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ABSTRACT We propose herein a method for estimating the mixing state of the contents of a peristaltic
continuous mixing conveyor simulating the intestine, developed for mixing and conveying powders and
liquids. This study serves to improve a previously proposed method for estimating the mixing state using
a logistic regression model with the pressure and flow rate sensors installed in the device as inputs.
Moreover, the estimation accuracy of the proposed method is better than that of the previous method. The
generalizability of the proposed method is evaluated for four conditions in which the feeding order of the
contents, powder, and liquid are changed. The feeding order is as follows: powder first, liquid first, and
powder and liquid alternately. As a result, a highly accurate estimation of mixing is achieved under the
condition wherein the powder component is in the unit adjacent to the lid, but not under the condition wherein
the liquid component is fed first. It is speculated that this is because the movement of the powder component
inside the device is more easily reflected by the pressure and flow rate sensors installed in the device than in
the liquid component.

INDEX TERMS Soft robotics, robot sensing systems, machine learning, predictive models, data acquisition,
product safety, transportation.

I. INTRODUCTION
Mixing and conveying technologies for solid-liquid mixtures
and highly viscous fluids are required as intermediates in the
manufacturing process to obtain the final products in various
industries, such as soil, cement, food, and medicine. Cur-
rently, separate equipment is used for mixing and conveying,
and a batch process is followed throughout. This leads to
increased production costs, such as increased labor costs, and
decreased yields. Moreover, mixing via a rotating mixer gen-
erates large frictional and shear forces between the material
to be mixed and the mixer blades. The heat consequently
generated, and the impact thereof may destroy the structure
of the object. This also limits the operating conditions of the
mixer.

As a solution to these problems, focus has been laid
on intestinal motility [1], involving continuous mixing and
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transport with low shear force. The intestinal tract transports
food masses, and mixes food masses and digestive juices by
opening and closing flexible ducts with a small force. Fur-
ther, the intestine is known to have an autonomous nervous
system, called the enteric nervous system [2]. The enteric
nervous system consists of a network of sensory nerves that
detect mechanical and chemical stimuli, interneurons that
transmit information, and motor nerves that control muscle
movement. Within this network, all elements are necessary
for the generation of muscle movements. The intestine can be
regarded as being driven by axial units [3]. Signals generated
by stimuli are exchanged between adjacent units, and the
signals are used to generate complex intestinal movements
by contracting or relaxing the muscles. The neural network
in the intestinal wall enables the intestine to sense the state of
its contents and control intestinal motility autonomously and
in a decentralized manner.

Previously, we developed a device that functioned sim-
ilar to the intestine (Fig. 1 [4]) using pneumatic artificial
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muscles [5] composed of soft rubber material. Through appli-
cation of compressed air, the inside of the device expands,
and the contents can be mixed or transported by pushing the
contents. There exists a similar device commonly known as
a peristaltic pump, however, it is designed to continuously
transport fluids and cannot mix powders and liquids [6]. This
developed device has been successfully used to transport
highly viscous fluids and solid-liquid mixtures. It also has
been used to produce solid rocket fuel by mixing powder
components with highly viscous fluids [7], [8]. In these stud-
ies, the device operation pattern was based on sequence con-
trol with periodic inputs determined experimentally. There is
however much room for improvement regarding the motion
pattern of the device. Therefore, we aimed to construct an
efficient mixing and conveying control system based on
autonomous control by sensing the contents of the intestinal
tract. The generation of intestinal peristalsis [9], [10] and
autonomous intestinal motility via neural oscillators [11]
have been studied previously. These studies are based on
simulations and are not applicable to the complex physical
behavior of the device. Although there aremethods to analyze
the phenomena of only fluids or only powders, the behavior of
their mixtures is very complex and difficult to predict. There-
fore, reproducing intestinal motility via the device function-
ing similar to the intestine can lead to a better understanding
of intestinal function. Our system is designed to determine the
mixing state in each unit from the sensor values installed in
the device [12], [13]. In the future, we aim to control the driv-
ing pattern of the device autonomously based on the estimated
mixing degree to achieve efficient device driving. In addition,
this device is designed for safe and continuous mixing and
conveying of powders and highly viscous fluids. By realizing
an efficient mixing and conveying system, it is expected to
reduce the cost of manufacturing food and medicine, which
consist of a mixture of powder and liquid. The purpose of
this study is to improve the accuracy of the mixing degree
estimation of the contents.

