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ABSTRACT Detection of surface defects on wet-blue leather is much more challenging than raw-hide
leather. Since wet-blue leather turns blue and contains moisture after pre-treatment, it is a semi-product of the
cowhide processing. At present, the defect detection of wet-blue leather is mostly carried out manually and
is time-consuming and labor-intensive for professional inspectors. This paper is the first to use hyperspectral
imaging (HSI) to implement the surface inspection of five wet-blue leather defects including brand masks,
rotten grain, rupture, insect bites, and scratches in the pixel level detection. Hyperspectral Leather Defect
Detection Algorithm (HLDDA) including Hyperspectral Target Detection (HTD) and Deep Learning (DL)
techniques was proposed in this paper. In HTD, Weighted Background Suppression Constrained Energy
Minimization (WBS-CEM) and WBS-Hierarchical CEM (WBS-hCEM) were developed in this paper by
using weighting to suppress the background and enhance the contrast between the target and background.
Experimental results showed that the overall performance of WBS was better than the original CEM. In the
DL part, 1D-Convolutional Neural Network (CNN), 2D-Unet and 3D-UNet architectures were designed to
segment defect areas. For various characteristics of defects, 1D-CNN emphasizes on defects with spectral
features, 2D-Unet emphasizes on defects with spatial features, and 3D-Unet can simultaneously process
spatial and spectral information in HSI. The experimental results verified that the proposed HLDDA could
effectively quantify and estimate the size of the defect, thereby accelerating the leather inspection process
by professional inspectors and develop an automated leather grading system towards Industry 4.0.

INDEX TERMS Constrained energy minimization (CEM), deep learning (DL), hyperspectral image (HSI).

I. INTRODUCTION
The leather industry is one of the important traditional indus-
tries. The produced leather is mainly supplied for downstream
leather goods factories, which use leather as the raw material
to make various leather goods, including leather shoes, bags,
suitcases, gloves, belts, and sofas. The foremost raw material
of the leather industry is cowhide. The skin peeled from
the freshly slaughtered cattle is generally known as fur or
rawhide. It turns blue after deoiling, degreasing, unhairing,
and chroming. It is often called wet-blue leather because it
contains moisture and is the semi-product of the cowhide
processing procedure. Some marks are left on the leather sur-
face during the growth of cattle, such as brand masks, rotten
grain, ruptures, insect bites, healed scars (closed/open), and
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scratches, as shown in Fig. 1. Therefore, the products made
from natural leather tend to retain these marks, which in turn,
affect the leather grade [1]. At present, the common grading
standard is SATRA [2], which contains six grades according
to the usable area ratio of leather with Grade 6 being consid-
ered as unusable. Grades 1-6 are listed in Table 1. Leather is
inspected manually; the inspectors must visually inspect the
leather and mark the defects with chalk. Manual inspection is
likely to cause fatigue and misrecognition; thus, the judgment
result must be verified and approved by other inspectors.
Therefore, a rapid, comprehensive, and noninvasive inspec-
tion method for leather has become an important issue.

As the leather surface is blue after pretreatment, the defects
are not obvious as compared to those in the raw-hide leather.
The major challenge of detection and recognition of defects
on wet blue leather is that the specimens provide very limited
spatial information and they are generally difficult to be
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FIGURE 1. Defect appearance.

TABLE 1. SATRA grading.

confirmed or detected with the naked eye using RGB images.
Therefore, the image processing techniques in the traditional
spatial domain may be inapplicable.

In recent years, the development of remote sensing instru-
ments, hyperspectral image (HSI) has become an emerging
technology and has been extensively used in the domains
of geology [3], agriculture [4]–[7], global change [8], and
national defense [9], with highly promising industrial poten-
tial [6], [10]–[13]. The hyperspectral sensor has 200 con-
tinuous spectral bands to enhance the spectral resolution.
Hyperspectral sensors with very dense bands can be used for
detecting, classifying, distinguishing, identifying, and quan-
tifying micro-objects and substances. This study employed
the spectral information of leather defects instead of the spa-
tial information processing techniques to effectively identify
leather defects.

