the
controller. The controller redistributes the overloaded targets

to neighboring mobile nodes to address overload. Let Oj
T

denote the set of overloaded targets in jth mobile coverage.
The overload problem occurs in two conditions: a) high target
density and b) high decline/timeout rate. The redistribution
request for each condition is explained in the following.

1) HIGH TARGET DENSITY
This condition occurs if there are too many targets in the
cell compared to the number of participants. To satisfy the
constraint formulated in (6), |P j

T | must satisfy

|P j
T | ≥ cs ∀s ∈ S jT . (8)

If (8) is not satisfied,Oj
T is generated by extracting targets

from S jT to satisfy (8). Subsequently, the allocation problem
is solved using S ′jT = S jT −Oj

T .

2) HIGH DECLINE/TIMEOUT RATE
A participant to whom a sensing target is allocated may
decline the offer by sending NACK to the edge. Alternatively,
timeout occurs if the mobile edge does not receive any
ACK/NACK from a participant in a certain time period. The
edge considers these participants are currently unavailable for
some reasons. Let P j

unavailable denote the set of unavailable
participants. The set of participants is updated as P ′jT =
P j
T − P j

unavailable. The allocation state yskp is also updated as

yskp = 0, p ∈ P j
unavailable. (9)

In addition, the set of remaining targets S ′jT is generated as
the set of sk that satisfies

∑
p yskp = 0, that is, the targets that

have been allocated to the unavailable participants. Based on
the updatedP ′jT andS ′jT , reallocation is executed, as depicted
in Fig. 6. If (8) is not satisfied in the reallocation process,
Oj
T is generated in the same manner as in V-C1 to request

redistribution.
Algorithm 1 shows the task redistribution algorithm

executed in the controller.

Algorithm 1 Task Redistribution Algorithm

begin
while Oj

T 6= ∅ do
g = GetNeighbourMobileEdge (j)
o = GetTargetFrom (Oj

T )
if |Pg

T | ≥ co then

Oj
T = Oj

T − o
SgT = SgT + o

end if
end while

end

The overloaded targets are redistributed to other mobile
edges until there is no overloaded target. It selects a mobile
edge geographically adjacent to jth edge. The selected edge is
denoted as g. A candidate target o is selected fromOj

T . If (8)
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is satisfied in the gth cell, o is extracted fromOj
T and assigned

to the gth edge.

D. DATA PROCESSING
When mobile edge nodes receive the collected data reported
from the participants, they process the data, including
anonymization. After that, mobile edges report the processed
data to the controller. The controller integrates the received
data and reports aggregated data to the application server.
In this sequence, the allocation results and collected data
are stored only in the mobile edge nodes. The controller
cannot link mobile users with the collected data. In addition,
the application server receives aggregated results in which
no private information of the participants is stored. There-
fore, organizers cannot access the private information of
participants.

VI. CONFIDENCE MECHANISM
This section describes the details of the confidence mecha-
nism in the proposed NeSTA and the analytical results.

A. MECHANISM
The controller stores an unreliability flag for each participant
in the user DB, which is updated with the error report from
the mobile edge nodes at the end of the proposed allocation
sequence. The unreliability flag represents whether the
participant is legitimate or not. If a participant is determined
to be unreliable, he/she is excluded from subsequent sensing
tasks. The goal of this procedure is to improve confidence
by excluding unreliable participants, such as malicious users
and mobile users with broken sensors. In the following,
the analytical model and numerical results for the proposed
confidence mechanism are introduced.

B. ANALYTICAL MODEL
The detection accuracy of unreliable participants is theo-
retically analyzed in the following manner. For simplicity,
it is assumed that one sensing application is deployed in
the proposed framework, and all users participate in the
application. Here, the sensing tasks issued by this application
are identified with T = 1, 2, . . .. cs = 1 is assumed for
all s ∈ ST∀T . The expected number of targets in a task is
defined as E[S]. The study area consists of multiple mobile
cells that are identified with j = 1, 2, . . .. Let us define
NT :=

∑
j |P

j
T | for simplicity, which represents the total

number of participants in the study area. It is assumed that
the number of participants in the study area is stable, and
mobile users can move in the area without going in or out.
Let UT and DT denote the expected number of undetected
and detected unreliable participants at the T th allocation,
respectively. From the definition,

NT+1 = NT − DT , (10)

which represents that detected unreliable participants are
excluded in the subsequent task allocation.