For example, there exists a method to determine the state
of an object in the mixing process by collecting a sample of
the object and using a viscometer. Since the peristaltic con-
tinuous mixing conveyor continuously mixes and conveys,
stopping and opening the device to determine themixing state
proves disadvantageous. Therefore, in this study, we aimed
to determine the mixing state from the sensor values attached
to the device without removing the contents. As mechanical
stimuli for intestinal input, pressure and dilatation of the
intestinal wall due to the contents have been suggested [14].
Therefore, a sensing system using the pressure and flow rate
sensors was developed, focusing on the air pressure applied
to the device [12]. The system could estimate the degree of
mixing viamachine learning from the time-series information
of the sensors [13]. On the other hand, the quantity of both
training and testing data was small, so the results of the
proposed estimation method were not evaluated sufficiently.
The relationship between the estimation results and the sen-
sor values was unclear. Moreover, the method of assigning

labels to the training data in the estimation method was
problematic.

In this paper, the previously proposed mixture estimation
method was improved, and the generalizability thereof was
evaluated. To improve the method, the approaches for acquir-
ing training data and assigning labels in the training model
were changed. For the generalizability evaluation, the degree
of mixing was estimated when the mass fed into the device
was kept constant, and the feeding order was changed. Fur-
thermore, we attempted to clarify the complicated relation-
ship between the sensor data, the state of the contents, and
the estimated values, which had not been focused on in the
previous study.

The remainder of the paper is organized as followed.
Section II describes the mixing conveying device, and
Section III describes the proposed mixing estimation method
and evaluation policy. In section IV, the estimation results are
presented, and the relationship between the sensor value, and
in section V, the estimation result is considered. Section VI
describes the summary and future prospects.

II. MIXING AND CONVEYING DEVICE BASED ON
INTESTINAL MOVEMENT
A. OVERVIEW OF PERISTALTIC CONTINUOUS MIXING
CONVEYOR
The muscular layer of the intestine is composed of circu-
lar and longitudinal muscles [15]. The circular muscle is
arranged in a ring in the intestine, and the longitudinal muscle
is arranged axially. Each muscle layer mutually contracts
and expands to perform peristalsis and transport the food
mass. The developed peristaltic conveyor has a structure that
imitates that of the intestine. The conveyor unit and cross-
sectional views are shown in Fig. 2(a) and (b), respectively.
This unit consists of an axial fiber-reinforced pneumatic
artificial muscle (in the following referred to as ‘‘artificial
muscle’’), a rubber tube, a shaper ring, and a flange. When
air pressure is applied to a chamber between the rubber tube
and artificial muscle, the rubber tube expands to close the
inside of the tube. At the same time, the artificial muscle
expands in the radial direction and contracts in the axial
direction, contributing to the occlusion of the inside of the
tube and the improvement of the transport performance of
the contents (Fig. 2(c)). The shaper ring promoted the stable
occlusion of the rubber tube. After exhaustion, the artificial
muscle returns to its initial state before the air is applied. If the
device is empty, the rubber tube also returns to its initial state.
However, if there are contents in the device, the initial state
is not necessarily the same. This is because the rubber tube is
a flexible material and can be deformed by the contents. This
each unit was equipped with a pressure sensor in the chamber
and flow rate sensors, such as the air supply and exhaust flow
to the chamber.

B. PROBLEMS WITH PREVIOUS ESTIMATION METHOD
Machine learning-based mixture estimation using com-
pressed air sensing on the subject of mixing powders and liq-
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FIGURE 1. Overall view of peristaltic continuous mixing conveyor.