This study proposed a novel method of using HSI to
replace the traditional manual wet blue leather inspections.
The method is known as the Hyperspectral Leather Defect
Detection Algorithm (HLDDA) and combines Hyperspectral
Target Detection (HTD) and Deep Learning (DL) techniques
to locate and quantize the defective areas of leather. Since
hyperspectral data volume is very large, a high data storage
capacity is required and reducing data volume is also a topic
worth exploring. In terms of the band selection, this study
controlled the number of bands effectively at 10, so that the
defect position can be detected rapidly with the spectral infor-
mation of only one target object. The experimental results
showed that the WBS technique of HTD effectively sup-
pressed background interference and achieved better results.
In addition, this study proposed 1D-CNN, 2D-Unet, and
3D-UNet architectures based on DL. The 1D-CNN per-
formed analysis and quantization completely according to the
signals of spectra, and 2D-Unet focused on the defects with
spatial characteristics. As the HSI is a 3D image, the spec-
tral and spatial information can be processed simultaneously

by 3D-UNet. The experimental results illustrated that the
3D-UNet has the best performance in detecting ruptures,
rotten grains, and scratches defects, whereas the 1D-CNN has
a better performance in detecting insect bites and 2D-Unet
has the best result in detecting brand masks.

The HTD and DL are completely different concepts. The
HTD separates the target from the background based on the
concept of a matched filter and can detect the defect position
rapidly. For DL, this study applied three different dimensions
of convolution to extract the features and correlations from
the spatial and spectral domain in HSI, thus, DL requires
more prior information to train the neural network. HTD and
DL both have their own merits and demerits. The experi-
mental results of this paper can provide appropriate algo-
rithms and spectral ranges, which can effectively quantify
and estimate the size of various defects. Using HLDDA to
detect defects can ensure the consistency of the inspection
criteria, save time, and increase efficiency. The findings of
this study can provide a reference for professional inspectors
of image analysis, and for leather factories to develop an
effective leather grading system. This technique will play an
important role in the future development of leather grading
towards Industry 4.0.

II. RELATED RESEARCH
Many previous studies have conducted experiments on
defect classification for rawhide images. The shape fea-
tures (e.g. length, width) and textural features (e.g. con-
trast, entropy) were selected according to the defect features
and standard features of leather surface. Then the Feed-
forward Neural Network (FNN) [14] was combined with
Decision Tree [15] to select the optimal attribute and clas-
sify the defects. Bong et al. [16] extracted the image fea-
tures and located the defects. The extracted image features
included color, shape, and textural features for Support Vector
Machine (SVM) classification. Kwak et al. [17] used geo-
metrical and statistical characteristics as characteristic sets
in the defect classification process. A three-stage sequential
decision-tree classifier was used to classify five kinds of
defects. Liong et al. [18] used AlexNet classification and
the U-Net segmentation method to detect three kinds of
defect data. Each collected image was separated into 400 ×
400 pixels and then classified. Liong et al. [19] used Mask
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TABLE 2. Related literature comparison table.

R-CNN for automatic defect segmentation of tick bites. Each
collected image was divided into 400×400 pixels, and a neu-
ral network was built using a sliding window. Villar et al. [20]

used Multilayer Perceptron (MLP) to detect four defects in
the wet blue leather. The first-order statistics and contrast
characteristics were extracted from the Gray Scale image,
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FIGURE 2. HSI collecting system.

RGB, and HSV (Hue, Saturation, Lightness) channels for
training. Viana et al. [21] used the Interaction Maps and
the Grey Level Co-occurrence Matrices (GLCM) to extract
the attributes of samples as textural features. Several color
features were extracted. LIBSVM (a library for SVM) and
SMO (sequential minimal optimization) were used for recog-
nition. Pereira et al. [22] used GLCM, Local Binary Pat-
terns (LBP), and Structural Co-occurrence Matrix (SCM) to
extract features and trained k-nearest neighbors (KNN), Mul-
tilayer Perceptron (MLP), and SVM for detecting defects.
Pistori et al. [23] used the software of the DTCOURO leather
defect detection system to extract small samples from the
defect and non-defect regions. The textural and color features
were extracted from each sample, and the SVM and KNN
were used to detect the defects in rawhide and wet blue
leather. Yeh and Perng [24] used image processing techniques
to detect the wet-blue leather defects and calculated the
number of pixels in the unusable region. Aslam et al. [25]
investigated various transfer learning strategies and inte-
grated networks to improve the classification performance
of leather defects by their Wet-blue Leather Image Dataset
(WBLID). Although some deep learning-basedmethods have
been applied to defect detection in recent studies [26]–[30],
they are not workable in wet-blue leather defect detection,
or may not be effective even if they can be applied to as the
defects in the wet-blue leather.

