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ABSTRACT This paper investigates the adaptive finite-time tracking control problem for a class of
nonlinear time-varying delay systems subject to full state constraints and input saturation. The nonlinear
state-dependent functions (NSDFs) are introduced to handle the asymmetric time-varying full state con-
straints without feasibility conditions. To cope with the unknown time-varying delays, the radial basis
function neural networks (RBF NNs) and the finite covering lemma are utilized. Avoiding the use of the
Lyapunov-Krasovskii functionals (LKFs), no restriction on the derivative of the time-varying delays is
needed. Meanwhile, the effect of the input saturation is eliminated by the augmented function with an
auxiliary control signal. The adaptive finite-time tracking controller with only one adaptive parameter is
constructed by applying the command filter approach and backstepping technique. It is proved that the
proposed controller can ensure that all signals in the closed-loop system are bounded and the tracking error
converges to a small neighborhood of the origin in a finite time. Finally, the effectiveness of the proposed
scheme is demonstrated by two simulation examples.

INDEX TERMS Nonlinear systems, time delays, full state constraints, neural networks, finite-time.

I. INTRODUCTION
In control theory, the existence of time delays may degrade
the stability of the systems and give rise to the difficulties of
control design. In practical applications, many real systems
often suffer from the effect of various constraints, such as out-
put constraints [1], error constraints [2], state constraints [3],
and input saturation [4]. Driven by theoretical challenges and
application demands, it is necessary to research the control
design for nonlinear time-delay systems with full state con-
straints and input saturation.

Over the past decades, a great deal of attention has been
paid to the development of adaptive control. As universal
approximators, fuzzy logic systems (FLSs) and NNs have
been widely used to approximate the uncertain functions in
the adaptive control design [5]–[7]. For example, the adaptive
fuzzy output feedback control problem for a class of switched

The associate editor coordinating the review of this manuscript and

approving it for publication was Di He .

nontriangular structure nonlinear systems was addressed
in [5]. Liang et al. [6] proposed an adaptive event-triggered
neural control strategy for nonaffine pure-feedback nonlinear
multiagent systems. In [7], a novel adaptive fault-tolerant
controller has been constructed for stochastic discrete-time
nonlinear systems. On the other hand, the LKFs have become
a popular tool to solve time delays [8]. By combining NNs or
FLSs with LKFs, several adaptive tracking control schemes
were proposed for nonlinear strict-feedback systems with
constant time delays in [9]–[11]. To solve time-varying
delays, the LKFs and backstepping technique were utilized
in [12]. It should be noted that the LKFs-based methods
usually require the time derivative of time-varying delays
to be less than one. This drawback can be overcome effec-
tively by the Lyapunov–Razumikhin approach [13]. Based
on Lyapunov–Razumikhin approach and backstepping tech-
nique, an adaptive state-feedback controller was designed
for stochastic nonlinear time-delay systems with pertur-
bations [14]. Nevertheless, the developed controllers for
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nonlinear time-varying delay systems in [12]–[14] were
memoryless and conservative. To solve this restriction the
adaptive memory control approach has been developed
in [15]. It is noted that the above works are mainly concerned
with the infinite-time stabilization, which implies that the
desired system performance is guaranteed as time goes infin-
ity. However, the control objective is required to be achieved
in a finite time for many practical applications. Therefore, the
finite-time control is worth being further studied.

The finite-time stability was first proposed in [16]. Com-
pared with infinite-time control, finite-time control owns the
property of faster convergence, good robustness, and better
anti-disturbance performance. Therefore, adaptive finite-time
tracking control has been an active topic and considerable
results in this field have been obtained for various non-
linear systems [17]–[19]. However, these works are not
able to solve the explosion of complexity problem, which
is caused by the repeated derivatives of the virtual con-
trol signals in the conventional backstepping procedure.
To address the above issue, dynamic surface control (DSC)
was proposed for a class of nonlinear strict-feedback systems
in [20]. Liu et al. [21] extended this work to the nonlinear
non-strictfeedback systems. It is worth mentioning that the
filtering errors caused by the first-order filter are not con-
cerned in the DSC-based schemes, which may deteriorate
the control accuracy. This drawback can be overcome by
the command filter method. In [22], Sheng et al. proposed
a command filter-based adaptive fuzzy control scheme for
parametric uncertain nonlinear systems with nonlinear faults.
By employing NNs and command filter approach, an adap-
tive control strategy for uncertain nonlinear systems with
unknown disturbances was presented in [23]. Furthermore,
the finite-time command filter backstepping control problem
for a class of nonlinear stochastic systems was addressed
in [24]. However, the constraint problem is not considered
in the above studies.