FIGURE 2. Details of peristaltic continuous mixing conveyor: (a) Overview
of one unit of the device. (b) The cross-sectional view of the unit (c)
Movement of the unit when compressed air was applied.

uids has been conducted previously [13]. A machine learning
model was constructed using three different air pressure and
flow rate sensor values attached to three units. Considering
the fact that the driving state of each unit switches with
respect to the input given to the device at random (state
transition), the degree of mixing can be estimated. However,
there was a problemwith the proposed estimation model. The
training data were the data obtained from the time when the
unit started to drive and was operated for a certain duration
after the mixing was complete. In this set of time-series data,
the training data were labeled as either unmixed (0) or fully
mixed (1) before and after a certain time. In such a case, even
data acquired in the middle of mixing are labeled as unmixed
or complete, which is the problem. In addition, the labeling
depends on the specified time, which significantly affects the
estimation results. It is difficult to determine the specified
time. Therefore, in this study, we changed the method to
acquire training data. The data collected in the first 30 min-
utes of mixing, which can be considered as the time before
mixing, was set as unmixed (0). The complete mixed (1) data
were set as the data that were completely mixed by hand
before being fed into the machine.

FIGURE 3. Experimental environment with the pressure and flow rate
sensors.

In addition, the results of the previous study were obtained
under a certain type of experimental conditions. There are
many possible feeding orders of powder and liquid into
this device. For example, the powder is fed after the liquid,
or reverse order, or the powder and liquid are fed alternately.
However, in the previous study, only the method in which
powder is added and then liquid is added was studied, and
the other methods were not investigated. Therefore, it is
unknown as to whether the mixture degree estimation can be
performed under other experimental conditions. The relation-
ship between the selected training dataset and the estimation
results is not clear. Hence, it is necessary to verify the adaptive
range of the learning model, including these factors. In this
study, we evaluated the proposed estimation model by per-
forming mixture estimation for the case in which the mass
of the feeding materials is kept constant, and the order of the
feeding materials is changed. The accuracy of the estimation
is affected by the final mixing state. If the mass or ratio of
the contents is changed, the final mixing state will differ
from the training data, and the accuracy of the estimation is
expected to decrease. In this paper, as the first step of the
generalizability verification, the case in which the mass of
the feeding materials is kept constant, and the feeding order
of contents is changed is verified. The verification of other
feeding conditions will be future work.

III. PROPOSED METHOD AND GENERALIZABILITY
EVALUATION POLICY
This section describes the proposed mixed estimation method
and the generalizability evaluation policy when the feeding
order of the contents is changed.

A. DEVICE DRIVE METHOD AND CONTENTS TO BE FED
Fig. 3 shows the experimental environment. In this experi-
ment, the three pump units shown in Fig. 2 were connected
horizontally. The units were named A, B, and C, respectively,
for convenience. At the right end, another unit was connected
as a lid that could be opened and closed separately from
the referred three units. The left end was sealed with a lid
plate. The values of the pressure and flow rate sensors were
obtained when the device was driven by the object to be
mixed.
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Two two-port solenoid valves (VDW20JA, SMC Co.,
Japan), one for the air supply and the other for the exhaust,
were installed in one unit. These solenoid valves were turned
on and off with signals controlled by a microcontroller
(Arduino MEGA 2560). Each unit was independently con-
trolled.When the solenoid valve for the air supply of each unit
is turned on, compressed air is supplied from the compressor
to the chamber of the unit through the regulator up to the set
value of the applied pressure (60 kPa). When the solenoid
valve for the exhaust air of each unit is turned on, the air
in the unit is exhausted. An air pressure sensor (ZSE30AF
C6H-C-MGA1K, SMC Co., Japan) was installed in each unit
to measure the pressure in the chamber, and two flow rate
sensors (PFM750-C6-C-A, SMC Co., Japan) were installed
to measure the flow rate on the air supply and exhaust sides.
The sampling period of the sensors was set to 100 Hz.