When the tth task is issued, E[S] targets are allocated to
NT participants. With the proposed mechanism, an unreliable

FIGURE 7. Detection of unreliable participants.

participant is identified if a sensing target is allocated to the
participant, and the reported value is detected as erroneous.
Assuming that the targets and participants are uniformly
distributed, the expected number of detected unreliable
participants is:

DT = θE[S]
UT
NT
, (11)

where θ denotes the probability that the reported value is
successfully detected as erroneous. The relationship between
UT and DT is

UT+1 = UT − DT . (12)

Note that U0 = ρN0, where ρ denotes the ratio of
unreliable participants to all participants.

Let E[x]cnvT denote the expected number of erroneous
data in the T th task without the proposed scheme, and it is
formulated as

E[x]cnvT = E[S]ρ. (13)

With the proposed scheme, it is improved as

E[x]prpT = E[S]
UT
NT
. (14)

C. NUMERICAL RESULTS
The numerical results for the proposed confidence mecha-
nism is introduced in the following. Here, we set N0 = 1000,
E[S] = 100, ρ = 0.01, and θ = 0.25. First, the numbers of
detected and undetected unreliable participants are calculated
using (10), (11), and (12), as shown in Fig. 7. The unreliable
participants are successfully detected with the proposed
mechanism. In addition, the expected numbers of erroneous
data with and without the proposed scheme are computed
using (13) and (14), as shown in Fig. 8. Erroneous data can
be reduced as task allocation proceeds with the proposed
approach, whereas the expected value is stable with the
conventional approach.

VII. NUMERICAL RESULTS
This section introduces the simulation results for the pro-
posed approach.
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FIGURE 8. Expected number of erroneous data.

A. SIMULATION CONDITION
1) DATASET
Open data on human mobility in Tokyo [38] were used in the
simulations as the distribution of participants. This dataset
includes the location and timestamp of mobile users’ SNS
posts in the Tokyo Metropolitan Area, Japan. Approximately
70000 records are included in the dataset for each day.
It is assumed that each mobile user is a participant for
sensing applications. Each participant’s movement course
can be traced from the records using user ID. The dates
for simulation were selected as July 1, July 7, October 7,
October 13, December 16, and December 22, 2013. The
distributions of participants at certain times were generated
with user ID.

2) STUDY AREA
The study area for the simulations was set as the red box
depicted in Fig. 9a). The study area was approximately
6 km × 9 km, and it was located around the city center of
Tokyo. In Fig. 9a, the blue points represent the locations of
the participants that were plotted with the dataset on July 1,
12:00. The coverage of mobile network nodes was assumed,
as depicted in Fig. 9b). The study area was divided into a
10 × 10 grid, assuming that 100 mobile BSs were deployed
at regular intervals. Under these conditions, each mobile BS
provides a roughly 1 km-wide cell, which is a general cell
size in macro or micro-cellular networks in cellular systems
such as LTE and LTE-Advanced.

3) APPLICATIONS
It was assumed that three sensing applications (App.1, App.2,
and App.3) were registered in the controller. To clarify
that the proposed framework can be employed for various
applications as a multi-objective horizontal integrated frame-
work, different time and spatial distributions required by
different organizers were set for each sensing application.
Table. 2 summarizes the specifications of simulated tasks.
Each application independently issues a sensing task in a
certain time interval between 6:00 and 21:00 each day. The
average number of targets and required coverage (cs) were
different among the applications. The coordinates of the

FIGURE 9. Simulation condition.

TABLE 2. Simulated tasks.

generated sensing targets were randomly determined with
a uniform distribution in the study area. For simplicity,
the minimum acceptable values and the offered incentive
values were also randomly determined. The initial value for
the allocation weight was set to wp = 1 for all participants.
The weight is incremented when a new task is allocated and
decremented when a task is completed.

4) EVALUATION METHOD
The contribution of this study lies in the proposed
system model and the data management mechanism.
Correspondingly, the major advantages of the proposed
framework include privacy, confidence, and cost, which
originate from the system design. Thus, it was very difficult
to directly compare the performance with existing schemes
in the simulation. The main purpose of the simulation
was to confirm the feasibility of the proposed approach.
To this end, it was confirmed in the simulation that the
task allocation process could be properly executed with the
proposed algorithm. tasks issued by each sensing application
are adequately distributed to each mobile edge, and in each
coverage area, the distributed targets are efficiently allocated
to the participants. To confirm the efficiency of the proposed
algorithm, the size of the allocation problems and the distance
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FIGURE 10. Simulation results (App.1).

between the sensing targets and assigned participants were
evaluated. Because scalability is one of the major advantages
of the proposed allocation algorithm, it is reasonable to
confirm the effect of problem size reduction.