It is well known that constraints widely exist in practi-
cal systems. In the past pears, notable constraint-handling
methods such as barrier Lyapunov functions (BLFs) [1], set
invariance [25], reference governors [26], and model pre-
dictive control [27] have been well studied. Among these
methods, the BLFs-based control has received increasing
attention [3], [28]–[31]. With the help of BLFs and command
filter method, the adaptive output feedback control problem
of full-state constrained nonlinear systems was addressed
in [3]. The adaptive DSC design of a class of stochastic
nonlinear systems with full state constraints was proposed
by employing the BLFs in [28]. For the nonlinear con-
strained switched system, an adaptive output feedback control
scheme based on BLFs was proposed in [29]. Moreover,
adaptive finite-time tracking control has been investigated
for nonlinear time-varying full stateconstrained systems in
strict-feedback [30] and pure-feedback [31] form, respec-
tively. It is worth pointing out that the BLFs-based meth-
ods require virtual control signals to satisfy the feasibility
conditions. Such restrictive feasibility conditions may bring

significant difficulty for the controller design and implemen-
tation. To remove the feasibility conditions, the NSDFs were
proposed in [32] Recently, the adaptive finite-time fuzzy
control for full-state constrained high-order nonlinear sys-
tems has been investigated by integrating NSDFs into control
design [33]. On the other hand, many practical systems suffer
from the input saturation problem. By using the auxiliary
dynamic systems, the input saturation problemwas solved for
marine surface vessels [4] and spacecraft systems [34]. Based
on the designed auxiliary system and BLFs, a fuzzy two-
bits-triggered control method for nonlinear uncertain systems
with input saturation and output constraint has been pro-
posed in [35]. Furthermore, an adaptive NNs-based tracking
control approach was investigated for uncertain nonlinear
systemswith full state constraints and input saturation in [36].
Zhu et al. [37] extended this result to the stochastic nonlinear
systems. However, the control methods in [4], [33]–[37] are
not suitable for the controller design of nonlinear time-delay
systems. To the best of our knowledge, the adaptive finite-
time tracking control problem has not been fully studied for
nonlinear time-varying delay systems with full state con-
straints and input saturation.

Motivated by the above discussion, this paper aims to
design an adaptive finite-time tracking control method for the
nonlinear time-varying delay systems in presence of full state
constraints and input saturation. The main contributions of
this paper are summarized as follows:

1) The finite-time tracking control is applied for
nonlinear full state-constrained systems subject to
time-varying delays and input saturation without fea-
sibility conditions for the first time. Compared with
the works [28], [30], [36]–[40] on the full state-
constrained nonlinear systems, the feasibility condi-
tions are removed by introducing the NSDFs.

2) The finite covering lemma combined with the RBF
NNs is employed to eliminate the effect of unknown
time-varying delays, where the restriction that the time
derivative of time-varying delays is less than one in
traditional LKFs [41]–[43] is no more needed. Though
the above-mentioned restriction can also be solved
by the Lyapunov-Razumikhin approach [44], [45],
Assumption 3 in [44] and Assumption 4 in [45] are
not demanded in our proposed control method, which
makes the proposed method less demanding and more
flexible in practical applications.

3) By adopting the RBF NNs approximation method,
the linear growth conditions of unknown nonlinear
functions are eliminated. Moreover, only one adaptive
parameter needs to be updated online, greatly reducing
the computational burden.

The rest of this paper is organized as follows. The prob-
lem statement and preliminaries are given in Section II.
The controller design and stability analysis are presented in
Section III. The simulation examples are shown in Section IV
to illustrate the effectiveness of the proposed method. Finally,
Section V concludes this paper.
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II. PROBLEM STATEMENT AND PRELIMINARIES
Consider the nonlinear time-varying delay system as follows: ẋi = fi (x̄i)+ gi (x̄i) xi+1 + hi (x̄i (t − τi (t)))+ di (t)
ẋn = fn (x̄n)+ gn (x̄n) u (v)+ hn (x̄n (t − τn (t)))+ dn (t)
y = x1, i = 1, . . . , n− 1

(1)

where x̄i = [x1, . . . , xi]T ∈ Ri, i = 1, . . . , n − 1 are the
system state vectors. fi (·) : Ri → R and hi (·) : Ri → R are
the unknown nonlinear smooth functions, gi (·) : Ri → R
is the smooth function, τi (·) ∈ R denotes the unknown
time-varying delay, and di (·) ∈ R denotes the uncertain
external disturbance. y ∈ R is the system output. u (v) ∈ R
is the system input subject to saturation nonlinearity, which
is described as

u (v) = sat (v) =

 umax, v > umax
v, umin ≤ v ≤ umax
umin, v < umin

(2)

where v is the controller to be designed. umax > 0 and
umin < 0 are known constants.

