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ABSTRACT With the development of airdrop technology, the intelligence degree of unmanned powered
parachute vehicles (UPPVs) need to be improved. To achieve the accurate landing of UPPVs in complex
environments, a landing runway recognition model based on a deep learning algorithm is trained and five
actual flight tests are conducted. A six-degree-of-freedom (6-DOF) mathematical model of an unmanned
powered parachute vehicle is established, and a landing runway offset controller is designed. The lightweight
landing runway recognition model was trained by combining the YOLOv4 framework and the lightweight
neural networkMobileNet-V3 (Large) and validated in various scenarios. The runway recognitionmodel was
transplanted into the airborne image processor, and an unmanned powered parachute vehicle test platform
was built for actual flight testing. The test results showed that the comprehensive accuracy of the runway
recognition was 97.81% during visual landing and the offset correction was completed within 15s.

INDEX TERMS Unmanned powered parachute vehicle, visual landing, YOLOv4, lightweight neural
network, offset controller.

I. INTRODUCTION
Unmanned powered parachute vehicles (UPPVs) are a new
type of unmanned aerial vehicle based on manned powered
parachutes. It is a complement to low-altitude and ultra-low-
altitude flight operations in mission areas where manned
aircraft, fixed-wing UAVs and unmanned helicopters cannot
reach. Owing to its large payload, long endurance and
simple operation, UPPV is considered safer and longer-
range than the UAV. With the rapid development of AI
technology, UPPV can be used in military and civil fields
in the future [1], [2]. For example, equipment and supplies
can be accurately delivered to the target location over a long
distance, especially for large-scale disaster rescue and escort
missions [3]. Critical for such missions is the autonomous
and safe landing of the UPPV. However, there are few
studies on the terminal homing and landing of parachutes.
Santoso et al. [4] used neural network to predict the landing of
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parachute at the desired point. Murali et al. [5] used a line-of-
sight guidance algorithm to guide a parachute to the specified
target. As powered parachute vehicles work in increasingly
diverse scenarios, it is difficult to achieve accurate landing in
unknown environments.

Traditional navigation technologies such as GPS and INS
cannot meet the navigation requirements of the landing stage
owing to the influence of precision and disturbance. Visual
navigation has the advantages of strong anti-interference
ability, high precision, low cost and low power consumption,
and is widely applied to UAV navigation especially in the
autonomous landing phase [6]. For an unmanned flight
platform, the fast and accurate identification of its landing
runway is key for autonomous landing. Nazir et al. [7]
acquired landing runway images using an airborne camera,
and estimated the exact location of the landing runway using
edge detection algorithms. Fadhil et al. [8] proposed a sensor
fusion algorithm based on the Hough transform to detect run-
ways. Zhang et al. [9] designed a fuzzy Canny edge extraction
algorithm and combined it with a curve-fitting method to
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obtain the centerline of the runway. The above-mentioned
methods belong to the traditional runway identification
methods [10]–[12] which are vulnerable to environmental
changes and poor recognition accuracy despite their simple
calculation.

Compared with traditional identification methods, deep
learning methods can automatically learn the target features
based on the existing data which has better adaptability and
universal applicability [13]–[15]. The convolutional neural
network (CNN) is most widely used in the field of target
recognition [16]. Zhang et al. [17] and Xiao et al. [14]
used a CNN to extract runway information but they did
not port the algorithm to the mobile device platform for
real experiments. Although this algorithm has high detection
accuracy, the division of the target recognition task into
multiple processes such as target area prediction and category
prediction leads to a slower detection speed. You Only Look
Once (YOLO) [18] is the first single-stage detection method,
which is faster and better suited for mobile applications.
Cintas et al. [19] propoesd the YOLOv3 network model
to an airborne processor to detect and track flight targets.
Chen et al. [20] used a UAV to monitor pests using a
Tiny-YOLOv3 neural network model built on an embedded
system. Considering the limited computing power of the
UPPV’s image processor Raspberry Pi, we replaced the
backbone with a lightweight neural network Mobilenet-
V3 [21] to simultaneously promote detection speed and
accuracy.