In this experiment, two states were prepared as inputs (state
signal) to each unit: (1) air supply state and (2) exhaust state.
(1) The air supply state is when the air supply valve is open,
and the exhaust valve is close; (2) the exhaust state is when
the air supply valve is close, and the exhaust valve is open.
Evenwith the same state signal, the sensor values are different
owing to the effect of the previous signal. For example,
suppose that at a certain time t [s], the sensor value is acquired
when the state signal is 211. At this time, the sensor value
not only depends on the state signal 211, but also depends on
the state signal at previous time t-2 [s]. In short, the sensor
value is different when the state signal of t-2[s] to t[s] is
112 to 211 and when it is 111 to 211. This is because the
movement and shape of the contents, as well as the mixing
degree, depend on the state transition of the device. Therefore,
we also focused on the state transitions. Fig. 4 shows an
example of sensor data measurement in the state transition
(112 to 211). At this time, unit A transitions from the air
supply to the exhaust, and unit C transitions from the exhaust
to the air supply. Unit B remains in the air supply state and
does not transition; however, its sensor value changes owing
to the changes in the left and right units. In this manner,
nine sensor data points can be obtained according to the state
transition every two seconds.

In this experiment, the powder and liquid components were
determined as Table 1. These are the same as those in the
previous study [12]. The powder concentration, which is a
criterion for the object to be mixed and the actual degree of
mixing, is determined as follows:
Powder Concentration: Percentage of the weight of the

powder component in the total weight of the contents [wt%],
which is 76 wt% for the complete mixture of powder and
liquid used in this study.

B. PROPOSED MIXING ESTIMATION MODEL
The structure of the proposed learning model is shown
in Fig. 5. Logistic regression model was used to discriminate
between the two unmixed (0) and mixed (1) states. Logistic
regressionmodel is used for binary classification to determine
between 0 and 1. There are other types of classification

FIGURE 4. (a) The state of peristaltic continuous mixing conveyor, and
(b) Example of sensor value in a state transition: 112→211.

TABLE 1. The powder and liquid components.

models such as decision tree, random forest, and support
vector machine. Logistic regression model is most used and
whose results are easy to understand. In this paper, it was
selected as the initial study because it deals with the complex
phenomenon of mixing powders and liquids.

The time at which the state signal switched was used as
the delimiter. Nine sensor data acquired between the delimiter
were used as explanatory variables. To obtain a stable output,
the transition pattern of the state signal is focused, regression
model is constructed according to the transition pattern before
and after the state signal. The final mixed estimation is calcu-
lated by the weighted average of the estimates of the model.
This model is based on the mixture estimation model [13]
proposed in the previous study with some improvements,
such as the labeling method. The method used to obtain the
training data is described in the next section.

The time at which the state signal switches were defined
as τ ε {0, 2, 4 · · · } [sec] and the state signal at time τ were
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FIGURE 5. Schematic graphs of machine learning model. (a) Logistic
regression model used in our method. (b) Integrated model composed of
multiple logistic regression models conditioned by state signal pattern
(I(τ -2), I(τ )).

defined as I (τ ) εM (M := {‘‘111’’, ‘‘112’’, · · · , ‘‘222’’},
|M | = 23). M is a set of motor commands. The state of
each unit is randomly input as 1 or 2. The experimental
device consists of three units. This means that M has 23

elements, one of which is input to the device as a motor
command. The internal state x (τ ) ε R1800 was defined as a
vector that combines the nine sensor time series data during
the two seconds that the state signal I (τ ) is maintained. Next,
a total of 64 (23 × 23) logistic regression models for each
transition pattern of the two state signals before and after the
state signal was built.