A smooth piecewise function p (v) is adopted to denote the
approximation of the input saturation function and p (v) is
given as follows:

p (v) =


umax tanh

(
v

umax

)
, v ≥ 0

umin tanh
(

v
umin

)
, v < 0

(3)

Then, sat(v) can be rewritten as sat(v) = p (v)+ q (v), and
we have

|q (v)| = |sat (v)− p (v)|

≤ max {|Umax (1− tanh (1))| , |Umin (1− tanh (1))|}

= F1 (4)

In this paper, all states are required to satisfy

xi ∈ �i :=
{
xi ∈ R : −kai (t)<xi<kbi (t) i = 1, . . . , n

}
(5)

where kai (t) : R+ → R and kbi (t) : R+ → R are satisfying
kbi (t) > kai (t) > 0,∀t ∈ R+.

The control objective is to make the system output y follow
the desired signal yd in a finite time while ensuring that
the asymmetric time-varying full state constraints are not
transgressed and all signals in the closed-loop system are
bounded.
Assumption 1: There exist unknown positive constants

D1, . . . ,Dn such that |di (·)| ≤ Di, i = 1, . . . , n.
Assumption 2: The desired signal yd and its first-order time

derivative ẏd are available.
Assumption 3: The control gain functions gi (·) , i =

1, . . . , n are known. There exist positive unknown
constants g0 and ḡ0 such that g0 ≤ |gi (·)| ≤ ḡ0. Without
loss generality, we assume that all gi (·) are positive.

Remark 1:Numerous physical plants can be converted into
the special cases of the nonlinear system (1), such as robotic
manipulators [46], chemical processes [47], and helicopter
systems [48].
Remark 2: It should be mentioned that the desired signal yd

and its ith, i = 1, . . . , n order time derivatives are required
in traditional backstepping [17], [42], [45], [49]. Besides,
the exact information of yd , ẏd , ÿd is required in DSC-based
design methods [20], [21], [32]. Our proposed method
merely needs the information of yd and ẏd , which is less
stringent.
Lemma 1 [15]: Suppose h (x) : �x → R is a smooth

function with �x being a compact set. Let x = x (t − τ (t))
be uniformly continuous about t , where τ (t) ∈ [0, τM ] is
an unknown time-varying delay. The constant τM is known.
Then for any constant γ > 0, there exists a finite partition
of [0, τM ], independent of t

0 ≤ t1 < t2 < · · · < tm ≤ τM (6)

from which time-varying point τ̄σ(t) ∈ {t1, . . . , tm} , σ (t) ∈
{1, . . . ,m} can be extracted, such that∣∣h (x (t − τ (t)))− h (x (t − τ̄σ(t)))∣∣ < γ, ∀t ≥ 0 (7)

Lemma 2 [50]: For any real numbers x1, . . . , xn and
0 < ρ < 1, the following inequality holds:

(|x1| + · · · + |xn|)ρ ≤ |x1|ρ + · · · + |xn|ρ (8)

Lemma 3 [51]: For any real numbers λ1 > 0, λ2 > 0, and
0 < ρ < 1, an extended Lyapunov condition of finite-time
stability can be given in the form V̇ (x) ≤ −λ1V (x)−
λ2V ρ (x), where the setting time can be estimated
by

T0 ≤
1

λ1 (1− ρ)
ln
λ1V 1−ρ (x0)+ λ2

λ2
.

Remark 3: Note that it is difficult to know the time delays
precisely and the time delays are often variant in practi-
cal engineering systems. In this paper, there is no limi-
tation on the bound of the time-delay derivative and the
time-varying delays are unknown. In addition, the proposed
method is useful even when the derivative of time-varying
delays may not exist. Without imposing any assumptions on
the derivative of time-varying delays, an adaptive finite-time
tracking controller is designed for nonlinear full-state con-
strained systemswith unknown time-varying delays and input
saturation.

III. CONTROLLER DESIGN AND STABILITY ANALYSIS
To ensure the asymmetric time-varying full state constraints
are not violated, the following NSDFs are introduced:

ξi =
xi
βi
, βi =

(
kai (t)+ xi

) (
kbi (t)− xi

)
, i = 1, . . . , n

(9)

Obviously, ξi→±∞ only if xi→−kai (t) or xi→ kbi (t).
For any initial condition satisfying−kai (t) < xi (0) < kbi (t),
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the asymmetric time-varying full state constraints (5) are not
violated if ξi ∈ L∞,∀t ≥ 0.
Remark 4: It is known that current BLFs-based control

methods [1], [3], [28], [38]–[40] always involve the feasi-
bility conditions on virtual controllers, which is demand-
ing for the design and implementation of the corresponding
control schemes. Not only are such demanding conditions
removed, but also the extra efforts keeping the continu-
ity and differentiability of the stabilizing functions are not
needed in our method. Hence, the proposed control method
is simpler and more applicable than the BLFs-based methods
in [1], [3], [28], [38]–[40].

