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ABSTRACT The rapid expansion of Internet of Things (IoT) devices and applications has accelerated
research in various areas of human development. However, the cost of commercial instrumentation impedes
the momentum of technological growth in developing regions. In this study, a low-cost, low-power, wireless
sensor network for groundwatermonitoring (LWNGM)was developed to provide near real-time groundwater
level data to support prudent decision making in groundwater resource management in Zanzibar, Tanzania.
The system is based on the ATmega328P microcontroller platform and incorporates MS5803-14BA and
MB280 sensors. The I2C communication channels between the sensors and the microcontroller were
extended using 25-meter PVC cables. The electronics were potted and protected in a waterproof aluminum
cylinder. The Arduino UNO wakes up in six-hour intervals for measurements and data-logging to the SD
card, and at twelve-hour intervals for relaying data (in batches) to the LoRa gateway, before it goes back
into a deep-sleep mode for the rest of the time (duty cycle < 1% ). The average power consumption for the
end node was 104.081mW. The power autonomy of all nodes is provided by a 3.7V, 5000mAh rechargeable
LiPo battery, and a 9V, 600mAh rechargeable Li-ion battery, respectively, which are supported by 6V and,
3W solar chargers. The data processing and storage components, as well as the data visualization dashboard,
were created using free and open-source software. The LWNGM was reasonably priced, ranging between
$350 and $400. Practical evaluation determined that, the system is reliable and transferable, particularly in
areas with a limited budget for hydrologic management.

INDEX TERMS Bandamaji, continuous-monitoring, energy-harvester, groundwater, Internet-of-Things,
LoRa, low-power low-cost sensors, WSN.

I. INTRODUCTION
Groundwater is a consistent source of drinking water, irriga-
tion, industry, municipal water supplies, and environmental
health. Billions of people worldwide rely on groundwater
as their primary source of fresh water [1], a sizable portion
(more than 400 million) of Africa’s urban and rural popula-
tions rely heavily on this resource [2]–[5]. Globally, there has
been an increase in the number of unsustainable groundwater
abstractions over the years [5]. Groundwater has become the
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most accessible source of freshwater, because of the degra-
dation of the level of freshness and safety, as well as the
difficulties in accessing surface water [6]–[8]. Increased pop-
ulation growth, economic and industrial development, urban-
ization, and climate variability are all contributing factors to
water scarcity in many aquifers. As a result, groundwater
levels are declining in various parts of the world [9], [10].
In Sub-Saharan Africa (SSA), there are noticeable declines in
groundwater, and it is estimated that many African countries
might encounter water shortages by 2025 [11].

Better water resource management is a key concern in
research and technological development [12]. The need
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for timely, cost-effective, and energy-efficient groundwater
monitoring is a significant challenge worldwide [13], [14].
However, there is data scarcity in many parts of the
world [7], [15]. The problem is exacerbated in SSA, where
there is a lack of long-term data and reliable infrastructure
for groundwater monitoring and management [7], [16]–[18].
Nonetheless, a small amount of accumulated data suggests
that SSA aquifers are declining locally [19]. This also calls
for improved approaches to freshwater resource monitoring
in order to maintain human and ecosystem health [20],
as well as improved estimation of storage, abstraction, and
replenishment amounts [21].

The advancement of ICT and communication technologies
has created numerous opportunities to improve the man-
agement of natural resources. These new and appropriate
technologies can provide useful information that aids in
reducing the water crisis [6], [11], [22]. WSNs have a
wide range of applications, including industrial [23], [24]
smart cities [25], [26], traffic control [27], [28], health-
care [29], [30], agriculture [31], [32] and environmental
monitoring [33], [34]. Self-powered WSNs deployed in
remote areas and that provide data in a near real-time manner
can potentially revolutionize groundwater table management.
A comprehensive explanation of the various applications of
WSNs for scientific and social purposes can be found in [35].

However, the high cost of these conventional commercial
components reduces the rate of adoption of sophisticated
WSN apparatuses in many fields [34], [36]–[39]. This has
resulted in the emergence of low-cost wireless sensors (LCS),
which provide a suitable alternative to the scientific commu-
nity [34]. As a result, this technology is rapidly advancing,
providing numerous benefits to beneficiary countries. Most
mainstream LCS designs are restricted to above-water envi-
ronments, most likely because of the difficulty in fully water-
proofing the electronics. Notably, despite the lower costs and
rapid adoption of LCS in various fields, deployment of these
solutions in developing countries is uncommon [34], with
technical and financial reasons among the barriers preventing
wider adoption of LCS on that side of the world [36]. In gen-
eral, the growing applications of LCS have seen a limited
number of studies that provide open data in their reality and
do not produce information for scientists and other potential
stakeholders [38], [34].

It has been reported that low-cost sensors have been
redesigned to provide more scalable and manageable instru-
mentation. The redesign of LCS has several advantages,
including increased environmental spatial and temporal cov-
erage, lower cost per sensor, and customization to a specific
physical setting [38]. The simplicity, accuracy and robust-
ness of these sensors have paved the way for promising
alternatives in environmental monitoring [34], [40]. Further-
more, this has prompted more research and the development
of scientific tools for monitoring environmental phenomena.
Despite this, a better approach to providing and utilizing
power and energy to the WSN is required [41], [42]. One
widely accepted method for extending the life of a network is

imposing restrictions on node operations [43], [44]. Another
potential solution to the energy problems of WSNs is to har-
vest ambient energy. Solar energy harvesting is dependable
and has a high energy capacity [45], [46]. The combination
of the low-power scheme and energy-harvesting technology
provides a solid solution for self-sufficient WSNs.

Hydrological data loggers are normally expensive. As a
result, the adoption of IoT-based sensing applications in
developing countries has slowed. According to studies,
low-cost and open-source resources open up new avenues
for hydrologic management and monitoring. Surprisingly,
this instrumentation is a strong tool that allows scientists to
adjust and tailor sensors to specific hydrological research
needs [36]. The redesign of sensors used in time-series
monitoring of groundwater depths provides an opportunity
to improve research and development, particularly in areas
where data and data collection infrastructure are limited.