A weighted average of the outputs of these models yields
an estimate for the time window T . The coefficients km
corresponding to the regression model for each transition
state m(τ )(:= (I (τ − 2) , I (τ )) εM ×M ) are defined by the
following equation:

km := {max (vm − vth, 0)}α . (1)

Here, vm is the correct answer rate of the model in the
accuracy verification data (0 ≤ vm ≤ 1) (hereinafter, vm is
called the validation score). To evaluate generalizability of
mixing estimation, k-fold cross-validation was used to create
the model from multiple data to calculate the parameters
of equation (1). The training data were divided into five
parts, accuracy verification was performed using the cross-
validation method, and vm was obtained. vth is the threshold
of the validation score and can be set any value in the range
of values that vm can take. The higher this value, the higher
priority is given to the model that obtains a high score in

FIGURE 6. Feeding order of objects into the device: (a) LP: Basic feeding
order in which the liquid component is fed into device A side and powder
component into device C side. Only this feeding order was used as
training data. (b) PLP: The weight of the powder was divided into halves
and fed alternately with the liquid. (c) PLPLP: The weights of the powder
and the liquid were divided into 1/3 and 1/2 respectively, and they were
fed alternately. (d) PL: reverse feeding order of (a). The powder
component is fed to the A side and the liquid component is fed to the
C side. (e) Method of feeding. The objects were fed from the top with the
lid unit down. After feeding, the air in the device was removed and the
unit was leveled.

the validation test. α (>0) is a constant for emphasizing a
model with a higher correct answer rate. In this experiment,
vth = 0.95 and α = 4.0 was adopted.

Finally, the estimated probability p (T ) for a certain time
window T can be obtained from the following equation:

p (T ) :=

∑
τ∈T km(τ )pm(τ ) (x (τ ))∑

τ∈T km(τ )
. (2)

In this case, T = 600 s, and the mixing degree was
estimated every 10 minutes.

C. METHODS FOR OBTAINING DATA FOR TRAINING AND
EVALUATION
1) TRAINING DATA
For the training data, data in the unmixed (label 0) and mixed
(label 1) states were prepared. The unmixed data are the data
obtained when the objects were placed into the device in the
order shown in Fig. 6(a) and the device was randomly driven
for 30 minutes. Fig. 6(e) shows method of feeding objects.
The mixed data are data obtained when the objects are mixed
by hand in advance and then fed into the device and driven.
In these data, the objects were placed into the device, and
the device was driven randomly for 180 minutes. The data
for 90 minutes in the second half was used for learning as
the data in which the contents were completely dispersed
in the device. The unmixed data were obtained in four trials
and the mixed data in two trials. These data are used to train
the mixture estimation model.
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FIGURE 7. Boxplots of validation scores in the regression model for all
state transitions of the proposed method and the previous method
(n = 64).

2) DATA FOR EVALUATION
The evaluation data were obtained by randomly driving the
object for 180 minutes after feeding. To evaluate the gen-
eralizability of the estimation model, two sets of four dif-
ferent data sets with different feeding orders were prepared,
as shown in Fig. 6. Considering the initial state of the con-
tents, it is presumed that feeding orders LP and PL take
the longest time from the start of the system drive to the
completion of mixing while feeding orders PLP and PLPLP
result in faster completion of mixing.

To understand the actual mixing degree, we obtained the
mass % concentration of only the feeding order LP. The
system was run randomly for 180 minutes, and the mixture
inside the unit was sampled every 20minutes. The lid unit was
opened, and small samples (approximately 3 g) were taken
from three locations to determine the mass % concentration.
The sensor data at this time were not used as the evaluation
data.

IV. ESTIMATION RESULTS
A. COMPARISON WITH THE PREVIOUS METHOD
Fig. 7 shows boxplots of the validation scores of each regres-
sion model for all state transitions of the proposed method
and the previous method. The proposed method improves the
accuracy of the regression model in each state transition com-
pared with the previousmethod. In the previousmethod, there
was a large variation in the score among the low. In contrast,
the proposed model is more stable and accurate. From this
result, the vth in equation (1) was set to 0.95 in the proposed
method, while that of the previous method is 0.5. The larger
the vth is, the higher the priority of the model with the highest
percentage of correct answers. In other words, the adoption
rate of data becomesmore severe in the proposedmethod than
in the previous method. Therefore, it is expected to improve
the estimation accuracy.

