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ABSTRACT The penetration of electric vehicles (EVs) in the transportation sector is increasing but
conventional internal combustion engine (ICE) based vehicles dominates. To accelerate the adoption of EVs
and to achieve sustainable transportation, the bottlenecks need to be elevated that mainly include the high
cost EVs, range anxiety, lack of EV charging infrastructure, and the pollution of the grid due to EV chargers.
The high cost of EVs is due to costly energy storage systems (ESS) with high energy density. This paper
provides a comprehensive review of EV technology that mainly includes electric vehicle supply equipment
(EVSE), ESS, and EV chargers. A detailed discussion is presented on the state-of-the-art of EV chargers that
include on-/off-board chargers. Different topologies are discussed with low-/high-frequency transformers.
The different available power levels for charging are discussed. To reduce the range anxiety the EV chargers
based on inductive power transfer (IPT) are discussed. The last part of the paper focuses on the negative
impact of EV chargers along with the remedies that can be adopted. The international standards decided by
different institutions and adopted universally are discussed in the latter part of this paper and finally, this
paper concludes with the near to future advancement in EV technology.

INDEX TERMS Charge depletion, charge sustaining, electric vehicle, internal combustion engine, power
factor, power quality.

I. INTRODUCTION
The economic and social development depends mainly on the
existing transportation sector in the country [1]. At present,
internal combustion engine (ICE) based vehicles have domi-
nation in this sector. The tailpipe emissions and exhaust from
these directly affect the climate and the pollutants aids in
reducing the air quality which has adverse results on human
health and the ecosystem [2], [3]. The transportation sector
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is responsible for about 24% of the total CO2 that results
from the combustion of fossil fuel [4]. Figure 1 shows the
sector-wise emission of CO2 from the combustion of fuel and
is likely to increase with urbanization, industrialization, and
with an increase in the number of vehicles, in the coming
future [5]. To reduce the aforementioned concerns, there is
a need to find an alternative for the transportation sector.
The inclusion of electric vehicles (EVs) in the transporta-

tion sector is the bright option for reducing tailpipe emissions
that can improve the air quality and therefore reduce the
adverse effects of ICE-based vehicles [1]. Moreover, EVs are
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FIGURE 1. Sector-wise C02 emission from fuel combustion [5].

comparatively efficient, have better performance, and have a
lower driving cost per mile, as compared to ICE-based vehi-
cles. The electric motor that drives EVs utilizes 80-85% of the
total energy that is supplied through the batteries compared
to 12-30% that the ICE-based vehicles utilize [6]. Further,
the tank-to-wheel efficiency of EVs is higher than that of the
ICE-based vehicle, as shown in Figure 2.

FIGURE 2. Efficiencies of different vehicles.

On 5th December 2015, 195 countries participated in Paris
Climate Conference and adopted the first ever universally
and legally adopted agreement on climate change [7]. In the
conference, amid growing concerns on climate change were
addressed and the governmental policies to endorse the use
of electricity in the transportation sector were proposed.
Presently, the transportation sector contributes to 24% of the
total CO2 emitted by mankind and this figure is going to
increase at an alarming rate with an increase in urbanization
and industrialization [4].

Shifting from petroleum or fossil fuel-based transportation
to an electricity-based transportation system has evolved an
idea of EVs that are powered through an on-board energy
storage system (ESS) and the latter is being powered by
electricity. The battery storage must be capable of supply-
ing the energy demands of the EV. Recent research and
advancements in technology over the last couple of years
have suggested the use of Li-ion batteries in EVs [8], [9].
Despite improvements in Li-ion batteries, the energy den-
sity is 200–300 Wh/kg which is much low in comparison to
petroleum (13,000 Wh/Kg). Due to this, the driving range of
an EV is limited in one complete charge of battery and there
is always a ‘‘range anxiety’’, i.e. a fear of having no charge
and also unable to charge at the desired moment [6].

Another bottleneck in the wide adoption of EVs is the
lack of proper EV charging infrastructure that can replace
and compete with the existing refueling stations [10], [11].
In addition to this, the deployed charging infrastructure must
avoid the deleterious harmonic effects on the electric utility
distribution system [12], [13]. Therefore, the development of
the EV charging infrastructure parallel to the existing refuel-
ing station with minimal impact on the existing electric utility
distribution system is urgently required particularly in the
regions where long driving is required (highways). Moreover,
the developed EV charging infrastructure must incorporate
the industry standards, available technology along with the
government policies [14].

The EV charging infrastructure is mainly categorized into
two categories, (a) inductive power transfer (IPT) or wireless
power transfer (WPT) and (b) conductive power transfer.
Both have their own merits and demerits over each other.
Further, these are subdivided into on-board and off-board
charging infrastructures [15], [16]. In on-board EV charging
infrastructure the EV charger circuitry is placed inside the
EV along with the ESS, while, in off-board EV charging
infrastructure, the charging circuitry is not an integral part of
the EV.

The main idea of this paper is to develop the off-board
charging infrastructure that can be deployed similar to the
refueling stations and can elevate the bottleneck in the vast
adoption of EVs due to the lack of availability of proper EV
charging infrastructure. Moreover, the developed EV charg-
ing infrastructure is reliable; robust; modular in nature; cost
comparative and satisfies IEEE 519-2014 power quality (PQ)
standards.

Further, this paper provides an introduction to different
types of EVs that are available commercially and discusses
the technology for the ESS. The in-depth review on the elec-
tric vehicle supply equipment (EVSE) which includes mainly
EV charging cords, residential and public charging stands,
plugs, power outlets with different recommended power lev-
els by the society of automotive engineers (SAE) is presented.
In the latter part of this paper, a comprehensive state-of-the-
art review of the available topologies for the EV charging
stations is presented along with their negative impacts on
the electric utility distribution system. Finally, the technical
codes and standards for safety and isolation conclude this
paper.

II. CLASSIFICATION OF EVs
Based on the combination of electrical and fuel energy that
drives them EVs are broadly classified into three main cate-
gories [17].

A. BATTERY ELECTRIC VEHICLE (BEV)
A battery electric vehicle (BEV) is based only on an electric
motor and ESS and does not need the support of traditional
ICE. They are plugged into an electrical supply to recharge
their ESS (batteries) when they are exhausted. BEVs can
also recharge their batteries through the regenerative braking
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process, which uses the vehicle’s electric motor to assist in
slowing down the vehicle and to recover the energy which is
usually converted to heat energy by the brakes [18].

Some commercially available BEVs are Tesla Model S,
Nissan Leaf, BMW i3, Mitsubishi iMiEV, Smart EV, Ford
Focus EV, etc. The main advantages of BEVs are:

• Zero tailpipe emissions.
• No need for gas or oil refueling.
• Easy to be charged at home.
• Fast and smooth acceleration.
• Overall low cost of operation.

Apart from the advantages, some disadvantages are:
• Shorter drive range as compared to ICE-based vehicles.
• Expensive than ICE-based vehicles, however, the pay-
back period from fuel savings is only about 2-3 years.