In this paper, we propose the application of vision tech-
niques to the autonomous landing of an unmanned powered
parachute vehicle (considering only daytime work). To meet
the lightweight requirement for use on mobile devices,
we chose the lightweight network Mobilenet-V3 (Large) to
replace the underlying network structure CSPDarkNet-53 in
the YOLOv4 algorithm. In addition, we designed a runway
offset controller based on a powered parachute vehicle
model. Finally, to verify the feasibility of the trained runway
recognition model in practical applications, an unmanned
powered parachute vehicle platform was built for actual
autonomous landing and actual flight testing.

The rest of this paper is organized as follows: In Section 2,
a 6-DOF model of an unmanned powered parachute vehicle
is developed and an offset controller is designed. In Section 3,
a lightweight landing runway recognition model is trained
and validated in various scenarios. In Section 4, practical
flight tests are conducted to verify the feasibility of the
proposed scheme. A summary of this study is presented in
Section 5.

II. SYSTEM MODEL
A. STRUCTURE AND PARAMETERS OF THE WING
PARACHUTE
To establish the mathematical model of the unmanned
powered parachute vehicle, the relevant parameters of the
wing parachute are given as shown in Figure 1. When the

FIGURE 1. Related parameters of the wing parachute: (a) parachute
shape, (b) frontal view and (c) side view.

FIGURE 2. Unmanned powered parachute vehicle coordinate system
diagram.

unmanned powered parachute vehicle is flying in air, the air
fills the wing parachute. At this time, the length of the
horizontal projection of the parachute jacket is spread b,
the width is the chord length c, and the farthest vertical
distance between the upper and lower airfoil is e. The vertical
distance from the top of the leading edge of the parachute
jacket to the two end points is h. The virtual intersection point
of the parachute cord is point C, and its distance from the
parachute jacket is r. The roll center is R, and the pitch center
is P.

The coordinate system of the UPPV system mainly
consists of the body coordinate system (OTXTYTZT ), geode-
tic coordinate system (OEXEYEZE ) and airflow coordinate
system (OQXQYQZQ).The camera axis and the parachute
are aligned. A schematic of the coordinate system of an
unmanned powered parachute vehicle is shown in Fig. 2.

B. MOTION EQUATION OF UNMANNED POWERED
PARACHUTE VEHICLE
The dynamical equations of the UPPV system are based
on momentum and momentum moments and consist of
two parts: the additional mass and true mass. Assume that
VO = (u, v,w) denotes the momentum tri-axial velocity, and
denotesW = (p, q, r) the tri-axial angular velocity. Then, the
matrix form of the moment PZS,O and momentum moment
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HZS,O generated by the real mass can be expressed as (1):[
PZS,O
HZS,O

]
=

[
mZSE −mZSL

⊗

O−MC
mZSL

⊗

O−MC JZS,O

] [
VO
W

]
= AZS,O

[
VO
W

]
(1)

where mZS denotes the true mass of the unmanned parachute
vehicle, E denotes a 3 × 3 unit matrix, JZS,O denotes the
rotational inertia of the true mass with respect to the origin;
LO−MC denotes the lost path from the origin of the parachute
vehicle system to the center of mass, and ⊗ denotes the anti-
symmetric matrix of the modified matrix.

The matrix form of the momentum PFJ ,O and momentum
moment HFJ ,O generated by the additional mass can be
expressed as (2):[
PFJ ,O
HFJ ,O

]
=

[
Ma −Ma(L

⊗

O−R + L
⊗

R−PT2)
Ma(L

⊗

O−R + L
⊗

R−PT2) Ja,O

] [
VO
W

]
= Aa,O

[
VO
W

]
(2)

where Aa,O denotes the matrix for calculating the additional
mass of the unmanned powered parachute vehicle, Ma
denotes the rotation added mass component matrix, and T2 is
the selection matrix. The motion equations of the unmanned
powered parachute system are as follows:[
V̇O
Ẇ

]
=
[
AZS,O + Aa,O

]⊗ [ FS,A+Fg+FZS,ZT+FFJ ,ZT+FTL
MS,A+Mg+MZS,ZT+MFJ ,ZT+MTL

]
(3)

where FS,A and MS,A denote the aerodynamic force and
pneumatic moment, respectively; Fg and Mg denote gravity
and gravitational force, respectively; FTL andMTL denote the
propeller thrust and thrust moment, respectively.