Fig. 8 shows the comparison results with the previous
method under feeding order LP. The horizontal axis shows
the elapsed time from the start of mixing (min), and the
vertical axis shows the estimated mixing degree. The higher
the estimated value of the mixing degree, the closer it is to the
completion of mixing. For the estimation using the previous
method, two new datasets acquired in the same way as the

FIGURE 8. Mixing estimation results of the proposed method and the
previous method: These are the results of the two methods for two trials
in the input condition LP. In the previous method, the model from the
previous study was used, the mixing completion time in the training data
was set to 60 minutes, and vth in equation (1) was set to 0.5.

FIGURE 9. Mass% concentration of unit C in the feeding order (a) LP.

data acquisition method for evaluation in this study were
prepared and used as training data. For the evaluation data
of two trials of the feeding order LP, the mixing transition
was estimated using the previous method and the proposed
method. Fig. 8 shows that in the proposed method, the mixing
time increased from the start of mixing to approximately
60 minutes in both trials, and then remained constant. This
indicates that the proposed method completes mixing in
approximately 60minutes. However, the previous method did
not converge to a constant value and continued to increase
slowly until the end of mixing. The difference between the
two trials in the previous method was large, so it was difficult
to judge from this graph that the mixing was completed.

Fig. 9 shows the trend of mass% concentration in the
feeding order LP, which converges to a constant value after
60 minutes. This graph shows that unit C is close to complete
mixing after 60 minutes. This is the same trend as that of the
mixing estimates for the feeding order LP by the proposed
method in Fig. 6, indicating that the proposed model can
estimate the feeding order LP with high accuracy. This is
because this mixture estimation model is constructed using
only sensor data in the case of the feeding order LP as training
data.

B. ESTIMATION RESULTS FOR EVALUATION DATA WITH
DIFFERENT FEEDING ORDER
The results of the mixing degree estimation are shown
in Fig. 10. The estimated values of the mixing degree
increased monotonically and converged to a constant value,
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FIGURE 10. Results of mixture estimation: The results of two trials for
each feeding order are shown.

except for the feeding order PL. On the other hand, for PL,
the estimated value remained high at the start of mixing and
then leveled off. The mean ± standard deviation of the con-
vergence values for all feeding orders were 0.81± 0.05. In the
case of the feeding orders PLP and PLPLP, the convergence
was the same or faster than that of the feeding order LP, so it
can be concluded that the estimation was generally successful
except for the feeding order PL.

Fig. 11 shows the results of the validation scores (vm in
Equation (1)) for all state signals in the proposed model,
aggregated by the units that are in transition. The value of the
validation score was higher in the transition condition where
unit C changed. Additionally, the validation score tended to
be higher when multiple units changed than when a single
unit changed. In the case where nothing changed or only unit
A changed, the validation score decreased. In this estimation
model, a validation score of 0.95 or higher was used. It was
found that the degree of mixing was estimated mainly using
motor patterns that included changes in unit C, which had
multiple units changing.

V. CONSIDERATION
Based on this result, the convergence value of the mixing
completion state, mixing completion time using time series
data, andmixing initial state were investigated in detail. In the
following sections, we focus on the time series data of unit
C during state transition 212-221. The data with transition
212-221 has a high validation score, and the change in the
sensor time series is easy to understand.