B. PLUG-IN HYBRID ELECTRIC VEHICLE (PHEV)
The plug-in hybrid electric vehicle (PHEV) uses an electric
motor and ESS along with the ICE. The feature of having
ICE in PHEV makes it a more suitable and promising option
for long-distance journeys. The operation of PHEV is divided
mainly into two modes; namely, charge depleting (CD) mode
and charge sustaining (CS) mode. In CD mode, PHEV dis-
ables its ICE and draws vehicle driving energy entirely from
the battery until it reaches a threshold state-of-charge (SOC),
where SOC is a quantity that measures the percentage of
remaining charge in the battery. Upon reaching the minimum
SOC, PHEVs switch their operation to CS mode and the
IC engine provides energy to drive the vehicle as well as to
maintain battery charge above but near to the minimum SOC.
For better fuel efficiency, a third mode, called charge blended
(CB) mode has been introduced, in which electric motor and
IC engine are optimally and dynamically employed during
a drive cycle so that they are able to operate longer using the
most efficient settings while achieving an overall reduction in
the emissions [19]. Commonly available PHEVs are BMW
i3, BMW i8, Cadillac ELR, GM Chevy Volt, Porsche SE,
Ford Fusion Energi, Ford Cmax Energi, Toyota Prius Plugin.
The advantages of PHEVs are:

• Long driving range.
• Low fuel consumption than conventional ICE-based
vehicles.

• Low emission of pollutants in the environment.
Some disadvantages of PHEVs are:

• Environmental pollution is not eliminated.
• Expensive to operate as compared to BEVs.

C. HYBRID ELECTRIC VEHICLE (HEV)
Hybrid electric vehicles (HEVs) have two driving systems,
ICE with a fuel tank and an electric motor with an ESS.
Both, ICE and the electric motor drive the vehicle at the same
time. However, HEVs do not have the facility of charging
from the utility grid, all their driving energy comes from
the fuel and the regenerative braking process in the vehi-
cle [20], [21]. Some commonly available HEVs are Audi

Q5 Hybrid, Acura ILX Hybrid, Cadillac Escalade Hybrid,
BMWActive Hybrid 3, BMWActive Hybrid 5, BMWActive
Hybrid 7, Honda Civic Hybrid, Honda CR-Z Hybrid. Some
advantages of HEVs are:

• Longer driving range than BEVs.
• Lower fuel consumption compared to ICE-based vehi-
cles.

• Lower emissions than ICE-based engines.
Some disadvantages of HEVs are:

• Zero tailpipe emission is not achieved.
• The mechanism of operation is complex.
• Expensive to operate as compared to BEVs.
• Cheaper compared to ICE-based vehicles.

Figure 3 shows the architecture of BEVs, PHEVs, and HEVs
that explains the working mechanisms. It is estimated that
energy consumption per mile for all EVs lies approximately
in the range of (0.25 - 0.45) kWh/mile, Table 1.

FIGURE 3. Architecture of (a) PHEVs. (b) BEVs. (c) HEVs.

III. ENERGY STORAGE SYSTEM (ESS)
To make EVs suitable for long-distance journeys, the ESS
(batteries) in the EVs should meet criteria in terms of high
energy density for extending the driving range of EVs; high
power density for the fast acceleration of EVs; a large num-
ber of life cycles; wide range of temperature in which they
can operate and low maintenance, the capability of accept-
ing high power repetitive charges from regenerative braking
operation [22].

The rate at which a battery is charged depends directly on
the internal DC resistance (DCR) of each cell, the chemistry
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TABLE 1. EVs energy consumption [15].

involved in it, and the charging techniques used to charge the
battery. In an ideal battery, the value DCR should have a low
value to achieve high efficiency with low heat generation.
Batteries used in EV applications require more safety pre-
cautions because frequent fast charge/discharge operations in
EV battery leads to the generation of excessive heat. There
are several types of batteries that are commercially available
and currently used in various EVs [23]. The different types
of chemistries involved in the batteries of EVs are discussed
below.

A. NICKEL-METAL HYDRIDE (NiMH) BATTERIES
These batteries have high energy and power densities as
compared to conventional lead-acid batteries. However, these
batteries have poor performances at extremely high and low
temperatures and also require frequent maintenance. As the
EVs require high-capacity batteries with the capability of
many deep discharge cycles, these batteries are not suitable
for EV applications.

B. NICKEL-CADMIUM (NiCD) BATTERIES
Nickel-Cadmium (NiCD) batteries are suitable for deep
discharge cycle applications and have better performances
at high temperature operating conditions. However, NiCD
batteries have low energy density and contain an appre-
ciable amount of toxic metals which limits their use in
EV applications.

C. LITHIUM-ION (LI-ION) BATTERIES
Lithium-Ion (Li-ion); Lithium-Ion Polymer and Lithium-Iron
Phosphate batteries have high energy density and due to
which these are lighter in weight in comparison to other
batteries, this makes it most suitable for EVs applications.

Typically, lithium-ion batteries have fourmajor chemistries
based on cathode materials, namely; cobalt, manganese,
nickel-cobalt-manganese, and phosphate utilizing either car-
bon or graphite as an anode. Among these, cobalt oxide which
has the highest energy density (Wh/kg) is found thermally
unstable, and its internal resistance varies considerably with
time and depends on the energy output, resulting in a reduced
cycle life [24]. On the other hand, manganese oxide has low
cost, high energy density, and safety but has limitations in
terms of limited operating temperature and low volumetric
energy density [25].

New lithium-ion chemistry is iron-phosphate that deliv-
ers high currents and offers a large number of life cycles
as compared to other available technologies. However, its
energy capacity is lower than other lithium chemistries, but
these batteries are capable of maintaining their nameplate
capacity longer than any other technology due to the low and
stable value of internal DC resistance. Table 2 compares the
performance parameters of different batteries [23].

IV. CHARGING TECHNIQUES OF ESS
Charging of ESS depends on the rate of transfer of energy, for
EV owners it is desirable to utilize fast charging techniques at
high power levels to charge the EVs battery in less time. The
chemistry involved in a battery determines the power level at
which it can be charged [37].

Furthermore, the chargingmethods/techniques adopted are
also responsible for the fast charging of EVs. Several charg-
ing techniques are discussed below:

A. CONSTANT CURRENT-CONSTANT VOLTAGE (CC-CV)
MODE
Constant current-constant voltage (CC-CV) mode is the con-
ventional method of charging. Themain idea of this technique
is to charge the EV battery a constant maximum current
(recommended by the manufacturer) up to some threshold
(cut-off) voltage and then the battery is charged at this thresh-
old voltage, till the battery starts charging at around C/10 or
less of the defined capacity. CC-CV charging profile of a
battery is shown in Figure 4(a) [37].

B. MULTISTAGE CONSTANT CURRENT-CONSTANT
VOLTAGE (CC-CV) MODE
Multistage constant current-constant voltage (MCC-CV)
mode is a modified CC-CV mode that increases the charge
acceptance rate of the battery. The basic principle is the same
as that of CC-CV mode with the exception that in CC-CV
mode only one constant current level is used till the threshold
voltage level, while inMCC-CVmodemany current steps are
applied up to the threshold voltage, shown in Figure 4(b).

The above-stated charging methods are traditional and
have limitations in their capability to deliver high power
due to polarization. The new charging methods that reduce
the effect of polarization, and thus increase the charging
acceptance, are still being the active area for the researchers.
Discharging the battery at specific time intervals during
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TABLE 2. Performance parameters of different EES [25], [36].