C. OFFSET CORRECTION
When the unmanned powered parachute vehicle arrives near
the destination area via GPS, the runway detection system
is turned on. After the runway recognition model identifies
the runway, the detection system sends the runway center
coordinate, width, height, and offset information to the flight
controller. Offset correction was then performed. During the
visual adjustment phase, the parachute vehicle maintains a
constant descent speed and the overall process is shown
in Fig. 3.
The lateral control of the UPPV is mainly achieved by

pulling down the left and right servos. Using PID control,
where P denotes the proportional, I denotes the integral, and
D denotes the differential. The input quantity was the offset
quantity. Then the output amount of the PID is converted into
a pulse width signal and input to the input interface of the

FIGURE 3. Flow diagrams for Visual landing.

FIGURE 4. Schematic diagram of PID controller structure.

single-side servo, and the offset correction is completed by
controlling the pull-down amount of the left and right servos.

Define the expected value of the system as x̄(t) and
the actual displacement of the system output as x(t).
Then the system control error is e(t) = x(t) − x̄(t).
To eliminate the steady-state error, the integration term was
set to

∫
e(t) ∗ e−0.1|e(t)|dt . When the deviation value is large,

e−0.1|e(t)| is small and the integration link does not work,
in which case the correction time can be shortened. When
the deviation value was small, the integration link worked.
At this time, it can eliminate the static difference and improve
the control accuracy. The control law can be expressed as:

III. RUNWAY RECOGNITION MODEL
A. MOBILENET-V3 BASED YOLOV4 NETWORK MODEL
The YOLO network is an end-to-end fast detection method
that transforms the target detection problem into a regression
problem. The YOLOV4 [22] algorithm used in this study
gradually makes up for many defects after several iterations.
Its backbone network CSPDarknet53 has higher accuracy and
real-time performance in target detection.

Lightweight networks are characterized by a small number
of parameters, a simple structure, and fast operation.
It is suitable for application to mobile hardware platforms
with limited storage and computational resources [23].
SqueezeNet [24] replaces the 3 × 3 convolution with 1 × 1
convolution to reduce the parameters. ShuffleNet [25]
takes advantage of group convolution and channel shuf-
fle to improve performance. MobileNet families separate

VOLUME 9, 2021 130983



M. Zhang et al.: Vision-Assisted Landing Method for Unmanned Powered Parachute Vehicle

FIGURE 5. Algorithm structure for runway recognition model.

convolutional operations into channel-level and depth oper-
ations to accelerate the computation. MobileNet-V3 uses
a network architecture search algorithm called NAS and a
hard swish activation function to improve performance with
almost no speed loss. It is less computationally intensive
than the SqueezeNet network and is faster in detection
compared to the ShuffleNet network. In order for port the
trained model to the airborne image processor, Mobilenet-
V3 (large) is the most suitable choice. This network has
higher accuracy and faster speed on the VOC dataset
compared to Mobilenet-V1 and Mobilenet-V2. The structure
of Mobilenet-V3 (Large) is shown in Table 1.

The YOLOv4 algorithm was applied to UPPV to identify
landing roads and the lightweight target detection network
where the backbone network of feature extraction is replaced
by Mobilenet-V3 (Large). Fig. 5 provides the architecture
of the runway detection method. First, the input image is
normalized to a size of 448× 448 pixels by the model. Then,
the image was uniformly partitioned into a grid of 13 × 13
passed into the detection network of the framework. The
algorithm outputs image features at three different scales (Y1,
Y2, and Y3), which means that multiple scales are used to
detect targets of different sizes.

YOLOv4 uses the k-means clustering method to default
on the size of the bounding box. Using the IOU distance,
the relative coordinates of the center point of the bounding
box at the prediction relative to the upper left corner of the
grid cell can be directly predicted, and the location, size, and
score of the target are obtained through the calculation of
equation (4).

bx = σ (tx)+ cx
by = σ (ty)+ cy
bw = pwetw

bh = pheth

pr (object) ∗ IOU (b, object) = σ (to)

(4)

TABLE 1. The overall structure of Mobilenet-V3 (Large) network.

where are the model’s predicted output detection target’s cen-
troid coordinates, bounding box size and score. Fig.6 shows
the calculation schematic.

Where (cx , cy) is the coordinate of the grid cell, (pw, ph)
is the size of the bounding box before prediction, and
(bx , by, bw, bh) is the center coordinate and size of the
prediction.