Unlike most of the studies that used rawhide, this study
focused on wet-blue leather, which defects become less
apparent and difficult to recognize by naked eyes after the
dyeing process. The traditional image processing techniques
may fail to detect those defects. This paper is the first to use
HSI to detect defects in the pixel level, and its contributions
are as follows:

1) Most of the existing studies used the color, shape, and
texture of rawhide leather defects as the benchmark for defect
detection, and then used classifiers such as SVM, KNN, and
MLP to classify the images of each defect. Evaluation results

TABLE 3. Push-broom hyperspectral instrument specification
comparison.

used the number of images as a unit. This study used HSI
to combine spectral and spatial information to achieve pixel
level detection and segmentation on the wet-blue leather.
Since the grading of leather is defined by the size of the
available area, the proposed HLDDA can effectively quantify
the area of the defect and is more accurate for automated
leather grading, which is a great progress for the leather
industry.

2) Past studies used deep learning to implement the image
segmentation of rawhide leather, such as UNET [18], which
could only detect the more obvious defects (e.g., black line
andwrinkle), andMask R-CNN [19], which only had an over-
all accuracy of 70% on image segmentation. The proposed
method of this study could detect five common defects on
the wet-blue leather and reached an accuracy of over 96% for
each defect.

3) Different from other literature proposing one method to
classify various defects, this study designed appropriate algo-
rithms including matched filter based HTD, spectral based
1D-CNN, spatial based 2D-Unet, and spatial-spectral based
3D-UNet for various defects. The different characteristics
were compared in HSI, which is a novel approach.

4) Different from other wet-blue leather literature using
public data sets, this study created its own data set by col-
lecting and establishing more than 20 HSI data sets with the
assistance of the tannery, which can better reflect the actual
defects handled by the leather factories.

III. MATERIALS AND METHODS
The hyperspectral sensors, leather defect types, and proposed
algorithms are detailed as follows:

A. HYPERSPECTRAL SENSORS
The hyperspectral signal has a wider spectrum range and
higher spectrum resolution [31]–[33], meaning that the
hyperspectral signal has abundant information hidden in each
pixel. This study used the push bloom hyperspectral sensors
FX10 and FX17 of SPECIM, and the hyperspectral system
supplied by Isuzu Optics Corp. The wavelength ranges are
400∼1000 nm and 900∼1700 nm. The number of bands is
224 and the system is controlled by the software provided by
Isuzu Optics Corp. Table 3 tabulates the specification of sen-
sors. The data of whiteboard (absolute reflection, reflectivity
is 100%) and black cloth (absolute absorption, reflectivity
is 0%) in the dark box were recorded automatically before
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FIGURE 3. Inspecting defects by professional inspectors (Photo credit:
SHAN BEEN JEOU INDUSTRIAL CO., LTD).

shooting. The sample was completely closed in the course of
shooting and the linear light in the dark box was the only light
source, as shown in Fig. 2. Finally, the sample reflectivity was
calculated for experiments according to the collected light
intensity.

B. LEATHER SAMPLES
The skin peeled off the slaughtered cattle is known as fur and
it rots. To prevent it from rotting and losing hair, it is generally
curedwith salt. The processed fur with salt is calledwet salted
hide, which can be preserved for 3 to 5 months in general.
The fur and wet salted hide are generally known as rawhide,
which then turns blue after soaking, fleshing, limin, deliming,
bating, pickling, and chroming. As it contains moisture, it is
generally known as wet-blue leather. The defects on the sur-
face after processing are less apparent than those on rawhide.

The skinner, Shan Been Jeou Ind. Co., Ltd., in Taichung,
Taiwan provided nearly 20 sheets of wet-blue leather. Profes-
sional inspectors had identified the defects including brand
mask, rotten grains, rupture, insect bites, and scratches,
as shown in Fig. 3. For this study, the brand mask, rupture,
and scratches were shot by the FX10 whereas the rotten grain
and insect bite were shot by the FX17 camera. The collected
images were cropped for the leather only (the original image
contains thewhiteboard and black cloth for calculating reflec-
tivity). The dimensions of the cropped images are 350× 750
pixels. The total number of pixels is 120,000 × 280,000.

1) BRAND MASK
Brand mask is a destructive sign on the cattle made by the
livestock farm for the convenience of cattle management. Its
feature is quite apparent but its color is similar to the leather.

2) ROTTEN GRAIN
Rotten grain is a bead-like defect formed on the rotten leather
surface that resulted from defective preservation after the
animal is slaughtered. There are micro craters in the defect,
and the defect is not obvious in color images.

3) RUPTURE
Rupture is the destruction induced by folding the cowhide in
preservation. It is apparent in color images, like broken skin.

4) INSECT BITE
Insect Bite is the scar resulted from a mosquito or parasite
bite during the growing period of cattle, including the scars
before healing and after healing. Its appearance is very small
and unobvious in color images, but craters can be seen after
a closer look, and are similar to the signal of normal leather
in HSI.