FIGURE 4. Traditional and advanced charging techniques.

charging is one method to increase charge acceptance [38].
This method is applicable to both CC-CV and MCC-CV
modes in order to yield a superior result. An advanced way of
CC-CV mode with negative pulses is shown in Figure 4(c).
Another approach discussed in [39] uses a variable pulse
charge strategy, in which optimal pulse charge frequency is
continuously calculated and optimized in order to distribute
the ions in electrolytes evenly. Between the pulses, a variable
rest period is given that neutralizes and diffuses the ions.
This rest period is predefined by the maximum power point
tracker (MPPT) to determine the maximum current that can
be given for a given SOC in real-time. Typical characteristics
of the variable frequency associated with pulse charging are
shown in Figure 4(d). Incorporation of this method increases
the charge acceptance as compared to the conventional
CC-CV and fixed frequency pulse charging method.

V. ELECTRIC VEHICLE SUPPLY EQUIPMENT (EVSE)
The electric vehicle supply equipment (EVSE) provides elec-
tric power to recharge the battery of EV. EVSE is com-
monly known as EV charging stations or EV charging
points [16]. EVSE includes the electrical power conductors,
related equipment, software, and communications protocols
that deliver the electrical energy efficiently and safely from

the electric utility distribution system to the ESS of the EVs.
Figure 5 shows the block diagram of a charging pool that
has several EV charging stations. A charging pool contains
several charging stations, while a charging station contains
several charging points. Each charging point has several con-
nectors and per charging point not more than one connector
can be active at a time [40]. A photograph of a typical
charging pool is shown in Figure 6 [16].

FIGURE 5. Block diagram of charging pool.

FIGURE 6. Photograph of a typical charging pool.

A. CHARGING POOL
A charging pool consists of single/multiple charging stations
and the parking bays, shown in Figure 6. The charging
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pool is operated by one charge point operator (CPO) and a
global positioning system (GPS) coordinates at a location.
The charging pool is related to ‘‘cartographic view’’, guiding
tools, and the features that represent a charging infrastructure
on a map.

B. CHARGING STATION
A Charging Station is a physical structure having one or
more charging points that share a common user identification
interface (UII). Some charging stations have radio-frequency
identification (RFID) readers, displays, and LEDs, while
others are only ‘Plug & Charge’, and do not have buttons,
displays, etc.

C. CHARGING POINT
The electric energy is delivered to the EV through the charg-
ing point. A charging point has one or many connectors to
accommodate different types of connectors (discussed latter).
As shown in Figure 6, only one connector is used at a time.

D. CONNECTORS
The connector is a physical interface between EV and its
charging station that provides electricity for the charging
purpose, as shown in Figure 6. Different types of connectors
are discussed and explained in the latter part of this paper.

VI. CLASSIFICATION OF EV CHARGERS
Charging of EV requires either single-phase or three-phase
chargers with unidirectional or bidirectional power flow
capabilities [16], [41]–[43]. EV chargers are classified into
conductive and inductive chargers. Conductive charging tech-
nology is well developed while inductive charging technol-
ogy remains the hot topic for researchers.

A. CONDUCTIVE CHARGING
Conductive charging involves direct metal-to-metal contact
between the utility grid and the EV to transfer the power. This
method of charging is found to be highly efficient and robust.
Conductive chargers are classified as on-board and off-board
charging infrastructures. On-board chargers are integrated
with the EV, due to constraints onweight, space, size, and cost
power level of these types of chargers are limited [44], [45].
On the other hand, off-board EV chargers have no constraints
on their size, weight, and space since they are not an integral
part of EV and are installed in public parking bays like those
of hospitals, shopping malls, and universities. Figure 7 shows
the block diagram that highlights the difference between on-
board and off-board chargers. On-board chargers are gener-
ally used for slow charging purposes while off-board chargers
are intended for fast charging.

B. INDUCTIVE CHARGING
Inductive or wireless chargers work on the principle of IPT,
i.e. mutual induction to transfer power from the utility grid
to the EV. It requires no physical contact between the utility
grid and EV. Moreover, they may or may not require isolation

FIGURE 7. On-board and Off-board conductive charging infrastructures.

transformers for safety purpose, thus it has reduced size as
compared to the conductive chargers [46]. However, induc-
tive chargers are comparatively less efficient due to misalign-
ment between the power transferring coils. Inductive chargers
are classified into three categories, a) static inductive charg-
ers, b) dynamic inductive chargers, and c) quasi-dynamic
inductive chargers [47]–[50], confer Figure 8. Figure 9 shows
the schematic of static and roadbed inductive chargers for
charging EVs wirelessly. Static inductive chargers have two
coils; one is installed in the charger, i.e. outside the EV while
the other coil is an integral part of the EV. To achieve high
efficiency both coils are aligned properly. Roadbed induc-
tive charging has the ability to charge the EV when it is
in motion. In this charging method, special charging tracks
are laid on the roads (usually highways) that are capable of
charging the EV and reduce the range anxiety and capacity of
ESS. In quasi-dynamic inductive charging, the EV is charged
whenever it stops for a small interval, like on traffic signals.

FIGURE 8. Classification of inductive chargers.

C. UNIDIRECTIONAL AND BIDIRECTIONAL CHARGERS
Between EV and the utility grid, two possible types of power
flow are shown in Figure 10. EVswith unidirectional chargers
charge the EV but do not inject the energy of EV into the
utility grid. These chargers generally have a diode bridge
rectifier (DBR) along with filter and dc-dc converters. Nowa-
days these converters are realized as a single-stage that limits
size, weight, cost, and losses [51]. High-frequency isolation
transformers are employed to get the isolation during charg-
ing of EV [57]. Simple control of the unidirectional chargers
makes them an easy option for a utility to manage a fleet
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FIGURE 9. Schematic of (a) stationary inductive charging and (b) roadbed
inductive charging.

FIGURE 10. Unidirectional and bidirectional charger topology.

of EVs [42]. Chargers having active front ends have the
ability to provide reactive power support through the current
phase angle control without discharging the battery. With
increased penetration of EVs in the utility grid and active
charging current control, unidirectional chargers seem to be
a promising solution to meet most utility objectives while
avoiding the cost, safety, and performance concerns that are
associated with the bidirectional chargers [58], [59].

On the other hand, a bidirectional charger has two power
stages; one is an active grid-connected bidirectional ac–dc
converter that endorses unity power factor (PF), and the sec-
ond is a bidirectional dc-dc converter that regulates the charg-
ing current [52], [57]. These chargers utilize both isolated and
non-isolated circuit configurations. When charging the EV,
they must draw sinusoidal current from the utility grid with a

defined phase angle to control real and reactive power. While
in discharge mode, the charger must be capable of returning
the power to the grid with the required PF [60], [61].

Figure 11 shows the classification of unidirectional and
bidirectional chargers. Among these single-phase chargers
are used for slow charging purposes while three-phase charg-
ers are utilized in fast charging of EVs. Isolated chargers
include diode bridge rectifiers (DBR) along with Flyback/
Forward/ Push-pull/ SEPIC/ CUK/ Multilevel circuit config-
urations, while non-isolated chargers includeDBR alongwith
Buck/ Boost/ Buck-Boost circuit configurations.