A. PRIMER ON LoRa RADIO TECHNOLOGY
Long-range communication (LoRa) is one of the most rapidly
evolving wireless technologies, based on low-power wide-
area networks (LPWANs) and owned by Semtech [47]. It is
intended to support the chirp spread spectrum (CSS) and for-
ward error correction (FEC) with a large number of parallel
channels. In this context, devices operating at different data
rates can operate at various payload sizes ranging from 2bits
to 255bits at a maximum rate of 50kbps.

LoRa is defined by the LoRa-Alliance [48] as a
wide area network (LoRaWANTM), an open standard that
is rapidly expanding. It operates in unlicensed bands
(433, 868, or 915 MHz), but it has several advantages over
other LPWAN-enabled protocols. These advantages include
lower energy consumption and network security (end-to-end
encryption). The basic LoRaWAN network architecture is
star-of-stars, in which end-devices communicate with gate-
ways via LoRaWAN. A network server is normally connected
to a higher throughput network (WiFi, Ethernet, 3G or 4G) at
the far end of the LoRaWAN and receives raw LoRaWAN
frames from the end devices via the gateway. The FEC,
bandwidth (BW), and spread factor (SP) are the three most
important LoRa parameters to configure [49]. These param-
eters have a significant impact on network performance, with
BW having the most sway.

Normally, one or more radio transceivers connect the two
sides to the field nodes and the gateway. RFM95W is a widely
used, low-power LoRa enabling transceiver. It consumes little
current and is resistant to interference [50]. Table 1 presents
the typical RFM95W LoRa modem specifications.

One or more radio transceivers are typically used to con-
nect the two sides of the field nodes and the gateway.
RFM95W based LoRa transceivers are not only recom-
mended for its low power, but also for its impervious to
interference.

Despite technological advancements, there are only a
few telemetry-enabled water table depth monitoring sys-
tems [37]. There has always been a demand for simpler
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TABLE 1. RFM95W modem specifications.

and more affordable solutions for measuring water table
depths. The majority of existing environmental applica-
tions are based on proprietary conventional commercial
WSN apparatuses. Furthermore, there is a global shortage of
low-cost, long-range wireless monitoring systems for mea-
suring water table depths [38]. To date, no studies have
reported on the use of LoRa-based, low-cost WSN in ground-
water table management in Tanzania.

The principal goal of this study is to create and evaluate
a low-cost, low-power, self-powered IoT-based water table
depth monitoring system to aid in responsible groundwater
management in Zanzibar, Tanzania. In this laboratory and
field study, the WSN system was designed to provide near
real-time water table data by utilizing LoRa and GSM net-
work connections as well as solar energy harvesting. The
deployment of the LWNGM to monitor Zanzibar ground-
water tables is an important step toward efficient resource
management in this region. Solar energy harvesting with
low-power components generates a positive energy balance
and improves the system’s network sustainability. The pro-
posed system visualizes and shares data with the community
via an interactive web dashboard.

B. RELATED WORK
The adoption of low-cost instrumentation in wireless sensor
technologies has significant potential. In recent years, the
Internet of Things (IoT) has gained traction in environmental
research. The application of WSN to surface water man-
agement has received a lot of attention [51]–[54] but less
attention has been paid to its application in groundwater
resources [33], [55]. According to previous studies, there
are a limited number of deployments for low-cost ground-
water sensing applications in both developed and developing
countries [34]. Subsequently, we review studies on the sub-
ject and highlight some of the most recent ICT-enabled
advancements in groundwater table management. Some stud-
ies have focused on the use of WSNs for groundwater
resource monitoring [55], in order to address the lack

of sufficient groundwater information for viable decision
making.

In one of the earliest and closely related work,
Anumalla et al. [56] studied pressure sensors and field pro-
grammable arrays were used to monitor the levels of ground-
water tables in Western Nebraska aquifers in the United
States. To relay data from a remote field to the data processing
unit, the authors used a 2.4 GPRS/GSM communication
scheme. The collected data were disseminated via a web
application and text messages.

Calderwood et al. [37] created an open-source, low-cost
WSN for real-time groundwater management using cellu-
lar network telemetry. The system consists of a proprietary
data collection unit and an open-source data handling and
visualization web application. Furthermore, Chan et al. [38]
proposed a groundwater observatory model that includes
a low-cost probe made with low-cost pressure sensors
(NXP MPX5010DP and MS5803-02ba) to measure water
table depths. The submersible sensor is housed in a water-
proof (aluminum tube) enclosure and a common logger in a
separate open to air enclosure sample atmospheric pressure.
In that work, the authors established that the redesigned
sensor performed better with accuracy, which was closely
correlated to a commercial version.

Furthermore, a study [57] investigated the application of
wireless sensors in a submersible environment, in which a
low-cost Arduino-based data logging platform is proposed for
monitoring drip rates and water flow in a flooded cave. The
electronic components were housed in a 2inchies Polyvinyl
chloride water pipe, and the system was powered by three
AA batteries.

In this study, we created and tested a groundwater mon-
itoring platform based on low-power, low-cost sensors,
open-source tools, and low-power solar energy harvesters.
The system periodically logs the water table depth data to
an SD card on site, and then relays the recorded data to
the LG01 LoRa gateway in batch, twice a day. This study
will broaden the regional and global understanding of simple
and low-cost WSN technology for hydrology management.
It will also improve evidence-based consultation to assist
decision-makers in making better decisions for sensible water
resource management. Table 2 summarizes the analysis of the
works on related topics.

According to Table 2, most of the analyzed studies used
commercial pressure transducers and did not provide infor-
mation on the overall cost, energy, and power analysis of the
solutions reported in these studies. It is also evident that low-
cost, long-distance communication technology (e.g., LoRa)
were not used. Instead, high-power, high-cost networks were
used.

C. CONTRIBUTIONS
Our key contributions include:

• Conceptual design of low-cost, low-power, autonomous
WSN for groundwater monitoring based on non-
proprietary software.

VOLUME 9, 2021 128419



O. H. Kombo et al.: Design and Application of Low-Cost, Low-Power, LoRa-GSM, IoT Enabled System

TABLE 2. Analysis of the selected closely related studies for comparison.