5) SCRATCHES
Scratches are the marks induced by a slight cut in cattle.
In general, there is a black region around it. It is obvious in
color images, but the appearance of the cut is not obvious.

C. HYPERSPECTRAL TARGET DETECTION (HTD)
HTDcan detect targets both actively and passively. Active tar-
get detection looks for certain target information, and detects
specific targets. These targets of interest can be obtained
by the supervised or unsupervised method. This study used
active target detection to detect specific defects.

1) CONSTRAINED ENERGY MINIMIZATION (CEM)
The CEM [34]–[40] is an active target detection algorithm.
Among the numerous existing target detection algorithms,
CEM is stable and excellent in sub-pixel detection. During
target detection, the CEM algorithm is given only one spec-
tral signature as parameter ‘d’ (Desired Signature), without
requiring other prior knowledge (e.g. multiple targets of inter-
est or background). It means that the users can extract specific
targets of interest and obtain the results of target detection
when the other factors of the detection environment are
unknown.Moreover, as many signals cannot be recognized or
observed with the naked eyes, the CEM uses the correlation
matrix R to suppress the background and uses the feature ‘d’
to match the customized FIR and highlight the target. This
is to enhance the ability for detecting features and efficient
execution. If there are n spectral signatures, all the spectral
signatures are defined as {r1, r2, r3, . . . . . . , rn−2, rn−1, rn}.
It is expressed as

δCEM =
(
wCEM

)T
r =

(
dTR

−1

LxLd
)−1 (

R
−1

LxLd
)T

r (1)

2) WEIGHTED BACKGROUND SUPPRESSION CEM
(WBS-CEM)
The WBS-CEM [40] was proposed for the RGB image for
the first time. Its main concept is to use different weights
for each pixel in calculating correlation matrix R, and a
new nonparametric correlation matrix is redefined for fea-
ture extraction. The method aims at the data with the non-
Gaussian distribution. Since the distribution of data points
is not Gaussian distribution, the average value of each class
cannot represent the center of the integer. The WBS-CEM
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FIGURE 4. 1D-CNN network architecture.

useswi in calculating the correlationmatrix for weight adjust-
ment. The principle is to use the distance to the target point
for weight adjustment. The shorter distance is closer to the
target spectrum. The correlation matrix can be multiplied by
the distance to reduce the influence of the spectral signature.
It is similar to the target of interest on the correlation matrix,
and the weighted correlation matrix is extended into a part of
target detection algorithms. This is to enhance the accuracy
of target detection algorithms.

The wi computing modes can be Euclidean distance [41]
or Spectral Information Divergence [42]

wi = ED (ri,di) (2)

wi = 1− SID (ri||di) (3)

The correlation matrix R is adjusted by weight

R∗ =
1
N

n∑
i=1

wirirTi (4)

The weight is substituted in the correlation matrix of CEM,
expressed as:

δWBS−CEM =
(
dTR∗

−1

LxLd
)−1 (

R∗
−1

LxLd
)T

r (5)

3) HIERARCHICAL CEM (hCEM)
The CEM uses the FIR filter and calculates the correlation
matrix to suppress the background. It does not perform well
in some scenarios; hence, this paper uses hCEM [43]. The
method performs the first calculation according to the tra-
ditional CEM method. X is the input image data including
N spectral signatures. It is expressed as X = [x_1, x_2, . . . ,
x_N]. The kth output y is expressed as

y =
(
R−1d

)
/
(
dTR−1d

)
X (6)

Afterward, the output result is multiplied by weight q
to eliminate non-targets of interest. The weight q of the
t th hyperspectral signal can be expressed as

q (t) =

{
1− e−λt t ≥ 0
0 t < 0

(7)

To sum up, the k + 1th result can be expressed as

xk+1i = q ∗ xki (8)

k ⇐ k + 1, and then the output of Eq. 8 is used in (6) and (8)
and repeat until satisfaction. The final output is expressed as

δhCEM = [yk1, y
k
2, . . . , y

k
N] (9)

4) WEIGHTED BACKGROUND SUPPRESSION HIERARCHICAL
CEM (WBS-hCEM)
The method is derived from the combination of the concepts
in the previous two sections. The hyperspectral signal is given
an initial weight, expressed as Eq. 2 or 3. Then, the output
result is multiplied by weight q, expressed as Eq. 7. The
irrelevant information of interest is removed gradually by
continuous iteration, expressed as

δWBS−hCEM =
(
dTR∗

−1

LxLd
)−1 (

R∗
−1

LxLd
)T

r ∗ q(t) (10)

The next step is the same as hCEM in the previous section,
iterated until satisfaction.