FIGURE 11. Classification of inductive chargers.

VII. CHARGING POWER LEVELS OF EV
Charging power levels of EVs reflect power, charging dura-
tion, cost, location, equipment, and its effect on the utility
grid. Deployment of charging infrastructure and EVSE is a
complex aspect due to many issues that need to be resolved:
charging time, demand policies, standardization of policies
for charging stations, and regulatory procedures. Availability
of proper charging infrastructure may reduce on-board ESS
requirements and costs drastically.

As mentioned earlier, the charging cord, charging stand
(residential or public), attachment plugs, power outlets,
EV connectors, and protection equipment are major compo-
nents of EVSE. These are categorized in two configurations:
one as a specialized cord set, and the other as a wall or
pedestal mounted box. However, the specific configurations
vary with location and country depending on utility supply
voltage, frequency, grid connection, and transmission stan-
dards [62]. According to the electric power research institute
(EPRI), most EVs are likely to charge at home during the
night. For this reason, level-1 and level-2 charging seem to
be the primary option. Table 3 summarizes the power levels
for EV charging.

A. LEVEL-1 CHARGING
Level-1 charging is categorized as slow charging. In the U.S.,
level-1 uses a 120 V/15 A standard single-phase grounded
outlet, such as a NEMA 5-15R. The connection uses a stan-
dard J1772 connector into the EV as an ac port, shown in
Figure 12 [64]. For domestic and commercial sites, no addi-
tional infrastructure is required. A cheaper charging rate is
available during off-load periods, likely to be available at
night.
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TABLE 3. Charging power levels [62].

Level-1 charging is generally provided by the on-board
chargers, up to a power level of 1.9kW through 120V
single-phase AC supply. The acceptable charging current
range is 15-20Amps. Depending on the ESS type and its
capacity, level-1 charging usually takes about 3-20 hours
to fully recharge the EV. As the standard electrical outlets
are available almost everywhere and the charging time is
long, the level-1 charging is particularly suitable for overnight
charging which usually takes place at homes or in the parking
bays of the large residential buildings. Chargers supporting
this level of charging are usually on-board chargers.

B. LEVEL-2 CHARGING
Level-2 charging is the primary method of charging in public
and private facilities. The chargers of this category can be
on-board type to reduce power electronics. Existing level-2
chargers offer charging in the range of 208V or 240V (max
80 A, 19.2 kW). It requires dedicated equipment and instal-
lation for their deployment at the domestic and commercial
level, EVs such as Tesla have the on-board power electronics
and need only the outlet. Most U.S. homes have a 240V sup-
ply available and level-2 chargers charge the EV battery dur-
ing the night. EV owners have an interest in level-2 chargers
owing to their short charging time and standardized charger-
to-vehicle connection. Installation cost of level-2 charger is
around $1000 to $3000 [66]. The new standard has an SAE
J1772 [64] ac charge connector on top and a two-pin dc
connector below and is intended to enable either ac or dc fast
charging via a single connection (confer Figure 12).

C. LEVEL-3 CHARGING
Level-3 is the future and has the ability to elevate the range
anxiety and ESS of EVs. This offers commercial fast charging

FIGURE 12. SAE’s J1772 combo connector.

that charges the EV in less than an hour. These chargers
are installed along the highway sides parallel to the refuel-
ing stations. Level-3 chargers are usually off-board charg-
ers and operate on 480V or higher three-phase supply. The
connection to the vehicle may be direct dc. The dc plug
intended for charging is shown in Figure 12. CHAdeMO,
a Japanese protocol has gained international recognition for
fast charging [67]. Cost of level-3 chargers ranges between
$30,000 to $160,000 [68]. According to the SAE J1772
standard, level-1 and level-2 EVSE must be on-board, while
level-3 EVSE must be off-board (located outside the EV).
Generally, commercial EV charging stations are level-2
or 3 to enable fast charging.

A low-power charger has the added advantage of having
minimum negative impacts on the utility grid during peak
load periods. While, on the other hand, high power (level-3)
chargers increase the demand and acts as an overload on the
local distribution system, mainly during peak load periods.
The various negative impacts of level-2 and 3 chargers are
increased losses in distribution transformers, frequency devi-
ation, voltage deviation, harmonic distortion, peak demand,
and thermal loading of the distribution and transmission
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TABLE 4. Charging characteristics and infrastructures of PHEVs and EVs.

FIGURE 13. Power conversion stages of EV chargers.

system, mainly transformers. The degradation can be reduced
significantly by opting for chargers with high PQ and deploy-
ing them with smart charging schemes [69]. The charging
characteristics and infrastructure aspects for a few EVs are
summarized in Table 4.

VIII. STATE-OF-THE-ART OF EV CHARGERS
This section focuses mainly on the topologies for on-board
and off-board EV chargers. The ac-dc converter at the
front-end is the key component of the EV charger. Various
topologies and control techniques have been developed for
PF correction applications [70]. The single-phase active PF
correction technique is categorized as a single-stage and
two-stage approach. A single-stage approach is suitable for
low-power applications and has a low-frequency ripple in
the output current. In addition, galvanic isolation for safety
reasons is difficult. Thus, a two-stage approach is a proper
choice for the EV chargers. Figure 13 shows the conductive

and inductive charging methods. As discussed earlier, the
conductive chargers have a wired connection between the
utility grid and power electronics interface (PEI) for charging
and usually have a PF corrector, ac-dc rectifier followed
by a dc-dc converter to regulate the charging. Contrary to
this, inductive or wireless charging does not use a wired
connection and the different power conversion stages are
magnetically coupled. Depending on the location, EV charg-
ers are classified as on-board and off-board chargers. The
on-board charger resides on the EV and consists of mainly
two power conversion stages, namely: (a) ac-dc converter
to rectify utility single-/three-phase supply, and (b) dc-dc
converter for regulating charging current. Off-board chargers
fast and high-power chargers that are installed outside the
EV. To reduce the size, weight, cost, and volume of on-board
chargers, researchers have proposed the integration of charg-
ers with the bidirectional dc-dc converter of EV that is used in
the propelling unit. Thus, in this way a single-stage converter
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is used for charging, motoring, and regenerative braking. Fur-
thermore, integrated on-board EV chargers taking advantage
of the motor windings and propulsion inverter have been
proposed. The on-board and off-board charger topologies are
mainly determined by the structure of the ac-dc converters
and dc-dc converters. In this section various ac-dc and dc-dc
converters presently used are presented.

A. PF CORRECTOR AC-DC CONVERTER TOPOLOGIES
The ac-dc converter at the front-end of the EV charger con-
verts the single-/three-phase utility supply to dc power and
feeds to an intermediate dc link and also works as a PF cor-
rector. Cost, robustness, PF, efficiency, control complexity,
and total harmonic distortion (THD) in input line current
drawn from the utility supply are the major factors that decide
the selection of ac-dc converter for rectification and PF cor-
rection process. Boost type configurations and their derived
variants are commonly used [71], [72]. The conventional
boost ac-dc converter operating in continuous conduction
mode (CCM) is the simplest ac-dc converter that has sim-
ple control and implementation. However, high conduction
losses are the main limitations of this converter that is due to
the current flowing through three semiconductor devices. The
high-frequency (HF) operation poses an additional concern of
the diode recovery losses. This requires the use of Schottky or
SiC diodes, which increases the overall cost of the converter.