• Developing an energy-harvesting wireless sensor net-
work for continuous and near real-time monitoring of
groundwater.

• Developing an integrated system that combines
sensor-based remote monitoring with downstream units
for open data sharing with policymakers, scientists, and
the general public.

• A practical analysis and evaluation of the cost and
energy expenditure for the water table monitoring model
in order to better understand the cost and energy impli-
cations of affordable WSN technology.

D. ORGANIZATION
The remainder of this paper proceeds as follows. In Section II,
we describe the materials and methods used in the cur-
rent investigation. The experimental results are presented
in Section III. Section IV presents the discussion of the
experimental results. The limitations of this investigation are
outlined in Section V. The study’s conclusions and future
work are outlined in section VI.

Lastly, Table 3 provides the list of the abbreviations used
in this article.

II. MATERIALS AND METHODS
In this section, we provide a detailed elucidation of the field
sites, materials, and methods utilized for this investigation.

A. STUDY SITE DESCRIPTION
Bandamaji station is found in DongeMnyimbi at−5.968399,
39.250488, with an elevation of approximately 37m in
Zanzibar, Tanzania (Figure 1). This area is approximately
25 km from the Zanzibar stone town. The groundwater obser-
vatory station is under the ZanzibarWater Authority (ZAWA)
[59], [60], a government organization responsible for the

management and distribution of water supply in the Isles.
The station is situated approximately 87m from one of the
huge ponds in Zanzibar. The majority of the people in
Mnyimbi and nearby villages get their water from drilled
wells.

Groundwater is the primary source of fresh water for
more than a quarter (25%) of Tanzanians [61], and is the
primary source of water (more than 70%) in the Zanzibar
Islands [62], [63]. However, according to some studies,
groundwater extraction in Zanzibar is unsustainable, and
some boreholes are no longer operational [59], [64], [65].
At the end of each month, ZAWA monitors patrols across
the country to collect water quality and quantity measure-
ments from bored observational wells. Normally, the only
available water table depth-monitoring tool is the beeper
tape. These patrols are time-consuming, human-resource-
intensive, and material-resource-intensive. Current monitor-
ing practices and frequencies have a significant impact on
the quality and availability of continuous water table data.
As a result, there is a need for affordable and continuous
groundwater monitoring in Zanzibar [59], [64].

B. DESCRIPTION OF THE SYSTEM DESIGN AND
REALIZATION
One of the driving forces behind this study’s attempt to create
a WSN-based platform for monitoring of variations in water
table depths is technological advancement in low-power sen-
sors and telemetry. The system is intended to have low power
and low cost in nature. To achieve this goal, the system
comprises four low-cost, low-power main components: the
terminal unit (end node), gateway, network server, and cloud
application server. The low-cost and low-power components
(shown in Table 4) are redesigned and used to realize the
intended system.
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FIGURE 1. Location of bandamaji monitoring well in (a) Africa (b) Tanzania and (c) Zanzibar (Unguja) - Donge, Mnyimbi.

1) GATEWAY HARDWARE AND PROGRAM
The gateway (GW) is the connection point through which
end nodes send data to the server. The Dragino LG01-P
gateway (Dragino, Shenzhen, Guangdong, China) embeds
a Semtech SX1276 LoRa module with an RMF95 chipset
(Semtech Corporation, USA), and connects the LoRa wire-
less network to the Internet protocol (IP). This gateway
supports LoRaWAN protocol on a single channel and con-
trolled by the customizable OpenWrt Linux-based platform.
It has a 100mA current rating and a 12V voltage rating. The
gateway operates at 868 MHz with a 3 dBi gain antenna,
receives sensor data via LoRa radio with an average sen-
sitivity of -148 dBm, and relays it to the local server via
a GPRR/GSM backhaul. The Quectel 4G LTE EC25-EU
USB dongle (Quectel, Shanghai, China) was connected to the
cellular network at 50Mbps and delivered downlink data at
150Mbps. A 9V to 12V DC voltage booster module (Shen-
zhen iSmart, Guangdong, China) was connected to a 9V,
600mAh Li-ion rechargeable battery and two 9V, 3 W solar
panels connected in series to power the LG01 gateway at 12V.
Li-ion batteries have several advantages over other types of
batteries, but the most important reason they were chosen to

power the gateway is their high voltage capacity and longer
life. The software that controls the gateway is written in the
C programming language in an open source Arduino Inte-
grated Environment (IDE), downloaded from the Arduino
website (Arduino Somerville, MA, USA).

The gateway relays data to the local server using the mes-
sage queuing telemetry transport (MQTT) protocol. The pro-
tocol is well suited to the size and format of the message sent
to the server, as well as the processing devices [18], [29].
The messages are formatted in JSON format for ease of
reading and to reduce server load. Fig. 2 depicts the scheme
used to collect and relay data from the field to the network
server. The configurations for the gateway and the 4G LTE
USB dongle were completed on a Linux-based console using
a secure shell connection (SSH), web user interface, and AT
command (via the default IP address 10.130.1.1).

2) FIELD SENSOR MODULE HARDWARE AND PROGRAM
An Arduino Uno R3 microcontroller (MCU) served as
the foundation for the field-sensing node (Fig. 3). The
MCU board communicates with the LoRa transceiver
version 1.4 (Dragino, Shenzhen, Guangdong, China) and the
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TABLE 3. Abbreviations. TABLE 4. Selected components for the development of the LWNGM.

micro SD card unit (Robotdyn, Zhuhai, GD, China) via the
serial peripheral interface (SPI) and input-output (I/O) lines.
Uno also communicates with the two pressure sensors and
the external DS3231 real-time clock (RTC) module (Maxim
Integrated, San Jose, CA, USA) via the I2C bus lines. The
solar energy harvester module (Heltec, Chengdu, China) is
linked to the 3.7V, 5000mAh rechargeable LiPo battery,
which supplies voltage to the MCU. The first sensor of the
field node is a low power, high-resolution pressure sensor
breakout MS5803-14BA (SparkFun, Colorado, USA) that
measures the pressure exerted by the water above it. The sec-
ond sensor is a low power, humidity, barometric pressure, and
temperature MBE280 sensor breakout (Adafruit, New York,
USA), which linked to the 3.7V, 5000mAh rechargeable LiPo
battery, which supplies voltage to the MCU which is used
to compensate for atmospheric pressure. The MS5803-14BA
(MS) has a maximum voltage of 3.3V, whereas MBE280
(MB) has an operating voltage range of 3.3V to 5 V. The RTC
clock generates a high-precision and reliable date and time
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FIGURE 2. The functional scheme of data gathering and storage.