D. DEEP LEARNING (DL)
The present DL [44] is one of the major application domains
of machine learning and has been widely used in Artificial
Intelligence (AI). The earliest basic concept of neural net-
works was proposed by Chen et al. [40], and its network
architecture has been used to simulate the image recognition
method of humans to enhance the image recognition capabil-
ity of the machine.
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FIGURE 5. 2D and 3D Unet network architecture.

1) 1D-CNN
The CNN looks for the feature map of data through the
convolutional layer. It is usually used to search for continuous
coherent signals in the case of 1D. To obtain the features
of interest from the shorter part of the entire data set, and
when the positions of features in the segment are free of high
correlation, the 1D CNN is very effective [41]. It is highly
applicable to the data of sensors, such as time series analysis
of audio signal or accelerometer data. As the hyperspectral

signal has numerous and correlated bands, this paper attempts
to find the features of leather defects through 1D-CNN. The
network model architecture, as shown in Fig. 4, comprises
the 2-layer and 4-layer 1D CNN are proposed in this paper.
As shown, 2-layer 1D CNN is designed for brand mask,
rotten grains, ruptures, and scratches; 4-layer 1D CNN is
designed for insect bites. Since the spectral signature of
insect bites is very similar to the normal leather, two more
layers of 1D convolution are added to obtain more features.
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FIGURE 6. Hyperspectral Leather Defect Detection Algorithm (HLDDA) flowchart.

The input signal is the signal of each pixel in the leather
image. After 1D convolution, the convolution kernel is 3× 3,
and the activation function is ReLu. The result of convolution
is flattened into 1D through a fully connected layer and the
number of outputs is 64. Finally, a fully connected layer with
two outputs is connected and combined with the activation
function Softmax for classification.

2) 2D-UNet
The architecture of 2D-UNet [47] is evolved from the Fully
Convolutional Network (FCN) [48]. The concept of the resid-
ual block was imported by Milletari [49]. The residual block
is well known in ResNet. The original design goal is to reduce
the gradient vanishing and saturation problems induced by
stacking a number of convolutional layers. The construction
of UNet aims at prediction with a few data. The dimen-
sion reduction path in the left of the architecture diagram is
called the contracting path, in the right is the expanding path.
To obtain accurate information, there will be convolution
of at least two successive layers before dimension reduc-
tion or dimension raising, known as successive convolution.

Another characteristic is to maintain high channel number
of up-sampling so that relative position relation and detailed
features can be fully combined and the quality of recognition
is upgraded. The U-Net has been used in image segmenta-
tion, such as medical images [50], [51] and remote sens-
ing [52]; it can be also extended and enhanced to the 3D-UNet
models, which have been applied in medical applications
[53]–[55]. The network architecturewith parameters is shown
in Fig. 5 (a). The convolution kernel of all the 2D convolu-
tional layers of the model is [3, 3].

3) 3D-UNet
This paper considers the information content of the hyper-
spectral signal in spatial and spectral information and con-
structs the 3D-UNet architecture based on the 2D-UNet.
The network model architecture is shown in Fig. 5(b). The
shape of input data is set is [192, 192, 192]. It is set as
192 because the 3D-UNet requires four dimension reduc-
tions. Each dimension reduction reduces the information
content of each dimension by half. There is 1/16 of input
data remaining after four dimension reductions. To avoid
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FIGURE 7. Experimental results of brand mask.

zero-padding of the model, the 192 which is the maximum
multiple of 16 within 200 is selected as the input size. The
convolution kernel of all the 3D convolutional layers of the
model is [3, 3, 3]. The activation function is Swish [56]
and the output of the second to the last layer is 3D data.
The last layer uses 2D convolution to eliminate the third
dimension. The activation function is ReLu so that the out-
put is a 2D image. It is noteworthy that the 3D-UNet has
fewer samples than 1D-CNN. The loss function used in this
model is balanced cross-entropy [57], the weight of the class
(i.e. defect) with fewer samples is set as 0.85, and the other
class (i.e. background) is set as 0.15, so as to effectively

suppress the behavior of the prior model, which is likely
to identify the full sheet of leather as background. The loss
function gives individual weight to each class, expressed as
follows.