Symmetrical and asymmetrical bridgeless boost convert-
ers show improved efficiency over the conventional boost
type ac-dc converter due to the reduced conducting power
electronics devices; however, the issue of high diode reverse
recovery losses remains [71]. Interleaving of two boost ac-
dc converters doubles the switching frequency, thus the size
of the filter and magnetic circuit reduces and energy density
is improved. To increase the efficiency and to minimize the
reverse recovery losses the soft switching technique seems
to be promising [73]. The other variations of boost type cir-
cuit configurations are the half-bridge and full-bridge boost
ac-dc converters. Although half-bridge configuration has the
ability to achieve voltage doubling, they are comparatively
costlier due to the requirement of higher voltage rating power
electronics devices. On the other hand, the full-bridge boost
ac-dc converter alleviates the issue of capacitor imbalance
at the expense of increased power semiconductor devices,
cost, and control complexity. For higher voltages (more than
400V), the three-level ac-dc boost converters are preferred.

B. ISOLATED DC-DC CONVERTER TOPOLOGIES
The main objective of the dc-dc converter is to adjust the
output of the front-end ac-dc converter and to charge the
EV in desired mode (CC or CV). The most common dc-dc
converter topologies include voltage-fed bridges; current-
fed bridges; appropriate combinations of these; and resonant
converters [74], [75]. The voltage- and current-fed full-bridge
converter (VCFFB) is the widely used circuit configuration
for charging an EV. Usually, zero voltage switching (ZVS) is
achieved at the current-fed converters side, while zero current

switching (ZCS) is achieved for the voltage-fed converters.
Dual active full bridges (DAFBs) with voltage-fed bridges on
both primary and secondary sides are also widely employed.
In DAFB configuration the active switch count and device
stress is reduced in comparison to VCFFB.

C. TWO-STAGE ON-BOARD EV CHARGERS
This section focuses on the on-board EV chargers that utilize
the earlier mentioned rectifiers and dc-dc converters. The EV
chargers consist of a current shaping stage that minimizes
the THD in the input line current and achieves the unity PF
followed by an isolated dc-dc converter for regulating the
charging current. Figure 14, shows a 3.3 kW two-stage EV
charger based on an interleaved ac-dc boost PF corrector
followed by an isolated full-bridge dc-dc converter [76], [77].
The interleaved PF corrector is realized like two conventional
boost converters working in continuous conduction mode
(CCM), with each working at half of the full power. The
interleaved structure has the ability to reduce the conduction
losses, output capacitor ripples, and size of the filter circuit
because devices are paralleled. The dc-dc converter at the sec-
ond stage is implemented by using the full-bridge topology.
In this, switches T3 and T4 are turned on at a fixed duty cycle
of 50%, and T1 and T2 are pulse width modulated (PWM) on
the trailing edge.

FIGURE 14. Interleaved boost PF corrector followed by the full-bridge
dc-dc converter.

For the 0.75 turn-ratio of the transformer, 400V is obtained
at full load. The reported THD in input line current is less than
5% and a high PF of 0.99 is achieved. The peak efficiency
reported was 93.6% at the switching frequency at 70 kHz in
the front-end and 200 kHz in the dc-dc converter. The weight
and volume of the charger are 6.2 kg and 5.5 L, respectively.

One major drawback of a conventional two-stage charger
is the bulky dc-link capacitor and this needs to be reduced
to increase the power density and to reduce the cost and
the weight of the EV charger. To mitigate this problem a
full-bridge LLC resonant converter with a boost PF corrector
is reported in [78], shown in Figure 15. At the rated power
of 3 kW, the efficiency of 93.6% is achieved with a high PF
of 0.996.

Figure 16 shows an on-board charger using an HF resonant
converter with a boost converter for regulating the charging
of EV [79]. The experimental results showed an efficiency
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FIGURE 15. Resonant converter followed by boost PF corrector.

FIGURE 16. Full-bridge LLC resonant converter and synchronous rectifier
followed by boost PF corrector.

of 92.5% at switching frequencies of 90 and 45 kHz for the
resonant converter and the boost converter, respectively.

Another EV charger topology proposed in [80] is shown
in Figure 17. It constitutes a PF corrector boost converter
and a series resonant-loaded full-bridge dc-dc converter. The
experimental result confirms efficiency of 93% with a high
PF of 0.995. From the aforementioned on-board chargers, it
is inferred that size, weight, and volume have a vital role in
their selection.

FIGURE 17. Boost PF corrector followed by a series-loaded resonant
converter.

D. INTEGRATED ON-BOARD EV CHARGERS
Integrated EV chargers combine the charging stage with the
bidirectional dc-dc converter that is used in EV to interface
the ESS and inverter (confer Figure 13). In this way number of
power electronics components is reduced and in turn, the size,
weight, and cost of the EV charger are reduced.

Integrated on-board EV chargers offer the advantage of
having a single converter with one inductor for all opera-
tion modes, i.e. charging, driving, and braking. With these

EV chargers, it is possible to charge the EV only when it
is at rest. In [81], a single-stage converter is proposed that
integrates the PEI, as illustrated in Figure 18. The proposed
EV charger is a non-isolated buck-boost active rectifier with a
common inductor which is shared with a bidirectional dc-dc
converter of the EV. The charger has a wide range of input
voltage and has the ability to assure unity PF while being
operated in a buck mode (bridge-T1-D5) and in a boost mode
(bridge-T2-D6). It steps up (T4-T2-D8-T5) the input voltage
during driving and steps down (T6-D9-D6-T3-D5) during the
regenerative braking.

FIGURE 18. Buck-boost diode rectifier integrated with the dc-dc
converter.

The drawback of this charger is that the ESS (battery)
draws an oscillating charging current. Moreover, the charger
draws input line current at high THD in absence of an input
filter and therefore reduces the overall efficiency.

To attain low THD in input line current, a solution is
proposed in [82], as shown in Figure 19. It constitutes a
three-level ac-dc converter at the front-end interfaced with
a dc-dc converter. It draws input line current at a low THD
of 2.99% at an expense of a high number of power electronic
active switches. Another solution proposed in [83] is shown
in Figure 20, it constitutes a direct ac-dc converter with bidi-
rectional switches. It has the ability to inject power back to the

FIGURE 19. Three-level ac-dc front-end converter integrated with dc-dc
converter.
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FIGURE 20. Buck/boost bridgeless bidirectional ac-dc converter
integrated with dc-dc converter.

grid in addition to driving, braking, and charging the EV with
a common transfer inductor in all the modes. In comparison
to the charger proposed in [82], it has higher complexity at an
expense of V2G mode.

Figure 21 shows an EV charger proposed in [84] with
a reduced number of active/passive components. The THD
in the input line current obtained is low due to the line
filters. An EV integrated charger discussed in [85] utilizes the
motor’s windings and dc-ac converter for charging. In this EV
charger, the existing components of the drivetrain are recon-
figured with minimum additional components to enable the
charging. The PEI of the drivetrain is designed for high power
ratings, thus these chargers have the flexibility of charging the
EV from both single-/three-phase supplies. These chargers
also offer the advantage of reduced weight and volume as the
need for additional elements is elevated.