FIGURE 3. Block scheme of the LWNGM’s field node architecture.

using a separate power source from a long-lasting 3V lithium
coin cell battery [66], [67], whereas the micro SD card (SD)
module is powered through a 3.3V pin of the MCU.

The ATmega328P microcontroller was embedded in an
Arduino Uno. Uno has a voltage rating of 3.3V to 5V and
a maximum current of 50mA, according to the datasheet.
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The RFM95W module on-board the Dragino transceiver
(version 1.4) is specified to accept 3.3V or 5V input volt-
age. In this case, a 3.3V supply is used to meet the
low-power scheme. The entire field node is powered by a
rechargeable 3.7V, 5000mAh LiPo battery via a 3.7V to 5V
DC power boost converter (Shenzhen iSmart, Guangdong,
China), which is supplemented by a 6V, 3 W solar energy
harvester. Because the applied power level (less than 12V)
is safe for the MCU, it is fed to the Arduino via a 5V pin,
avoiding any potential voltage regulator losses.

The program that controls the end-node was also devel-
oped using the C language in Arduino IDE, Arduino,
Somerville, MA, USA. The Arduino UNOmicrocontroller is
programmed to spendmost of the time sleeping to save power
and meet low-power operational constraints.

Every six hours (6h), the RTC sends triggers (pro-
grammable interrupts) to wake up the MCU, allowing the
water table depth sensor and atmospheric pressure sensor to
perform measurements (see Figure 2). Before the data was
temporarily logged into the SD card (16 Gb ScanDisk) as
a CSV file, each record was timestamped and the measur-
ing node identification number was attached. The end node
returns to sleep. The RTC wakes up the MCU every twelve
hours (12h) to initialize and read data from the SD card. The
LoRa shield is then activated to send values to the gateway.
After successfully sending the data, the LoRa radio is turned
off. Then the end-node returns to sleep. In this scheme,
the end node spends the majority of its time in the low-power
mode.

3) PREPARATION OF WATER TABLE DEPTH PROBE
The following procedure was used to adapt the MS 5803-14B
sensor (TE connectivity) for the desired task. To make the
sensor and the I2C differential connector (PCA9615) water-
proof, they were potted in epoxy resin. Following the sensor
and the I2C differential connector (PCA9615) waterproof,
they were potted in epoxy resin. Following the wired connec-
tion of the PCA9615 and the MS5803 sensor, both devices
were enclosed in a watertight metallic tube measuring 9.5cm
(3.74in) length and 4.5cm (1.772in) diameter for waterproof-
ing reinforcement. A 6mm hole was drilled at one end of the
metallic tube to expose the pressure measuring diaphragm
to the water in the well. Another 6 mm hole was drilled
on the opposite end of the tube to allow us to draw in the
UTP cable that connects to the differential I2C breakout that
uses the PCA9615 integrated circuit, as shown in Fig. 4(b).
This cable connects the sensor to the microcontroller board
via two I2C extenders (PCA9615 converters). The tube was
also potted to prevent water from leaking through the joints
and drilled holes. The MBE280 climatic pressure sensor was
epoxy-potted and hung 3m from the top of the well cas-
ing in the bored well. As shown in Fig. 4(d), the Arduino
UNO board, LoRa shield, and all connected electronics
were enclosed in a waterproof PVC enclosure. The unit was
mounted on a pole 1.5m above the ground, corresponding to
the height of the end node. This position allowed the 868MHz

FIGURE 4. The LGWMS field unit (a) the MS5803-14A sensor in a potted
plastic container housed in PVC cylinder (b) the potted MS5803-14BA
sensor in an aluminum cylinder (c) the damaged sensor and the PCA9615
connector in potted plastic container (d) the field-node circuitry in a
waterproof enclosure (top removed).

LoRa board’s 3dBi gain antenna to establish a line of sight
with the 868 MHz GL01-P LoRa gateway’s 3dBi antenna,
which was positioned 3m above the ground.

The three common bus protocols for communications
between digital sensors and microcontrollers are the serial
peripheral interface (SPI), one-wire, and integrated-integrated
communication (I2C). All of these protocols are supported by
both hardware and software libraries. The SPI and one-wire
protocols can transfer large amounts of data at higher data
rates, but they have drawbacks such as the SPI requiring ded-
icated communication pins and a one-wire with complex data
synchronization at the receiver side. Moreover, the one-wire
scheme is unpopular among hardware manufacturers and is
susceptible to cable capacitance and noise. Despite the fact
that the I2C has slow data and a shorter data transfer distance
(<1m) [57], we chose it for prototyping because of its ability
to share and save communication pins. The most difficult
task in the redesign and preparation of the end device was
to pot the sensor and the I2C differential interface with epoxy
for underwater applications. Although the diaphragm of the
MS5803 is contained and protected by a stainless steel cap,
it may be easily damaged if it comes into contact with glossy
and sticky materials such as the potting epoxy resin during
the potting process. Several devices were damaged during
the potting and testing phases before we came up with a
viable solution. For example, when we potted and enclosed
the MS sensor in a plastic container and housed the container

128424 VOLUME 9, 2021



O. H. Kombo et al.: Design and Application of Low-Cost, Low-Power, LoRa-GSM, IoT Enabled System

in a PVC cylinder (see Fig. 4(a) and 4(c)), the attempt was
unsuccessful, allowing water to enter and damage it.