BCE
(
p, p̂

)
= −

(
βp log

(
p̂
)
+ (1− β) (1− p) log(1− p̂)

)
(11)

E. BAND SELECTION (BS)
The concept of BS was discussed as early as in multispectral
times. Mausel [34] used the concept of correlation coeffi-
cient of statistics to determine a subset from an 8-channel
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FIGURE 8. Experimental results of rotten grain.

multispectral image for classification. The classification rate
was not affected. In recent years, the minimum similarity-
based method is the most frequent BS method. Briefly,
the newly selected band must have the minimum similarity
and correlation with the selected band. The methods include
correlation coefficient, Euclidean distance, Spectral Angle
Mapper (SAM) proposed by Keshava [58], and Orthogonal
Subspace Projection (OSP) [59]. This study used the target
detection concept as the main band selection algorithm.

1) CONSTRAINED-TARGET BAND SELECTION (CTBS)
A new band selection method for multi-target detection is
known as Constrained-Target Band Selection (CTBS) [60].
It is derived from the concept of CEM by constraining the
target energy while minimizing the variance induced by back-
ground. Based on CEM, the variance resulting from the target
of interest can be used for determining the frequency band
priority and selecting the frequency band for the specific
target.

If {bl}Ll=1 is a group of band images representing hyper-
spectral signal cube, where bl is the l–th band. According to
the obtained CEM error if �BS is a group of bands selected
and

{
r iBS
}N
i=1 is data set, the following equation can be defined

as CTBS priority standard

V (�Bs) =
(
dT�BS

R−1�BS
d�BS

)−1
(12)

2) MINIMAL/MAXIMAL VARIANCE-BASED BAND
PROCESSING (MIN/maxV-BP)
According to the optimization method of CEM, the priority
score is processed by variance, if d is used for detecting the
target of interest of d designated target. For each band bl , the
variance of the band can be calculated according to Eq. (12)

V (bl) =
(
dTblR

−1
bl dbl

)−1
(13)

As V (bl) only uses the data sample vector designated
by bl , its value can be used in the priority score assigned
to bl . Therefore, the priorities of all bands can be sequenced
according to the value of V (bl). A smaller V (bl) means that
the bl is more important. The band selection is known as
Minimal Variance-based BP (MinV-BP).

The FIR filter of all band set � can be substituted, and
�BS = �− bl , derived from Eq. (13) into

V (�− bl) =
(
dT�−{bl }R

−1
�−{bl }

d�−{bl }
)−1

(14)

Themaximum variance is removed from� and V (�− bl)
is used as a priority score. In other words, the higher the
V (�− bl) is, the more important is the bl band, known as
Maximal Variance-based BP (MaxV-BP).
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FIGURE 9. Experimental results of rupture.

TABLE 4. Computing time in second.

F. HYPERSPECTRAL LEATHER DEFECT DETECTION
ALGORITHM (HLDDA)
This paper combined the above methods to develop the
Hyperspectral LeatherDefect DetectionAlgorithm (HLDDA)
including HTD and DL techniques. Considering the noise
during imaging of the hyperspectral camera, HLDDA
removed low signal/high noise bands: bands 1-20th and bands
211-224th. A total of 192 bands were used in the experiments.
In addition, to remove noise more efficiently, the Mini-
mum Noise Fraction Transform (MNF Transform) [61] was
used for hyperspectral data. The method regards the Signal-
to-Noise Ratio (SNR) as the indicator for evaluating signal
quality. The noise interference can be reduced by MNF
Transform, which makes the data cleaner. HLDDA does not
use MNF Transform to directly reduce the bands because the
clean band is not always suitable for various defects, as long
as the noise of the original image is reduced and the suitable
bands for various defects can be found according to the BS
method.

The BSmethod is performed for the imported HSI to select
10 bands. It is worth noting that DL requires a lot of data
information to achieve better results; in this case, it can skip
BS and keep full bands HIS to obtain more features. In addi-
tion, the HTD requires a desired target as a prior knowledge;
HLDDA uses the average of three target pixels selected from
the ground truth as an input parameter. In the training process
of DL, 1D-CNN randomly takes 1% of its data as the training
set. The 3D-UNet uses a sliding window to split HSI to obtain
five small images with defects as a training set, while the
rest of the data is the testing set. Fig. 6 plots the flowchart of
HLDDA.

IV. EXPERIMENTS
A. EVALUATION
As the number of samples is large and the quantities of
two classes of samples are unequal, the Receiver operat-
ing characteristic (ROC) analysis is used. The area under
curve (AUC), True Positive Rate (TPR), False Positive
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FIGURE 10. Experimental results of insect bite.

Rate (FPR), Accuracy (ACC), Kappa, and Intersection over
Union (IoU) are also used for evaluation.