FIGURE 21. Buck-boost bridgeless direct ac/dc bidirectional converter
integrated with dc/dc converter.

In [86], two solutions for integrating the drivetrain com-
ponents for EV charging are proposed. The first solution,
as shown in Figure 22 utilizes the motor inverter as an EV
charger and an additional diode rectifier with an inductor.
The motor windings in this EV charger are star-connected.
The second solution is shown in Figure 23, which uti-
lizes motor inverter and delta-wound motor windings, along
with an additional diode bridge rectifier for EV charging.
The advantages of these configurations include component
reduction, and no need for relay circuits for transition
between EV charging and propulsion.

In [87], another solution based on the combination ofmotor
driver/charger is proposed, as shown in Figure 24. This EV

FIGURE 22. Integrated EV charger utilizing motor inverter and
star-connected windings with an additional diode bridge rectifier.

FIGURE 23. Integrated EV charger utilizing motor inverter and delta
connected motor windings with an additional diode bridge rectifier.

FIGURE 24. Integrated EV charger accessing neutral points of motor
windings in a two-wheel drive.

charger is for single-phase charging, where the ac supply is
connected to the two neutral points of the motor windings
(one neutral for each winding). In comparison to the earlier
proposed solutions, this EV charger eliminates the require-
ment of a diode bridge rectifier and draws input line current at
low THD. Another solution reported in [88] for single-phase
EV charging is shown in Figure 25. The charger constitutes
three contactors to select the mode of operation. For driving,
contactor K3 is closed and K1, K2 is open, while during
EV charging states of the contactors are reversed. During
EV charging (K2 and K1 closed) the leakage inductances of
the motor windings act as inductors for the boost converter
and two legs of an inverter (T1 and T2 and T3 and T4) are
controlled by pulse width modulation (PWM). The input line
current is drawn at high PF with low THD.

In [89], a four-wheel drivetrain is proposed for EV charg-
ing. Here, every wheel of EV is controlled directly by an
individual three-phase inverter. In this study, the neutral point
of the windings in all four motors is accessed and the ac
input source is connected to the neutral points of two of
these motors. By, incorporating an external selector switch,
the neutral points of the remaining two motor windings are
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FIGURE 25. Integrated EV charger with motor windings and inverter
working as a single-phase boost ac-dc converter.

connected to the battery during EV charging, as shown in
Figure 26. Another integrated EV charger is proposed in [90],
here the diode bridge rectifier and line filters are connected
to the neutral point of motor winding via a mechanical
switch, shown in Figure 27. After rectification, the three-
phase inverter and the motor windings act as an interleaved
boost converter. Since all the motor windings are utilized
together, the current stress at the active switches is low.

FIGURE 26. Integrated EV charger accessing the neutral points of motor
windings in a four-wheel drive.

FIGURE 27. Integrated EV charger incorporating motor windings as
three-phase boost dc-dc converter.

Since accessing the midpoints of motor windings is
a tedious task and requires a specially designed electric
machine, the aforementioned solutions still require reliability
enhancements and tests before their widespread adoption and
deployment.

E. OFF-BOARD EV CHARGERS
For fast high power EV charging, on-board EV chargers
are not feasible due to their increased component cost, size,
weight, and volume. As an alternative solution for fast charg-
ing, the chargers are located outside the EV and are not an

FIGURE 28. Off-board EV charger configurations with common (a) ac link,
and (b) dc link.

integral part of an EV. In off-board charging stations, each
charging unit shares either a common ac link or a common
dc link, shown in Figure 28. The size of off-board EV charg-
ers is reduced by incorporating high-frequency transformers
instead of low-frequency transformers that are bulky, shown
in Figure 29. The high-frequency transformer is utilized as a
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TABLE 5. Specifications of off-board EV chargers.

FIGURE 29. Off-board EV charger with solid-state transformer.

solid-state transformer (SST) for the dc-dc conversion stage
of the EV charger.

Tesla EV charger is based on this configuration and consti-
tutes 12 paralleled modules [91]. Table 5 summarizes specifi-
cations of various commercially available EV chargers based
on the aforementioned configuration [14], [91].

The standardized protocols have been developed for
off-board EV chargers by the governing bodies that are
summarized in Table 6. The IEC 62196-3 standard [92]
defines four EV coupler configurations for charging;
(a) configuration-AA, which is proposed and implemented
by CHAdeMO association; (b) configuration-BB, commonly
known as GB/T and used in China only; (c) configuration-
EE, Type-1 combined charging system (CCS) used by North
America; and (d) configuration FF, Type-2 CCS adopted
by Europe and Australia. There is a patented configuration
developed by Tesla and is used exclusively for Tesla EVs.
The ratings of charger and cables decide the limits on the

power to be delivered to the EV in addition to the charge
acceptance ability of ESS. Currently, CHAdeMO supports
the highest power capacity, confer Table 6. For fast charging,
cables with large diameters are needed to avoid overloading
and heating, the approximate weight of the charging cable is
9 kg for a 50 kW charger [93]. In [94], a solution is proposed
to reduce the size and weight of the charger cable without
affecting the power level. Authors have suggested increasing
the voltage limit at which the power is transferred, it reduces
the charging current, and correspondingly the diameter, size,
and weight are also reduced. Cable liquid cooling is another
solution that effectively reduces the thermal stress of the EV
charging cable and thus the target of low weight cable is
achieved. The off-board EV charging stations are catego-
rized as the ac-connected chargers and dc-connected charg-
ers based on the common ac link and dc link, respectively,
shown in Figure 28. The ac-connected chargers have a step
low-frequency transformer between the utility and a common
three-phase ac link operating at 250–480 V line-to-line RMS
voltage. The common ac link powers each charger at the sta-
tion, and each charger has a separate ac-dc power conversion
stage for controlled charging. This approach increases the
power conversion stages between the utility and the dc link.

Moreover, the overall complexity and the cost of the
charger are increased due to the higher number of power con-
version stages. The advantages of adopting the ac link base
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TABLE 6. Standards for off-board dc-fast EV chargers.

TABLE 7. Comparison of front-end ac-dc converters.

EV charging station include the availability and maturity in
the ac-dc and dc-ac power conversion technology, availability
of the ac protective devices, and switchgear [95]–[98]. For
the dc-connected chargers, a central front-end ac-dc converter
rectifies grid power and feds to dc link (confer Figure 28).
Due to the presence of a common dc link, distributed energy
resources (DER) and renewable energy resources (RES) can
be interfaced easily in an efficient way. The central front-end
constitutes a low-frequency transformer followed by an ac-dc
conversion stage or an SST (confer Figure 28). The voltage
at the dc link is 1000 V to accommodate the wide EV battery
range (400-800 V). Each charger is interfaced between the
dc link and a dc-dc converter for EV charging and the need
for an individual ac-dc converter is elevated. Compared to
ac-connected chargers, dc-connected chargers have higher
efficiency due to the reduced number of power conversion
stages. The advantages of the dc-connected charger include
load diversification resulting from varying EV battery capac-
ities; the absence of reactive power in the dc systems, and the
opportunity of utilizing partial power converters to interface
dc link and the [99]–[102]. The partial power converters

process only a portion of power that is delivered to EV
and thus cost and ratings of the converter are reduced while
efficiency is increased. Despite the aforementioned advan-
tages, the hurdles in the dc-connected chargers are the unde-
veloped technology of adequate dc protection and metering
system [103]. Also, there is a lack of established standards
for protection in the dc-connected chargers due to complex
grounding configuration, fault type, component specifica-
tion, system topology [104]. For bidirectional chargers, this
issue is more pronounced because they are more sensitive to
disturbances and becomes unstable in absence of fast fault
clearance. In [105], [106], protection strategies are presented
base on coordination between different protective devices
and loop-type, respectively. The commonly used ac-dc con-
verters at the front-end are shown in Figure 30 and their
specifications are summarized in Table 7. These converters
are unidirectional or bidirectional in nature and incorporate
input line filters for power conditioning [107]–[112].