Fig. 12 shows the time series data of the sensor values in the
evaluation data during state transitions 212-221 and the sen-
sor values in the data after mixing for training. The average
values every 30minutes from the start were calculated for one
trial of the evaluation data for each feeding order. For com-
parison, all the average sensor values of the training mixed
data from the same state transition were plotted. As shown
in Fig. 12(a), the pressure in the feeding order LP instantly
rose to a value of nearly 20 kPa immediately after 0 second
when the unit state switched from 2 to 1 (from the exhausted
state to the air supply state), and then slowly reached 60 kPa

FIGURE 11. Results of validation score: All motor patterns (64 types)
were divided into eight sets according to the unit that changed the motor
pattern (from 1 to 2 or from 2 to 1), and the validation score for each
transition state is displayed. The letter at the bottom of each graph
indicates the unit that changed, and - indicates the unit does not change.
For example, ‘‘A–’’ stands for the motor pattern of only unit A (left side
unit) is changed. ‘‘- - -’’ has the same driving pattern as the previous state,
so the previous state is maintained, and the device is not moving.

set as the supply pressure. The increase in pressure after
mixing was slower than that of the feeding order LP at
0-30minutes. As time passed, the sensor values of the feeding
order LP approached those of the mixed condition, and after
60-90 minutes, the sensor values were almost the same. The
flow rate at air supply showed a similar trend, although the
directions of increase and decrease were opposite to that of
pressure. From the previous study [12], it is known that when
the contents are only powder, they are not pushed out by the
pump drive and tend to remain in the unit, resulting in a rapid
rise in pressure and a rapid decrease in the air flow rate. As the
flowability of the contents increased, the pressure rise slowed
and the air flow rate decreased faster. In the feeding order LP,
a large number of powder components existed in unit C at
the beginning of mixing and as the mixing progressed, they
mixed with the liquid components, creating fluidity in the
mixture, and facilitating the movement of the mixture. The
sensor values after 60-90 minutes were almost the same as
those after mixing, indicating that the mixing was completed
within 90 minutes from the start of mixing. This is consistent
with themass% concentration in unit C in Fig. 9 and the result
of LP mixing estimation in Fig. 10. It is suggested that the
time series of the sensor values in unit C is strongly reflected
in the learning.

Comparing the feeding orders for 0-30 minutes, the
increase in pressure value was faster in the order of LP,
PLP, PLPLP, and PL. For PLP and PLPLP, the sensor values
approached those after mixing as time progressed, as in LP.
It can be assumed that PLP and PLPLP showed this ten-
dency because the powder component in unit C was lower
in the initial stage of mixing compared with LP. The higher
the amount of initial powder component in unit C, the faster
the pressure value rises, and the faster the flow rate at air
supply decreases. In the feeding order PL, the values were
similar in all periods and almost the same as those after
mixing. This is because, under feeding order PL, unit C
contains only the liquid component in the initial stage of
mixing. The liquid component has high fluidity and is close
to the fluidity after mixing. The pressure and flow rate sen-
sors used in this system can discriminate powder that are
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FIGURE 12. Time series data of sensor values in the evaluation data during state transition 212-221 and sensor
values after mixing for training data during same state transition. Pressure and flow rate at air supply of unit C
under the feeding orders LP to PL are shown.

different in fluidity, but it is known that there are limits
to the detailed discrimination of contents that have some
fluidity. As mentioned above, the learning model has been
likely formed based on the behavior of the unit that contains
much powder component, which causes many differences in
the sensor information as the mixing progresses. This has
a significant impact on the differences in the feeding order
used in this evaluation. Accordingly, the initial values of the
mixture estimation results in Fig. 10 are higher for LP, PLP,
PLPLP, and PL. It can be suggested that the estimated mixing
degree of the feeding order PL, which is the opposite of the
training condition, does not show a monotonically increasing
trend when compared with the other feeding orders, and is
estimated to be close to the mixed state from the beginning of
mixing.