The evaluation criteria were as follows. 1) Verify platform-
ing different applications, and 2) reduce the problem size. The
discussion on privacy preservation and cost reduction of the
proposed NeSTA is also provided in Section VII-C.

B. SIMULATION RESULTS
First, the performance of the proposed algorithm was
confirmed using the allocation results for each application at
certain time periods. Figs. 10 – 12 shows the results for App.1,
App.2, and App.3, respectively.

The result for App.1 at 12:00 on July 1 is summarized
in Fig. 10). Figs. 10a and 10b show the distribution of
participants and targets in each mobile cell, respectively.
In this condition, there were several tens of participants and
several sensing targets in each mobile coverage area. Fig. 10c
shows the histogram of the number of redistributed targets in
each cell. Fig. 10d shows the relationship between the number
of sensing targets and participants after the redistribution
process. It was confirmed from these results that the
task-redistribution was correctly executed; the overloaded
targets were redistributed to neighboring cells if there were
insufficient participants. Fig. 10e shows the size of task
allocation problem. The original task allocation problem in
the study area included more than 1000 participants and 100
targets. The proposed task distribution process reduced the
problem size by 99% by dividing the original problem into
subproblems. Finally, the travel distance of participants is
summarized in Fig. 10f. The distance from the starting point
to the allocated sensing targets was successfully limited to
approximately 1 km. This is because the allocation process is
basically executed in a mobile cell.

The results for App.2 at 15:00 on July 1 and App.3 at
18:00 on July 7 are summarized in Figs. 11 and 12,
respectively. These results imply that the proposed algorithm
can efficiently solve the task-allocation problems in these
conditions in the same way as the result for App.1. The
reduction in the problem size increased in accordance with
the increase in the number of participants. The original
problems can be appropriately divided into subproblems,
irrespective of the changes in the distributions of the sensing
targets and participants. Thus, it was confirmed that the
proposed framework provides an efficient platform for
various sensing applications.

The relationship between the mobile cell size and the
problem size in this case of App.3 at 18:00 on July 7 is shown
in Fig. 13). The problem size drastically decreases with the
reduction in the mobile cell size. Although the actual values
depend on the situation in the target area, the effect of the
proposed approach does not depend on it. Considering that
the mobile cell size has been reduced by network operators
to increase the mobile data rate and the future increase in the
number of participants and sensing applications, the benefit
from the scalability improvement of the proposed schemewill
increase.

C. DISCUSSION
1) PRIVACY
The basic assumption of the present work is that the mobile
network can be trusted. This assumption is reasonable
because mobile networks, which are fully managed by a
single operator, are expected to be secure compared with
general networks managed by various operators that are
used by existing frameworks. In addition, it is easy to
judge the trustworthiness of the mobile network, while a
participant must judge whether an organizer is trustworthy or
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FIGURE 11. Simulation results (App.2).

FIGURE 12. Simulation results (App.3).

not for each application when conventional frameworks are
employed. Moreover, existing privacy preservation schemes,
such as spatial cloaking, can be employed in the proposed
framework.

Based on the above assumption, privacy preservation in
the proposed framework is explained here. As illustrated
in the simulation, there was no direct communication between
the organizers and participants. Thus, when the mobile
network is trusted, which is the basic assumption stated
above, user privacy is ensured as long as the user information
is not included in the data reported to the organizers.
In the proposed scheme, the mobile edge anonymizes the
collected data using existing data anonymization methods to

store them without any information about the participants.
Subsequently, the collected data are integrated to be reported
to the organizers. Therefore, privacy is preserved in principle
with the proposed framework based on the basic assumption
of trustworthiness.

The discussion above assumed that mobile edge nodes
can be trusted. When we assume the existence of malicious
edge nodes, we can ensure further security by employing
secure computation, such as secure multi-party computation
(MPC) [39]. MPC enables a set of parties to compute the joint
function of their private inputs using encrypted data.With this
type of technology, mobile users can upload encrypted data
for further processing.
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FIGURE 13. Mobile cell size vs problem size.