The dc-dc converters at the latter stage may be isolated or
non-isolated, depending on the presence of a low-frequency
transformer in the front-stage. If isolation is not provided
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FIGURE 30. Configurations of ac-dc front-end converters (a) three-phase PWM rectifier, (b) neutral point clamp rectifier, (c) vienna rectifier, and
(d) three-phase buck.

at the front-end then non-isolated dc-dc converters are uti-
lized, else the isolated dc-dc converters with a high-frequency
transformer are utilized. Figure 31 and Figure 32, show
non-isolated and isolated converters, respectively, for con-
trolled charging of EV and their comparison are summarized
in Table 8 [113]–[151].

IX. IMPACT OF EV CHARGERS ON UTILITY
The increased deployment of EV chargers increases the load
on utility. For poorly maintained utility, this issue is more
pronounced. This section explores the impact of EV chargers

on various parts of the utility grid and the initiatives are
discussed to reduce them.

A. IMPACT OF RES
Incorporating RES in the utility grid is one of the challenges
due to their intermittency. The evolution of power electronics-
based converters and high-density ESS have elevated the
issues of intermittency and hurdles in interfacing the EV
chargers. A solution to reduce the dispatchability of wind
energy resources is discussed in [152]. The idea is to control
the supply and demand balance of utility during EV charging
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FIGURE 31. Nonisolated dc-dc converters (a) boost converter, (b) interleaved boost converter
(c) three-level boost converter (unidirectional) (d) three-level boost converter (bidirectional), and
(e) three-level flying capacitor converter.

and discharging. A study in [153] suggested maintaining
constant power at the feeder that feeds EV chargers and
RES. In [154], an islanded grid operation is discussed for

EV charging and a case study confirmed its effectiveness
with the integration of RES. Study in [155]–[157] has suc-
cessfully shown the incorporation of solar energy for EV
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FIGURE 32. Isolated dc-dc converters (a) phase shift full-bridge converter,
(b) LLC converter, (c) dual active bridge converter, and (d) CLLC converter.

charging. A detailed analysis is also presented to demonstrate
the design of solar based EV charging station. The aforemen-
tioned studies show that the incorporation of RES in the utility
grid enhances the grid in terms of power quality without any
negative impact on it.

B. IMPACT ON GRID STABILITY
The EV load on the grid may raise the problems of stability in
grid utility. Many distribution systems work on the verge of

instability even without the EV load, thus stability analysis
is a must before connecting EV chargers as load. Stability
analysis on IEEE 3-bus test system is performed for deter-
mining the stability of the grid, with and without the EV
charger load [158]. The study confirmed that the EV charger
load reduces the stability of the grid. In another study, the EV
chargers were modeled as a constant power and a constant
impedance load for the stability analysis and the results show
that the constant power model of the EV charger lowers the
grid stability [159], [160]. The incorporation of EV chargers
in V2G mode enhances the grid stability and even the owners
of EVs are able to earn during peak load periods on the
grid [161]–[163].

C. IMPACT ON SUPPLY-DEMAND BALANCE OF GRID
A study in the city of Australia was carried out to evaluate the
effect of uncontrolled EV charging. For this, all EVs in the
city were considered and results from the study proved that
uncontrolled EV charging increases the load on the grid and
this can lead to total blackout if uncontrolled charging is car-
ried out during peak load periods [164], [165]. Thus, the idea
of coordinated charging was proposed to avoid blackouts dur-
ing peak load periods on the grid. Another study performed
in the city of the United Kingdom showed that increased
penetration of EV charging load by 10% caused an 18% hike
in the demand from utility grid [166], [167]. To meet the
supply-demand balance it is necessary to integrate the RES in
the charging station and utilize the smart charging techniques
that include coordinated charging [168]–[172].

D. IMPACT ON GRID ASSETS
The main grid components that are affected by EV load,
include transformers, transmission lines, and switchgear pro-
tective devices. These components deteriorate their life due
to thermal overloading [173], [174]. A study in [175] based
on EV chargers installed in the parking area, showed that
there is a need to install new transformers to cope with the
required power demand without exceeding the thermal limit
and reducing the life of transformers. Another study per-
formed in [176] with different levels of EV penetration shows
the trend of system overloading. This study helps decide the
EV charger locations and further modifications in the utility
system. The study performed in [177] shows that the Ontario
grid is adequate to absorb the EV load penetration till the end
of 2025 without any modifications.

EV load penetration significantly reduces the performance
of the transformer and when a fleet of EVs is charged at
night then the oil-cooled transformers are highly affected
and degraded since transformers are loaded more than their
specified average load [178], [179]. In [180] a study per-
formed shows that excessive overloading due to EV charger
load leads to insulation failure in the transformer, however, a
controlled EV charging may even derate it [181]. Thus, there
is a need for reinforcement in the present grid structure and
research is required to incorporate the smart charging with
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TABLE 8. Comparison of dc-dc converters.

the V2G facility such that the negative impact of charging on
grid assets may be reduced or elevated [182], [183].

E. IMPACT ON GRID VOLTAGE
This section deals with how the grid voltage is affected as
the penetration of EV chargers is increased. A study per-
formed in [184] shows 12.7%-43.3% voltage deviation as the
penetration of EV chargers is increased from 20% to 80%.
Penetration of single-phase EV chargers also leads to poor PF
and unbalancing in the grid. 1%-2% penetration of EV charg-
ers shows the voltage sag [185]. In [186], a study is performed
with 50% to 100% penetration of EV chargers and the results
show that even a level-1 charging is capable to cause voltage
deviations from the normal specified values. Thus, the EV
charger penetration limits must be decided beforehand and
these must be followed to avoid voltage problems.

F. IMPACT ON GRID CURRENT HARMONICS
The non-linear power electronics involved in the EV chargers
are responsible for injecting the current harmonics into the
grid. The amount of THD in the line current drawn by
the EV charger depends directly on the circuit topology of
the charger [187]. Usually, odd harmonics dominate and con-
tribute to THD in the input line current. Usually, EV charg-
ers have input line filters before the front-end rectifier to
smooth out the input current so that the harmonics injected
in current are reduced [188]. To reduce the current harmon-
ics, EV chargers involve high-frequency PWM or modified
PWM techniques, also matrix converters are involved for
multi-phase EV chargers. These high-frequency converters
reduce THD in current but increase the charger circuit com-
plexity [189], [190]. Active power conditioning circuits along
with the active filters are used for harmonic reduction. The
increased harmonics content in input line current directly
affects the PF which in turn increases the RMS value of
line current and deteriorates the different assets of the grid

(transformer). Thus, the modern EV chargers deployed at
the charging station draw current with low THD and high
PF [191], [192].