(Sparkfun, Electronics, Colorado, USA) were used on
Cat 6, UTP cable to overcome the limitation of the I2C pro-
tocol (capacitance effects on the signals increase with cable
length). To extend the wire up to 25m, one differential conver-
tor was attached at each end of the cable (see Fig. 5). Unlike
most of the studies that used the MS5803 sensor family
with cable length<10m [38], [57], [68], this study success-
fully applied MS5803-14BA with a cable length of 25m and
overcome the limitations of the I2C protocol. As a result,
a high-pressure sensor (MS5803) could be installed in the
borehole at a depth of 15 m below ground. RJ45 connectors
were used to connect the PCA9615 devices to both ends of
the UTP cables. The serial data line (SDA), serial clock line
(SCL), 3.3V input line, and ground terminal point (GND) on
the PCA9615 device correspond to the four connection pins
on the MS5803 sensor. Hence, only four of the eight cores
of the UTP cables were used to transfer data between the
sensor and the UNO board via PCA9615 devices using the
I2C protocol. Likewise, MBE280 used the same connection
arrangements and protocols.

FIGURE 5. The I2C differential interfacing connectors attached to each
end of the Cat 6 UTP sensor connection cable (25m).

Potting was done to protect the sensor from water and
moisture during the construction of the barometric pressure
probe using a BME280 sensor (MBE), but the length of the
cable was set to 10m, which is significantly shorter than the
length of the underwater MS5803 cable. This is primarily
due to the fact that the BME280 for atmospheric pressure
measurement is hung inside the borehole three meters (3m)
from the borehole casting rather than being submerged in
water.

4) DATA CORRECTION AND STORAGE DESCRIPTION
The local server (LS) receives sensor data from the
LG01 gateway twice a day via a wired connection.When data

are received from the gateway, the Python script written
in Python 3.6.6 Integrated Development Environment (IDE)
runs to perform data processing by enumerating daily aver-
ages from raw data and then correcting the data for the
influence of cable length and barometric pressure. The cal-
culations of the measured water table depths was carried out
in the following manner. Each averaged value of the water
column pressure was first compensated for the average value
of the atmospheric pressure using (1).

Wd (t) = Pw (t)−Pb (t) (1)

where Wd (t) refers to the depth of water at time t , Pw (t) is
the water column pressure on the submersible sensor at time t ,
and Pb (t) ambient pressure at time t . We also need to calcu-
late the actual length of the cable (Cl) attached to the sensor.
The (Cl) is computed in (2).

Cl (0) = Pw (0)+ Dw(0) (2)

where Cl (0) refers to the length of the cable at time
t = 0, Pw (0) is the pressure of the water column above the
submersible sensor at time t = 0, and Dw(0) is the depth to
water at time t = 0. From (1) and (2), the actual water table
height is subsequently obtained as follows.

Ah (t) = Sd−Cl (0)+Wd (t) (3)

where Ah (t) refers to the actual depth of the water table at
time t, Sd is the average sea level data in the study area.
The processed groundwater data are saved in the MySQL

database. MySQL is a well-known, open-source, high-
performance database that can be used for both on-premises
and cloud-based IoT applications [69]. The data are then
copied and uploaded to cloud storage for backup, sharing,
and visualization (as explained in the next subsection). The
database design allows for scalability, allowing for the addi-
tion of data from new observational stations. It can han-
dle data from multiple stations while requiring only minor
changes to the database configurations.

5) CLOUD SERVER AND DATA VISUALIZATION
Sharing information among stakeholders and end users
is a significant step toward resource management coher-
ence [34]. The LGWMN cloud-based web portal was cre-
ated to allow data sharing with potential stakeholders. The
MySQL-powered website was created using the PHP and
Java scripts. The monitoring dashboard has four primary
functions: A map that allows the user to navigate the location
of the borehole well, charts that show the trends and patterns
of the water table depth variations over a specified period, and
downloadable data in a CSV file format. The database also
includes a configuration with information about the location
and data rendering.

6) ENERGY AUTONOMY OF THE LWNGM
Energy autonomy is a critical requirement for IoT systems,
particularly those deployed in remote and difficult-to-reach
locations [70]. The chosen solar panels have a 3W, 6V solar
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charger that serves as a backup to a 3.7V, 5000mAh LiPo
battery (Fig. 6) that powers the end node. The gateway is
powered by aDC-to-DC power booster with a constant output
voltage of 12V and a current rating of 1A. This booster is
linked to a 9V, 600mAh Li-ion battery, which is recharged by
two mini solar panels (6V, 3W each) connected in series to
produce a total output voltage of 12V.

FIGURE 6. Solar devices for powering the nodes (a) 3.7V LiPo battery
(b) solar panel (c) charger unit for batteries.

Despite the fact that we have two solar energy harvesters,
we now only consider the estimation of charge and dis-
charge statistics for the end node solar panel and battery.
The CN3791 charger module charges the LiPo battery via a
connected solar panel. The module also protects the battery
from overcharging. The open circuit voltage (Vcc) of the
solar panel is 6V, the specific load voltage (Vl) is 4.2V,
the short circuit current (Icc) is 2000mA, the typical current
at load (Il) is 500mA, and the maximum power is 3W. When
fully charged, the LiPo outputs 4.2V, which is connected to
the Arduino board’s 5V pin. This pin was selected as the
power input pin for the microcontroller.

Weather conditions are one of the most important factors
influencing the performance of solar panels [71]. Accord-
ing to the data we collected on the power efficiency of the
solar panel connected to the end-node, the panel operates
at 5.5V/338mA, 4.3V/205mA, and 4.0V/123mA for sunny,
cloudy, and rainy hours, respectively. Tanzania has a high
level of solar energy, with 2800-3500 hours of sunlight per
year and global horizontal radiation ranging from 4 to 7 kWh
per m2 per day [72]. Based on this information, we assume
that the study site has an average of eight sunny, one cloudy,
and one rainy hours per day. The average energy (Cav) pro-
duced by the solar panel is then calculated using our solar
performance data, as given in (4).