A. ADDITIONAL VALIDATION: EVALUATION OF THE
TRAINED MODEL USING DATA FROM THE FEEDING
ORDER PL
Through the verification so far, it was found that the change in
sensor values due to the movement of the powder component
is important in the evaluation data for the estimation method.
In the training data, the feeding order PL was set as the
unmixed data. However, it is unclear how the position of the
powder component in the training data affects the estimation.
As an additional validation, the proposed model was trained
using the unmixed data with feeding order PL and evaluated
in the same way as before. Fig. 13 shows the estimation
results of the model when the feeding order of the unmixed
data in the training data is changed to PL. The mixed data and
the evaluation data were the same as in the estimation shown
in Fig. 10. The threshold of vth in Equation (1) was set to 0.95.
The mean ± standard deviation of the convergence values

for the eight trials was 0.39 ± 0.22. Because the final mixed
state is the same for all feeding orders, the estimated values
should converge to a single value; however, this was not the
case. When PL was used as the training data, it was difficult
to estimate the degree of mixing. Next, the validation score
of the training model was focused on determining the reason
for the decrease in the estimation accuracy. Fig. 14 shows the
results of the validation score when the condition of unmixed
data in the training data is changed to the feeding order PL.
The aggregation method is the same as that shown in Fig. 11.
The validation score for the case where the unit is unchanged
(‘‘- - -’’) is larger than that of Fig. 10, but the variation in
the validation score is generally larger. This is because the
powder component is located in the central unit, and there
is no regularity in whether the powder component moves to
the left or right in the initial stage of mixing. Therefore, when
using this estimationmethod, the initial feeding position is the
position where the powder component moves in the mixing
progress direction, that is, the powder component should be
at the end unit when initially fed.

B. LIMITATIONS OF THIS METHOD
In the proposed estimation model, when the feeding volume
was constant and the feeding orders were changed, mixing
estimation was possible under the condition that the powder
component was present in the right-hand unit, as in the train-
ing data. When the right-hand unit was mostly filled with
liquid component, mixing estimation was not possible. Also,
when the position of the powder component in the training
data was changed, the degree of mixing could not be esti-
mated. It can be inferred that the estimation is possible under
the condition that the proportion of powder component is
changed by keeping the feed volume constant and the powder
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FIGURE 13. Mixed estimation results when the feeding order of unmixed
data in the training data is changed to PL.

FIGURE 14. Result of the validation score when the feeding order of
unmixed data in the training data is changed to PL.

feed position at the end unit. Because the estimation accuracy
was high under the condition that the powder component
moved in one direction as the mixing process progressed,
it was necessary to set the unit adjacent to the lid as the initial
powder feed position for both training and evaluation data
to improve the accuracy. The estimations in which LPL or
LPLPL are used as training data were not tested. In those
cases, we can expect that the mixing estimation will not work
as well as PL because the initial state in the unit adjacent to
the lid is similar to the mixing completion.

In the future, we will obtain data for different proportions
of powder components and verify the results. In addition,
the sensor pattern of the pressure and flow rate sensors was
almost the same for liquids andmixtures with different flowa-
bilities, which means that the sensor cannot discriminate fine
differences in the flowability of the contents. This shows a
limitation in estimating the mixture using the values of the
pressure and flow rate sensors. To improve the accuracy of
mixture estimation due to differences in feeding conditions
and amounts, it is necessary to introduce new sensors.

VI. CONCLUSION
In this paper, we proposed amethod for estimating the mixing
state of powder and liquid contents using the pressure and
flow rate sensors in the peristaltic continuous mixing con-
veyor that simulates intestines and evaluated its generaliz-
ability. The proposed model consists of an additive logistic
regression model that takes into account the state transition

of the device, using unmixed data as the data from the start of
mixing until 30 minutes after that and mixed data as the data
after mixing. The generalizability of the model was evalu-
ated under four conditions in which the feeding order of the
powder and liquid contents was changed. When the powder
component was included in the end unit, as in the training
data, the model was able to estimate with high accuracy.
However, when only the liquid component was present in the
end unit, the estimation was not possible. When the learner
was constructed using unmixed data, where only the liquid
component was present in the end unit, estimation was not
possible under all conditions. This indicates that the presence
of powder component in the end unit is important for this
method.

In the future, we will evaluate the generalizability of the
method when the feeding conditions are changed, for exam-
ple, when the components of the powder and liquid are
changed. Additionally, we will introduce sensors other than
the pressure and flow rate sensors to improve the accuracy of
the mixing estimation.
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