The TPR is the proportion of correctly identified sam-
ples to all the samples that are defective in fact (posi-
tive). The FPR is the proportion of misidentified samples
to all the samples that are normal in fact (negative). The
(FPR, TPR) coordinates of each threshold of the same
model are drawn in the ROC space to form the ROC
curve of a specific model. The area under the curve is
AUC [62].

Cohen’s kappa [63] is different from the ROC curve.
The effect of the detector under different thresholds can be
calculated. The kappa coefficient (κ) represents two errors
(omission and commission) and the overall accuracy of the
classifier. The confusion matrix expressed as Eq. (15) is used
to calculate the performance index.

Confusion matrix(H ) =

 H11 · · · H1K
...

. . .
...

HK1 · · · HKK

 (15)
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FIGURE 11. Experimental results of scratches.

The Intersection over Union (IoU) [64] is also known as the
Jaccard similarity coefficient. It is the statistics for comparing
the similarity and diversity of the sample set. The Jaccard
index can measure the similarity of the finite sample set. It is
defined as the ratio of intersection size to union size of two
sets

J (A,B) =
|A ∩ B|
|A ∪ B|

=
|A ∩ B|

|A| + |B| − |A ∩ B|
(16)

B. EXPERIMENTAL RESULTS
The experiments are performed in python 3.8, RTX-3080
10G, Inteli9-10900F@_2.8GHz, RAM 32GB. The collected
data of different defects are tested.

Figs. 7-11 show the experimental results of HLDDA;
(a) shows the color image of the defect; (b) shows the HSI
of the defect in the No. 150 band; (c) shows the Ground
Truth of the defect, where the white part is defect, the black
part is non-defect, and three red circles indicate the posi-
tions of three desired signature for the parameter for HTD;
(d)-(i) show the results of CEM, WBS-CEM, WBS-hCEM,
1D-CNN, 2D-UNet, and 3D-UNet, respectively. This study
used the minV-BP method with a shorter computing time as
a band selection method for selecting 10 bands. The band
selection results are shown in Fig. 12. This wavelength range
is an important criterion for customizing sensors in the future
and the production cost is reduced. Four indexes including
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FIGURE 12. Results of band selection.

AUC, ACC, Kappa, and IoU were used for evaluation. The
aforesaid fivemethodswere compared. The result of HTD is a
gray-level image, which must be binarized before classifi-
cation. This study found the optimum threshold of maxi-
mization TPR+ (1-FPR). TPR, FPR, ACC, Kappa, and IoU
were calculated according to the classification result. Finally,
a comparison histogram of the detection results of each algo-
rithm and overall performance is plotted in Fig. 13. There are
at least three HSIs of each defect. The data of each result is
the average of three HSIs.

According to the results in Fig.13(a), the 2D-UNet has
the best performance in detecting brand mask because the
brand mask is a defect with more spatial features. The
3D-UNet combining spatial information with spectral infor-
mation is better than the other algorithms with only spectral
information.

In detecting the rotten grain defect in Fig.13(b), the
WBS-CEM has the best performance in AUC and TPR, and
the 3D-UNet has the best performance in Kappa and IOU.
Because the WBS- CEM uses the concept of matched filter,
it has higher AUC and TPR, as well as a higher false alarm,
leading to worse data of Kappa and IOU.

In detecting the rupture defect in Fig. 13(c), theWBS-CEM
has a better effect in AUC, but 3D-UNet still has the best
results in Kappa and IOU among other algorithms.

In detecting the insect bite in Fig. 13(d), the 2D and
3D-UNet cannot smoothly work. It is possibly because the
insect bite defect is very small with very limited spatial infor-
mation and its feature disappears after multiple convolutions.
In this case, we can rely on spectral information based on
1D-CNN. According to the experimental results, 1D-CNN
has the best result and the HTD may be disturbed by the

other defects, leading to an excessive false alarm. According
to the spectral signature of insect bites, it is very close to
the signal of normal leather, resulting in high difficulties in
analysis.

The results on detecting scratches in Fig. 13(e) are univer-
sally good. The HTD results in better AUC and TPR. The DL
has better FPR, ACC, Kappa, and IoU.

The results of overall performance are shown in Fig. 13(f).
As seen, the proposed WBS-CEM and WBS-hCEM perform
better than original CEM and hCEM in AUC and Acc. How-
ever, the overall performance of 3D-UNet in ACC, Kappa,
and IoU is still better than other methods.

C. COMPUTING TIME
Table 4 lists the HTD and DL prediction time for reference.
The average computing time of one image is given below. The
image size is [390, 482]. It is worth noting that HTD does not
require any training process, which is the major advantage.
However, DL takes much more time than HTD including
training and testing time. Especially, 3D-UNet spends longest
time in training, in order to implement 3D convolution. HTD
is the fastest using the original CEM, but the commuting time
are all very close and fast.