Cav =
[(

5.5V × 338mA× 10−3 × 8
)

+

(
4.3V × 205mA×10−3 × 1

)
+ (4.0V × 123mA× 10−3 × 1)

]
× 3600 = 58, 483.8J (4)

The results computed in (4) can be used to estimate the
time required to charge the battery (tch); however, we must
first calculate the amount of energy produced by the battery.
Given a battery with a charge capacity (Battcap) of 5000mAh
and a voltage rating (Battvt ) of 3.7V, the energy of the
battery (Batten) as a function of Battcap and battery voltage
Battvt is computed as given in (5).

Batten = (Battcap × Battvt × 60s× 60s)

= 66, 600J (5)

The tch is then calculated by dividing the battery energy by
the energy produced by the solar panel, as shown in (6).

tch =
Batten
Cav

=
66, 600J
58, 483.8J

= 1.139 days (6)

According to the calculation in (6), it takes approximately
1.139 days (27 h) for the solar energy harvester to fully charge
the battery. As a result, the LGWMN will be powered on a
daily basis by this power source (solar charger).

The LWNGM architecture is depicted in Fig. 7, with the
sensor devices connected to the microcontroller board via
I2C differential interfacing and the RTC directly connected
to the microcontroller’s I2C connections. The SPI bus con-
nects the micro SD card component and the LoRa breakout
to the MCU. Underwater and ambient pressure sensors were
installed in the well. A LoRa-based connection is provided
between the LoRa breakout and the gateway. The GW is
outfitted with a 4G LTE dongle that connects it to the net-
work server, which is linked to the cloud-based applica-
tion server. Rechargeable solar-powered batteries power the
nodes. The local server handles data processing, whereas the
cloud server handles data backup, sharing, and visualization.

III. EXPERIMENT EVALUATION AND TEST RESULTS
This section describes the process and results of an experi-
ment related to this case study in the adoption of low-cost,
low-power WSN-based equipment. The end node, gateway,
and web dashboard were designed, built, programmed, and
tested to realize the proposed LWNGM prototype. After the
system was deployed in the field, it was evaluated. At the
time of our prototype’s deployment, there were no sensors in
the case study, and monthly measurements were taken with a
beeper tap. The tap is normally lowered into the borehole and
makes a sound when it comes into contact with water.

We used a beeper tap to measure the depth to water prior to
installing the electronic sensor in the Bandamaji observation
well to establish a reference point for automatic measure-
ments. Fig. 8(b) depicts the field node of the deployed system.
Each water table depth and air pressure measurement, as well
as the identification number of the associated measuring
sensor and the timestamp generated by the DS3231 clock,
are temporarily logged into the SD card memory by
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FIGURE 7. LWNGM platform: the well, devices, sensors, power source, and communication protocols deployment.

the node. The recorded values are then relayed to the gateway
(shown in Fig. 8(a)) at the scheduled time before the data are
transmitted from the gateway to the network server.

A. LWNGM SYSTEM DEPLOYMENT
The LoRa-GSM-based logger was deployed between
May 2 and 15, 2021. The system continuously sampled and
transmitted data to the local server over a two-week period.
The locations of the end-node and the gateway were carefully
chosen to provide the best possible line of sight through the
area with minimal vegetation at the study site.

At the distance of 125m from the end-node, the gateway is
located in the doors near an open window. The vegetation and
tall trees slightly shaded the line of sight between the gateway
and end nodes. The line of sight is clear in most of the time.

Table 5) The deployment also considered the possibility of
scaling up the network while retaining the single-hop topol-
ogy. This allows for the addition of more end nodes to share
the gateway while ensuring network longevity. To maximize
the energy of the system, the solar energy harvesters were
placed in areas where there was no shade or materials such as
tree leaves that could block the surface of the solar panels.

B. CONFIGURATION, KEY PARAMETERS, AND NETWORK
PERFORMANCE
The optimal efficiency for the LoRa link was achieved with
key parameter settings of 14 dB, 4/5, 868 MHz, 125 kHz,
and 7, respectively, for transmission power, coding rate,
transmission frequency, bandwidth, and spread factor
(see To evaluate the performance of our network, we sent

TABLE 5. Configured LoRA transmission parameters.

TABLE 6. Performance metrics for the LWNGM LoRa network.

a series of packets from the end node to the gateway and
computed the packet delivery ratio (PDR) for those packets.
The PDR is calculated as the ratio of the total number of
packets that successfully arrive at the receiver (gateway)
to the total number of packets that leave the source (end
node). We also measured the received signal strength (RSSI)
and airtime for packet transmission in addition to the PDR.
Table 6 and Fig. 9 depict the performance of the LWNGM
system.

C. SYSTEM TESTING AND DATA
The deployment in the field allowed the LWNGM to be
tested. The mean water level was enumerated in six-hour (6h)
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FIGURE 8. Field deployment components: (a) LG01-P long-range gateway
with 4G LTE dongle (b) a photograph showing a field node in a
waterproof enclosure with a mini solar panel deployed
at Bandamaji groundwater station.

FIGURE 9. Statistics of the network performance.

intervals of data sampling cycle and twelve-hour (12h) inter-
vals of data forwarding cycle to provide daily average levels.
Each send had an average airtime of 19ms. Fig. 10 depicts the

FIGURE 10. A plot of daily average water depths at bandamaji monitoring
well over a two-week deployment period.

recorded daily average water table depths over the two-week
period, and Fig. 11 shows a web dashboard that updates the
groundwater depth data every six hours.

The front and back ends of the LWNGM web portal were
designed to be flexible enough to accommodate data from
additional observational stations. The user interactive map
is being developed, which will allow the navigation and
visualization of data from multiple stations.

D. COST AND SIMPLICITY OF THE SYSTEMS
The costs of the components used to construct the LGWMN
are summarized in Table 7. It is worth noting that the prices
of these devices vary depending on the supplier chosen.
These prices include shipping costs. The system is simple and
easy to replicate. Although the project consists of multiple
domains, a moderate wireless network and electronics skills
and tools can accomplish the development of the system
presented here.

The total cost of the components used to construct the
LWNGMwas USD 310.168. This means that this system can
be built for less than 400 USD.

E. ENERGY AND LIFETIME OF THE END NODE
The experimental evaluation of energy dissipation by the
sensors and the general network is explained below. In all
scenarios, we estimated the average power expense (data
sampling state, data transmission state, and deep sleep state).
We also estimated the lifespan of the battery that powers the
end node. A battery that powers the end-node has voltage
rating of 3.7V at power capacity of 5000mAh.