Note that the simplicity of the allocation problem is
an advantage of the proposed framework. This is because
the novelty and contribution of this work lie in horizontal
integration with the minimum inclusion of a third party,
as explained above. The security and privacy of participants
are ensured by the system architecture; thus, it is not
necessary to consider them in the task allocation problem.
The reliability of the participants was considered in task
allocation in the proposed task allocation algorithm using the
confidence mechanism.

2) COST
The cost issue is discussed here. The cost to consider
should include not only the system installation cost, but
also running costs such as labor costs and advertising costs
for recruiting participants. This is because it is essential
and costly for mobile crowdsensing to ensure a sufficiently
large number of participants who are willing to collect and
report data. Because the proposed approach is a horizontal
integrated platform, a new sensing application can be easily
and inexpensively deployed on the basis of the users
already registered for the platform. Thus, the proposed
scheme is expected to reduce the total cost owing to this
feature compared with existing vertically integrated systems.
However, a cost evaluation with regard to advertising cost
is very difficult and almost unfeasible because such data are
unavailable. Therefore, we avoid numerical cost evaluation in
this paper. Instead, we provide some discussion on cost below.

Because the proposed framework achieves horizontal
integration of various crowdsensing applications, different
organizers can share the same system installed by a mobile
network operator. The mobile network operator manages all
the information for mobile users, such as the registration and
participation states. This feature is enabled by introducing an
authorized party into the sensing platform. With this model,
the deployment cost of each sensing application is signifi-
cantly reduced from existing vertically integrated crowdsens-
ing models. The organizers can also reduce operating costs
because of easy operation, which is enabled by outsourcing
user management processes to the mobile network operator.
In the simulation scenario, the three organizers share the

sensing system installed and managed by the mobile network
operator. Thus, compared with conventional frameworks
where each sensing application is individually installed and
managed by each organizer, the total system installation
cost is reduced by two-thirds. The running cost required for
managing the installed system was also reduced in the same
manner. Note that with the proposed NeSTA, edge servers
must provide computation resources that are sufficient for
allocating multiple tasks in parallel. From this perspective,
the required computing resources are rather small because the
problem size is reduced by the task division process, as shown
in the simulation results. Therefore, it is implied that the
organizers can expect a sufficient cost reduction effect from
the proposed NeSTA framework.

3) MOBILE USERS
The proposed NeSTA also contributes for managing partic-
ipants. The trust issues and mobility of mobile users are
discussed in the following. The proposed task allocation
can consider the trustworthiness of mobile users by setting
the weight to a large value. For example, it can avoid
allocating a task to unreliable participants such as malicious
users and users with inoperable sensors. If a participant
reports unreliable data for a sensing application, this result
can be considered in a task allocation process for another
application. This trust management is easily executed with
the proposed framework. With regard to mobility, the travel
cost of mobile users is limited by the task allocation process,
which is executed in each mobile cell, as shown in the
simulation results. The reduction in the travel distance can
also contribute to reduce energy consumption. This distance
limitation is an advantage of the proposed framework.

VIII. CONCLUSION
Mobile crowdsensing has been intensely studied to provide an
efficient scheme for large-scale data collection. This concept
can leverage the power of mobile users to rapidly collect
a large amount of data. In particular, the development of
unified platforms for various types of sensing platforms is
a popular approach for enabling the efficient deployment of
sensing applications. However, existing vertically integrated
frameworks have not been optimized for shared use among
multiple organizers. The privacy and confidence are also sig-
nificant challenges for crowdsensing frameworks. To address
these problems, we have proposed the NeSTA framework
for crowdsensing in this work. The proposed approach
enables the horizontal integration of sensing applications.
The organizers and participants were mediated by mobile
networks to obscure participants from the organizers. The
cost of installing and running individual applications is
significantly reduced. The proposed confidence mechanism
reduces erroneous data by excluding unreliable participants
in subsequent sensing tasks, which was confirmed by the
analytical results. The validity of the proposed framework
was also confirmed by the results of computer simulations
using an open dataset. The reduction of problem size by
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dividing the original problem into subproblems contributes
to improving the computational efficiency of task allocation
problems. The benefit from the scalability improvement will
increase in accordancewith an increase in the number of sens-
ing applications and participants. The proposed framework is
expected to contribute to various industry sectors, including
beyond 5G mobile and social/environmental monitoring
services.
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