D. DISCUSSION
According to the experimental results in the previous section,
our proposed WBS-CEM and WBS-hCEM perform much
better than the original CEM for different defects. The results
prove that background suppression plays an important role in
detection results. From the angle of vision, the WBS-hCEM
has the best effect on background suppression, followed by
WBS-CEM. The hCEM is an excellent algorithm, but can
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FIGURE 13. Comparison histogram of the detection results and overall performance.

also powerfully suppress the background to reduce the false
alarm rate greatly. Additionally, some indistinct targets are
suppressed as background. Excessive suppression results in
worse evaluation indexes, such as AUC, than WBS-CEM.
If the WBS-hCEM is selected, the result is generally between
the former two, better or worse than the former two in some
instances. In terms of DL, 1D-CNN has the best result in
detecting insect bites since the defect of insect bites can
only be recognized by spectral information; 2D-Unet takes
advantage of spatial information so that it performs best in
brand mask, which has more spatial features; the 3D-UNet
considers spatial information and spectral information simul-
taneously. Therefore, it has the best performance in rotten

grain, rupture, and scratch defects. A disadvantage is that tiny
defects cannot be detected since the features vanish during the
convolution. This is the reason that the insect bite defect fails
to be detected in 2D and 3D-Unet. However, the 3D-UNet
generally has a better overall performance than 1D-CNN and
2D-Unet, but it requires more GPU memory. If the image is
divided into small pieces, partial spatial characteristics will
be lost and the detection results will be unacceptable.

To sum up, the HTD and DL perform signal analysis
from different starting points. The HTD uses the concept
of matched filter to separate the target object from the
background. Our proposed WBS-CEM and WBS-hCEM use
weighting to suppress background and enhance the contrast
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between target and background. The advantage is that the
target object can be located as long as one spectral signature is
given as a parameter. On the contrary, the ID-CNN, 2D-Unet,
and 3D-Unet analyze spatial and spectral signatures in the
concept of a neural network. They must collect a lot of
data for analysis. The ID-CNN mainly convolves spectral
signature, whereas the 2D-Unet mainly convolves spatial fea-
tures and 3D-Unet convolve spatial and spectral information
simultaneously, but requires a longer computing time. The
experimental results prove the above theory. Therefore, with
limited resources and time, the HTD is preferred. On the
contrary, if there are adequate resources and time, the DL is
workable.

V. CONCLUSION
This paper analyzed five defects in wet-blue leather including
brand mask, rotten grain, rupture, insect bite, and scratches
by using HSI. Our proposed HLDDA includes HTD-based
WBS-CEM andWBS-hCEM, as well as DL-based 1D-CNN,
2D-Unet, and 3D-Unet architectures to detect defects. The
experimental results show that the HLDDA positively pro-
vides a new direction and feasibility of wet-blue leather
inspection. Several contributions of this paper are considered
to be significant and summarized in the following.

1) Prior studies mostly extract features from the spatial
domain and then implement image classification on
rawhide leather images. This paper is the first ana-
lytical study using HSI for wet-blue leather at the
pixel level. The wet-blue leather after pre-processing is
more challenging than general rawhide leather in defect
detection.

2) Our proposed HLDDA uses the spectral and spa-
tial information of leather and implements pixel level
defect detection and segmentation to effectively quan-
tize and estimate the size of defects so that it is more
precise for leather grading.

3) We created our own data set by collecting more than
20 HSIs, almost 5.25 million spectral signatures with
tannery’s help. Our data set could be closer to the real
situation of the factory.

4) In the HTD results, our proposed WBS-CEM and
WBS-hCEM perform much better than the original
CEM in different defects. The results prove that the
background suppression technique plays an important
role from the angle of vision, and can provide better
visual contrast. In DL, we designed the spectral based
1D-CNN, spatial based 2D-Unet, and spatial-spectral
based 3D-UNet for various defect features, which was
never investigated in the past.

5) This paper provides an important wavelength range
for recognizing different defects. This is an advan-
tage in practical application and customizing hyper/
multispectral sensors in the future.

6) This paper is the pilot study and guideline for HSI in
the detection of wet-blue leather to design appropriate
algorithms from the angle of HTD and DL. Our future

work is to present a better and novel network structure
in the HTD or DL section. The short-term goal is
to enable professional inspectors to diagnose defect
positions faster. The long-term goal is to work with
automated manipulators to develop intelligence leather
grading towards Industry 4.0.
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