To calculate the energy expended by the end node, we con-
sider the current drawn by each of the individual compo-
nents at the various aforementioned states. According to the
current ratings of the devices, the standby current of the
pressure sensors is less than 0.15µA for MS5803 and 0.5µA
for MBE280. The MCU’s standby current was 28mA. The
RTC was powered by a backup coin cell at 3V. 0.19A. The
sleep currents for the UNO board, MBE280, MS5803-14BA,
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FIGURE 11. Web dashboard for LWNGM showing a plot of two weeks data from Bandamaji station at 6-hour intervals.

TABLE 7. Summary of the quantity and pricing of the LWNGM
components.

and LoRa transceiver breakouts are 27.9mA, 0.1µA, 0.1µA,
and 1mA, respectively. The MBE280 sensors have an
average data sampling duration of 1s at 1.8µA and the
MS5803-14BA sensors have an average data sampling

duration of 1.1ms at 1µA. Unlike writing to an SD card,
the UNO takes an average of 7ms to complete at a cur-
rent of 31mA. In contrast, the SD card draws an average
of 0.11mA while sleeping. The sleep state consumed a total
current of 28.0112mA in this case. The node remained in deep
sleep (tsleep) for 3598.653 s.

We can calculate the amount of charge consumed as the
product of sleep duration and the current drawn while sleep-
ing. As a result, the charge expended (Csleep, in mAs) was
100,801.869mAs. Similarly, the end node enters a data sam-
pling state for a sampling time (tsamp) of 1.007s and the
consumption (Csamp) of 31.282mAs. Here, we define the
data-sampling state as the process of measuring data and
logging it to an SD card. Furthermore, relaying the sampled
data to the gateway consumes an average current of 28mA
at a transmission time (ttx) of 0.34s, with a total charge
consumption (Ctx ) of 9.52mAs.
The complete cycle of the operation includes both the

active and sleep times of the end node. During duty
cycle d , the amount of energy consumed by this node reaches
a maximum value, which is given as.

d =
tact
T

(7)

where T refers to the total time spent in the entire cycle,
tact denotes the time at which the device is in the wake state.
The LGWMS records two (2) measurements (Nsamp) in

each data-sampling period, with an average sampling time
(tavsamp) of 0.34s. The total charge consumption over the
cycle (OCcycle) is expressed in (8) and the battery cycle
in (9).

OCcycle=Nsamp.Csamp
(
tsamp

)
+ Nsamp.Csleep

(
tsleep

)
(8)
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The number of battery cycles that would be performed on
this battery with a given battery capacity (Battcap) is.

Battcycle =
Battcap
OCcycle

(9)

Because we need to estimate the battery’s lifespan (Lbatt ),
the number of battery cycles

(
Battcycle

)
must be multiplied

by the battery cycle time (tcycle). The cycle time is defined as
the sum of the sleep time (tsleep), measurement time (tsamp),
and data transmission time (ttx ) in seconds (10).

tcycle = Nsamp.tsleep + Nsamp.
(
tsamp + tavsamp

)
+ ttx (10)

Lbatt = OCcycle.tcycle

=
Battcap
OCcycle

.(Nsamp.(tsleep + tsamp

+ tavsamp)+ ttx) (11)

By substituting (8), (9), (10), and (11), the life span of
the battery (Lbatt ) that provides energy to the end node is
enumerated as follows.

Lbatt=
Battcap.(Nsamp.(tsleep + tsamp + tavsamp)+ ttx)

Nsamp.
(
Csamp + Csleep

)
+ Ctx

(12)

Using the capacity of the battery used in the experiment and
previous numerical values, (12) produces 177.948h, which is
approximately equivalent to 8 days for the estimation of the
battery’s lifetime in hours.

The total energy expended by the end node (ET ) is the
sum of the energy expended in data sampling (Esamp), data
transmission (Etx), and sleep mode (Esleep).
Given that the end-node is powered by a 3.3V supply volt-

age and that the average sampling time is 1.007s, the energy
expended in data sampling will be.

Esamp = 31.0028mA× 1.0028s× 3.3V× 24 = 24.623J

For the transmission duration of 0.34s, the energy con-
sumed for relaying data to the gateway is enumerated as given
below.

Etx = 28mA× 0.34s× 3.3V× 24 = 0.754J

Because the node sleeps for 3598.653s, the energy spent
while sleeping is.

Esleep = 27.9mA× 3598.653s× 3.3V× 24 = 7951.872J

Consequently, the total energy spent by the end node (ET )
per day is.

ET = Etx + Esamp + Esleep
= 24.623J+ 0.754J+ 79518.72J

= 7977.249J (13)

Based on the energy calculations, the end node’s total
daily energy consumption in both active and sleep modes
was 7977.249 J.

IV. DISCUSSION
Groundwater monitoring on a regular and affordable cost
serves as the foundation for estimating, assessing, and fore-
casting the quantity of this resource. The high cost of com-
mercial instrumentation is one of the major impediments to
the rapid adoption ofWSNs in wider hydrologic applications,
particularly in developing countries [17], [21], [24]. Ordi-
nary water depth electronic sensors are relatively expensive.
For example, the Van Essen diver sensor costs approximately
$830, and the HOBO water depth probe costs approximately
$495 per unit. Our redesigned water table depth probe, on the
other hand, costs approximately $55. The use of potting of
high precision electronic sensors and I2C extenders is essen-
tial for the success of the construction of water-depth probes
for the LWNGM system. Moreover, the application of free
and open source software has also bring down the establish-
ment and operational cost for and may improve sustainability
aspect of the LWNGM. This is consistence with the findings
reported in [37]. Furthermore, the LWNGM development
procedure is relatively simple and does not require advanced
technical skills.

Incorporating user-redesigned LoRa tools in the monitor-
ing of environmental phenomena, on the other hand, lowers
the overall cost of the system while improving efficiency and
reliability. The game changer that has provided a wider com-
munity with LoRAWAN tools is an open-source instrument
and software [73].