B. DATA MAKING
Deep learning models require sufficient training samples to
avoid overfitting the training data and negatively affect the
recognition rate of runways. We collected 1738 images of the
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FIGURE 6. Schematic diagram of the bounding box calculation.

FIGURE 7. The interface of LabelImg labeling tool.

FIGURE 8. Data enhancement effect for six methods.

runway in different environments from the Internet and aerial
videos and used data enhancement methods to expand them
to more than 5000 as training samples.

The training, validation and test samples were set to
account for 90%, 6% and 4% of the total data samples.
We used LabelImg to label the collected sample images to
establish the target pixel information (as shown in Fig.7).
In this study, we designed theMobileV3-YOLOv4model and
adjusted the parameters of the model during training to set
runways as the recognition target.

The dataset used for our training model was a manually
labeled VOC dataset of landing runways for unmanned
powered parachute vehicles. We used the RandomDis-
tort, RandomExpand, RandomCrop, RandomHorizontalFlip,
Resize and Mixup methods to augment the training samples.
(as shown in Fig. 8).

FIGURE 9. Comparison of the training effect of two models.

C. MODEL TRAINING
The experiment was completed in an environment of NVIDIA
GTX1660S GPU with 14GB memory, WIN10 operating
system, and Python 3.6. In the model training process,
the total number of iterations was set to 270 and the batch size
was set to eight. The initial learning rate was set to 0.001 and
the learning rate was decayed by cosine annealing.

Under the same experimental environment and parameter
settings, we trained the YOLOv4 network and compared
it. The training loss curves for the two models are shown
in Fig. 9. From the figure, it can be seen that the
model combined with the lightweight network MobileNetv3
converges faster compared to the original Yolov4 and can
reach a minimum of 1.

To test the recognition effect of themodel, one frame image
from multiple scene video streams is extracted for the road
recognition test, and the detected coordinates of the center of
the landing runway, the width and height of the recognition
area, and the offset and deflection direction decisions are
displayed in the upper left corner of the picture information,
as shown in Fig.10.

The experimental results from training Darknet-53,
CSPDarknet-53, Tiny, MobileNet-v2, and MobileNet-v3 are
shown in Table 2. The CSPDarknet-53 backbone network is
excessively complicated with high model weight of 235 MB
and long average detection time of 164.6ms. Therefore, it is
difficult for deeper backbone networks to meet high-speed
requirements on embedded devices. MobileNet-v3 simplifies
the backbone network with an AP value of 98.21%, which
was slightly lower than CSPDarknet-53, but it reduces
the average detection time by 113.6ms compared to the
CSPDarknet-53. Furthermore, the model weight was only
90.3 MB, which significantly reduced the operating cost of
the embedded devices. In summary, MobileNet-v3 has the
characteristics of high detection accuracy, high detection
speed, and low model memory consumption, making it
distinctly advantageous for embedded devices.
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TABLE 2. Performance comparison of different backbone networks.

FIGURE 10. Offset correction effect in different scenes.

IV. LANDING TEST
A. TEST PLATFORM CONSTRUCTION
The unmanned powered parachute vehicle test platform
chosen for this test has a double oval shape of the wing
parachute jacket. The load capacity of the platform was
15∼25 kg and the designed maximum speed was 45 km/h.
Referring to the relationship between the parameters of
wing loading ratio, span ratio and parachute cord length
of the wing parachute given by Steven Lingard [26],
the selected parameters of the designed wing parachute are
listed in Table 3.

The system for autonomous landing of a UPPV can
be divided into an image processing system and a flight
control system as shown in Fig. 11. In the image processing
system, the trained runway recognition model needs to be
deployed on an airborne image processor for sitting and
offset the information to the flight controller. Among them,
the high-speed wide-angle camera of the UVC protocol was
selected as the image acquisition equipment, and one end
of the lens was connected with an external polarization
lens, which can effectively solve the problem that the
characteristics of the measured object cannot be extracted

TABLE 3. Parameters of unmanned powered parachute vehicle.