G. IMPACT ON GRID LOSSES
The losses in the grid due to EV chargers are because of
increased RMS current which in turn increases the I2R losses,
where I is the RMS value of current drawn and R is the
equivalent resistance of the grid [165]–[167]. The increased
losses in the grid are also responsible for deteriorating the
life span of grid components. These losses are increased by
40% during the off-peak charging period, while 62% during
the peak period. To reduce these losses the EV charger must
draw the input line current with lower harmonic content and
at a high power factor.

H. INITIATIVES TO REDUCE GRID IMPACT
To reduce the negative impact of EV chargers, various mea-
sures are proposed and are discussed in the literature. The
EV chargers do not overload the grid if it is connected in a
well-planned coordinated way [193]. The losses in the grid
can beminimized by incorporating the smart metering system
to maintain the supply and demand balance [194], [195]. For
reduction of current harmonics in the line current drawn by
the EV chargers, the proposed methods include the deploy-
ment of EV chargers with input line filters for power con-
ditioning, adopting advanced PWM techniques for reducing
lower order harmonics, and avoiding common mode current
to reduce electromagnetic interference (EMI) [195]. Usage of
RES also reduces the negative impacts of EV chargers on the
grid.

X. INTERNATIONAL STANDARDS FOR EV CHARGERS
The international standards are developed by a team of
experts and are adopted universally. For deployment of
EV chargers successfully various international standards are
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developed and published. These are well developed to fulfill
the safety issues, reliability, and interoperability issues of
the EV industry [196]. Various industries that utilize these
standards include EV manufacturers, ESS manufacturers,
utility companies, EV charger manufacturers, code officials,
EV charger safety equipment manufacturers, and insurance
companies.

Different EV charging standards [196]–[204] in the litera-
ture that is utilized are discussed as follows-

A. SOCIETY FOR AUTOMOBILE ENGINEERS (SAE)
• J1772: EV conductive connector/charging method.
• J2894: Issues of power quality.
• J2836/2847/2931: Communication purposes.
• J1773: Inductive coupled charging.
• J2293: For energy transfer systems to find the require-
ments for EVs.

B. NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)
• NFPA 70: Safety management.
• NEC 625/626: Charging systems for EVs.
• NFPA 70E: For safety.
• NFPA 70B: Maintenance of electrical equipment.

C. INSTITUTE OF ELECTRICAL AND ELECTRONICS
ENGINEERS (IEEE)

• IEEE 2030.1.1: Quick DC charging for EVs.
• IEEE P2690: Charging network management, Vehicle
authorization.

• IEEE P1809: Electric transportation guide.
• IEEE 1547: Interconnecting electric system with dis-
tributed resources/Tie Grid.

• IEEE 1901: Provide data rate while vehicles are charged
overnight.

• IEEE P2030: Interoperability of smart grid.
• IEEE 519-2014: Power quality standards.

D. INTERNATIONAL ELECTROMECHANICAL COMMISSION
(IEC)

• IEC-1000-3-6: Issues of power quality.
• IEC TC 69: Regarding infrastructure of charging and
safety requirements.

• IEC TC 64: Electrical installation, electric shock protec-
tion.

• IEC TC 21: Regarding battery management.

E. UNDERWRITERS LABORATORIES (UL) INC
• UL 2231: Safety Purposes.
• UL 2594/2251,2201: EVSE.

F. INTERNATIONAL ORGANIZATION FOR
STANDARDIZATION

• ISO 6469-1:2009: Used for on-board rechargeable
energy storage systems.

• ISO/CD 6469-3.3: Safety specifications.

G. JAPAN ELECTRIC VEHICLE ASSOCIATION
• JEVS C601: EVs charging plugs.
• JEVS D701: Batteries.
• JEVS G101-109: Fast Charging.

H. ISOLATION AND TECHNICAL SAFETY STANDARDS
• SAE J-2929: This standard is related to the safety of the
propulsion battery system.

• SAE J-2910: This standard deals with the electrical
safety of buses and test for hybrid electric trucks.

• SAE J-2344: Defines rules for EV’s safety.
• SAE J-2464: Standard defines the safety rules for
recharge energy storage systems (RESS).

• ISO 6469-1:2009 (IEC): Standard is related to electri-
cally road vehicles, on-board RESS, inside and outside
protection of a person.

• ISO 6469-2:2009 (IEC): Safe operation of EVs, protect
against inside failure.

• ISO 6469-2:2001 (IEC): Electrical hazard protection.
• IEC TC 69/64: EVs infrastructure safety, electrical
installation, electric shock protection.

• NFPA 70/70 E: Standards related to workplace safety,
charging system safety, branch circuit protection.

• UL 2202: Standard is related to the protection of the
charging system.

• UL 2231: This standard deals with the protection of the
supply circuits.

• UL 225a: It provides rules of protection regarding cou-
plers, plugs, and receptacles.

• DIN V VDE 0510-11: Provides safety regulations for
battery installation and secondary batteries.

XI. NEAR TO FUTURE ADVANCEMENTS IN EV
TECHNOLOGY
Since EVs are supposed to take the place of conventional
vehicles, the development in technology is growing every
day. At present, there are lots of EV charger manufacturers
and these are being even deployed in most of the developed
and developing countries. However, research is going on
towards further improvement and currently, researchers are
more focused towards:

1) Development of robust and cost-effective off-board and
on-board EV chargers with improved power quality at
grid and EV side.

2) Development of high-voltage (1100 V DC) off-board
chargers to reduce the overall footprint of the charging
station.

3) Development of on-board charger with the minimum
requirement of additional PEI.

4) New and optimized design of power pads for efficient
WPT.

5) Optimized planning of EV charging such that the grid
stability is improved and the EV owner can earn by
selling its extra energy either to utility (V2G operation)
or to other EV owners (V2V operation).
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6) Usage of wide band-gap power semiconductor devices
such as silicon carbide (SiC) and gallium nitride (GaN).
Key features of these devices are high efficiency, high
power density, and low thermal stress.

7) Development of ESS with high energy density, low
cost, volume, and weight.

XII. CONCLUSION
This paper describes the need for EVs in the transportation
sector and provides a comprehensive review of different
components of EV technology. EVSE is mentioned along
with the different ESS for EVs. The detailed classification
of EVs is mentioned that include BEVs, PHEVs, and BEVs.
Different on-board and off-board chargers are discussed with
low-/high-frequency transformers in the front-stage and end-
stage, respectively. It is shown that the on-board chargers are
integrated with EVs and are usually low power chargers that
take a long time to fully charge the EVs. While off-board
chargers are high-power chargers that are deployed outside
the EVs and take less than an hour to charge the EV. The
different charging standards, CHAdeMO, GB/T, and CCS
are discussed along with their specifications and connectors.
The concept of IPT for charging the EV while moving is
explained. Furthermore, the negative impacts of EV chargers
on the grid are mentioned along with the remedial solutions.
Different international standards for EV technology are men-
tioned that need to be followed universally for the successful
penetration of EVs in the transportation sector. Finally, the
future trends and research areas have been highlighted that
need to be worked on.
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