The redesign of off-the-shelf instruments and the deploy-
ment of low-cost WSNs allow communities and organiza-
tions with limited resources to adopt this technology more
efficiently. The LWNGM offers another opportunity for
wider adoption in hydrology and other fields at a cost less
than ($500) comparable commercial solutions (i.e., monitor-
ing systems that use the Van Essen water depth probe, which
costs approximately $830).

Sending the sensor node into a sleep state lowers the
duty cycle and increases battery life, which is especially
important in low-cost and low-power nodes. Ideally, with a
sleep mode that brings low duty cycle (<1%), our system
used approximately 1.343 percent of the battery energy. This
is consistent with the findings in [71]. Although it takes
approximately 1.1 d to fully charge the chosen battery using
a mini solar cell, it can power the end node for approx-
imately 8 days before it needs to be recharged. Connect-
ing two 6V panels in series to charge the 9V battery that
powers the gateway via a 9V-to-12V booster, on the other
hand, produced a promising resource optimization result.
This not only saved money, but also allowed the gateway
to be deployed in off-grid areas. This dependable source of
power also allows for the prevention of data loss due to power
outages.

Fine-tuning and configuration of network parameters can
result in the effective use of LoRa technology for efficient
communication. The tuning parameters, among other things,
allow for the optimization of power consumption, signal dis-
tance, and data rate. The greater the SF, the greater the PDR,
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and the greater the observed airtime. Similarly, as the airtime
lengthens, so does the power budget [73].

Furthermore, the topography and local environment at the
site influence signal reception quality. Despite its strong
modulation technique, LoRa is sensitive to the presence of
reflections and obstacles. Mnyimbi is a rural area with little
vegetation and fewer signal obstacles and reflectors. These
favorable conditions allowed for the majority of the time to
be spent installing LWNGM nodes in positions that maintain
a clear line of sight between LWNGMnodes. The line of least
resistance to tree leaves was established at 1.5m for the end
node and 3m for the LoRa-4G-based gateway.

Despite the slight signal attenuation (due to the tree
branches moving with the wind), the LoRa signal was found
to be stable and reliable. No significant impact on the received
signals was observed due to the moderate weather conditions,
with the mean air temperature and onboard temperature both
below 40◦C and rain rates below 100mm/h. The results of our
experiments show that signals from the LWNGM’s end node
arrive at the gateway node correctly (RSSI= 83 percent) with
a low number of retransmissions. The vast majority of packets
arrive at the gateway correctly (PDR > 80%) and with a
reasonable airtime (40ms). This was accomplished with SF7,
CR4/5, a TX of 14 dB, a BW of 125, and the CRC enabled.
Two possible explanations for these results are the distance
(125m) and the slightly clear line of sight (light vegetation)
between the gateway and the end node.

The accuracy of the samples collected by the sensors has
a direct impact on the measurement quality. According to the
results, the MS5803-14BA sensor data deviated by 1.1 %
from the standard measurement performed with a beeper.
Furthermore, theMBE280 data deviated from standard atmo-
spheric pressure by 0.37 %. The linear calibration produced
the most accurate results in filling the gaps between the stan-
dard measurements and the Arduino-based measurements in
this case. As a result, data collected by the LWNGM sys-
tem has become more reliable. This is consistent with the
results of the study in [37], which confirms the applicability
of linear calibration in sensor data correction. Furthermore,
in order to maintain the accuracy of the measurements over
time, the effective cable length must be recalculated every six
months [36].

Unlike manual data collection, where the cost of labor and
field visits is a significant barrier to informed groundwater
management, low-cost, automated monitoring with energy
harvesting creates the potential for continuous observations,
especially in low- and middle-income countries. Similarly,
the quality and reliability of data collected by LWNGM are
far superior to data collected using traditional methods. This
is due to the fact that in traditional data collection practices,
errors are easily introduced, and missing data points are a
common occurrence.

V. STUDY LIMITATIONS
The use of a single-channel gateway limits the number of end
nodes that can communicate with the LoRa-enabled gateway

simultaneously. A wireless network scaled to a large spatial
area typically includes several nodes that must constantly
communicate with the gateway at all times. One or more
multichannel gateways may be required in this context. Sim-
ilarly, only one observational well was used for this study,
which does not adequately represent a large distribution of
bored wells in the area surrounding the studied borehole.
Furthermore, a longer data collection period is required to
gain a deeper understanding of the characteristics of aquifers.
Two weeks of data are insufficient to generate comprehensive
information that is free of the bias caused by the pumping
effect of nearby wells.

VI. CONCLUSION AND OUTLOOK
An autonomous low-power, low-cost IoT-based system with
energy harvesting was designed and evaluated to provide
a proof-of-concept for practical monitoring of water table
depths. The LWNGM consists of four parts: data acquisi-
tion, data management, energy harvesting and management,
and data storage and visualization. The developed low-cost
solution is built on an open platform. The LWNGM gener-
ates critical information for more efficient assessment and
management of groundwater tables. Furthermore, the sys-
tem’s information down streaming capability allows for
additional research in the fields of hydrology and sensor
networks.

We potted the electronic sensor and extended the
I2C-enabled communication channel up to 25m via a PVC
cable, for underwater application in the borehole. The system
runs on batteries supported by the reliable tiny solar cells.
The outstanding efficiency and low cost of redesigned sensor
nodes and energy harvesters have evaluated to be the promis-
ing alternatives to conventional instruments.

The prototype system was used to monitor groundwa-
ter wells at the Bandamaji station in Zanzibar, Tanzania.
The system is easily transferable, even to least developed
countries, because it is built with low-cost components and
does not require advanced technical skills. The system per-
formed admirably and allowed for near real-time monitoring
of changes in water table depth; in the future, we intend to
extend this automatic monitoring system to all groundwater
monitoring wells in Zanzibar. This will be accomplished by
deploying multichannel outdoor LoRa gateways to connect
several end nodes spread across the Zanzibar Islands. We also
intend to develop and incorporate low-cost water quality
sensors into the LWNGM system in order to enhance the
monitoring and assessment of the aquifers.
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