FIGURE 11. Block diagram of autonomous landing system for UPPV.

owing to the reflection. Raspberry PI 4B was selected
as the airborne image processor, and Paddle-lite 2.0 was
used as the model transplantation tool in this study. Next,
the flight control system adjusts the displacement and attitude
according to the coordinates and other information sent by
the image processing system, and combines it with GPS and
barometer data collection to control the unmanned powered
parachute vehicle for visual adjustment and autonomous
landing. The flight controller hardware consists of a core
board and an expansion board. The core board adopts
the STM32F765IIK6 processor as the core unit module,
and peripherally connects the accelerometer, gyroscope,
magnetometer, barometric altimeter and other airborne sensor
modules.

B. FLIGHT TEST AND RESULTS
To verify the feasibility of the algorithm in a practical
environment, an unmanned powered parachute vehicle
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FIGURE 12. Physical image of unmanned powered parachute vehicle.

FIGURE 13. Schematic diagram of the test site and flight path.

autonomous landing visual system test platform was built as
shown in Fig. 12 and tested in an autonomous landing flight at
the school. Fig. 13 provides a site that is safe for flight testing
and a schematic of the flight path.

Fig. 14(a)-(c) show the state of the UPPV platform: being
taken off, turning right in the air, and landing during this
flight test. The autonomous landing phase of the UPPV based
on the visual positioning system lasted 15s, and the high-
speed wide-angle camera worked for 15s, shooting 60 frames
per second to capture a total of 900 frames. The offset
values of each image frame when the UPPV enters the offset
correction phase are shown in Figure 15(a). After entering
the offset correction phase, Fig. 15(b) shows the flight
altitude of the test platform at the time of taking each image
frame.

As shown in Fig. 15, the UPPV test platform enters the
initial phase of the visual landing with an offset of 120 and
a flight altitude of 16 m. The test platform then enters the
offset correction phase while decreasing the flight altitude
at a speed of 3.6 km/h. Finally, the test platform enters the
flared-landing phase, and both forward and vertical speeds
are greatly reduced. Fig. 16 (a) provides real-time feedback
from the airborne image processor when the UPPV test
platform correct the runway offset; at this time, the offset

FIGURE 14. Light test of UPPV platform: (a) taking off; (b) turning right;
(c) landing.

FIGURE 15. Offset (a) and flight height (b) at the same frame rate.

TABLE 4. Comparison of data of multiple flight tests.

is −40 and the test platform should be adjusted to the left;
Fig. 16 (b) provides the middle stage of visual adjustment; at
this time, the offset is −10 and it should be fine-tuned to the
left; Fig. 16 (c) provides the end of visual adjustment, at this
time, the offset is 0 and the test platform enters the flared
landing phase.

The autonomous landing test of the UPPV was performed
five times. Table 4 lists the initial offset of the visual
landing phase, the integrated accuracy of landing runway
recognition, and the total time of the offset correction process.
In Table 4, the initial offset of the UPPV test platform
is large owing to the error in GPS navigation when it
enters the visual landing phase. However, the offset can be
corrected to 0 within 15s with the effect of the autonomous
landing visual positioning system, and the comprehensive
recognition accuracy of the landing runway was higher
than 97.47% for each test during the entire visual landing
process.
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FIGURE 16. Offset correction of test platform in the air.

V. CONCLUSION
In this present paper, a vision-based autonomous landing sys-
tem for unmanned powered parachute vehicles is proposed.
A landing runway recognitionmodel based on the lightweight
Mobilenet-V3 and YOLOv4 algorithm was trained for the
vision-based autonomous landing problem of unmanned
powered parachute vehicles. Compared with models trained
under different backbone networks, the model achieved
a combined accuracy of 97.81% in identifying landing
runways and a 68.92% improvement in prediction speed over
YOLOv4-CSPDarkNet53. Furthermore, this model has the
advantage of a small weight and makes it more suitable for
use in embedded devices andmobile terminals. The controller
of the landing runway deviation was designed to shorten the
landing time. To verify the feasibility of the method in this
study, an unmanned powered parachute flying machine test
platform was built to conduct actual autonomous flight and
landing tests. The results show that the unmanned powered
parachute vehicle can complete the offset correction and enter
the flared-landing stage within 15s, meeting the real-time
and high-precision requirements of the autonomous landing
visual positioning system.

In the future, there is still room for improvement of the
model and how to make the lightweight network achieve such
detection speed without loss of accuracy and apply it to richer
detection scenarios. For example, recognition and landing in
dark conditions and stability in windy conditions are the next
problems to be solved.
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