Taking the derivative of ξi to time, based on (1) and (9),
we have

ξ̇i = µi1ẋi + µi2, i = 1, . . . , n (10)

with

µi1 =
kai (t) kbi (t)+ x

2
i

β2i
(11)

µi2 = −

(
k̇ai (t) kbi (t)+ kai (t) k̇bi (t)+

(
k̇bi − k̇ai

)
xi
)
xi

β2i
(12)

To solve the input saturation, an auxiliary design signal ψ
is introduced. Define the dynamic system as

ψ̇ = µn1gn (−ψ + p (v)− v) (13)

Choose the following coordinate transformation:
e1 = ξ1 − ξd
ei = ξi − ξi,c, i = 2, . . . , n− 1
en = ξn − ξn,c − ψ

(14)

where ξd = yd/βd with βd =
(
ka1 (t)+ yd

) (
kb1 (t)− yd

)
,

and ξi,c, i = 2, . . . , n are the outputs of the ith command filter
which will be defined later. Like (10)-(12), it can be obtained
that ξ̇d = µd1ẏd +µd2 with µd1 = ka1 (t) kb1 (t)/β

2
d+y

2
d/β

2
d

and µd2 = −
(
k̇a1 (t) kb1 (t)+ ka1 (t) k̇b1 (t)

)
yd/β2d −(

k̇b1 − k̇a1
)
y2d/β

2
d .

The command filters are designed as
ξ̇i+1,c = ωnϕi,2, i = 1, . . . , n− 1

ϕ̇i,2 = −2ςωnϕi,2 − ωn

(
ξi+1,c −

αi

βi+1

)
(15)

where ξi+1,c and ξ̇i+1,c are the outputs of each filter.
ς ∈ (0, 1] and ωn > 0 are the design constants. The initial
value ξi+1,c is equal to αi (0)/βi+1 (0) and ϕi,2 (0) = 0.
αi, i = 1, . . . , n − 1 are the virtual controllers which will
be given later.

By designing the following error compensation mecha-
nism, the filtering errors

(
ξi+1,c − αi/βi+1

)
, i = 1, . . . , n−1

caused by the command filters are eliminated.

ṡ1 = −k1s1 + (µ11g1β2) s2 + (µ11g1β2)
(
ξ2,c −

α1

β2

)
ṡi = −kisi + (µi1giβi+1) si+1 −

(
µ(i−1)1gi−1βi

)
si−1

+ (µi1giβi+1)
(
ξi+1,c −

αi

βi+1

)
, i = 2, . . . , n− 1

ṡn = −knsn −
(
µ(n−1)1gn−1βn

)
sn−1

(16)

where ki, i = 1, . . . , n are positive design constants.
Step 1: Define z1 = e1 − s1. Noting (1), (9), (10), (14),

and (16), the time derivative of z1 is

ż1 = µ11 (f1 + h1 (x̄1 (t − τ1 (t))))+ µ11g1β2z2 + µ11g1α1
+µ11d1 + µ12 − µd1ẏd − µd2 + k1s1 (17)

According to Lemma 1, we have

h1 (x̄1 (t − τ1 (t))) = h1
(
x̄1
(
t − τ̄1,σ (t)

))
+ r1 (18)

where |r1| ≤ R1,R1 is an unknown constant.
Choose the Lyapunov function as V1 = 1

2 z
2
1. Based on (17)

and (18), the time derivative of V1 is given as

V̇1 = z1ż1 = µ11z1
(
f1 + h1

(
x̄1
(
t − τ̄1,σ (t)

))
+ r1

)
+µ11g1β2z1z2 + µ11g1z1α1 + µ11d1z1
+ (µ12 − µd2 − µd1ẏd ) z1 + k1s1z1 (19)

Using Young’s inequality, we can obtain

µ11d1z1 ≤ µ2
11z

2
1 +

1
4
D2
1 (20)

µ11z1r1 ≤ µ2
11z

2
1 +

1
4
R21 (21)

(µ12 − µd1ẏd − µd2) z1 ≤ (µ12 − µd1ẏd − µd2)2 z21 +
1
4

(22)

Substituting (20)-(22) into (19), one gets

V̇1 ≤ µ11z1 f̄1 + µ11g1β2z1z2 + µ11g1z1α1 + k1s1z1

+

(
2µ2

11 + (µ12 − µd1ẏd − µd2)2
)
z21

+
1
4
D2
1 +

1
4
R21 +

1
4

(23)

The uncertain term f̄1 in (23) is defined as

f̄1 = f1 + h1
(
x̄1
(
t − τ̄1,σ (t)

))
(24)

Inspired by the work in [52], the RBF NNs are used to
approximate f̄1 as follows:

f̄1 = W ∗T1 S1 (Z1)+ ε1 (Z1) (25)

with Z1=
[
x1, x1

(
t − τ1,1

)
. . . , x1

(
t − τ1,m

)]T . S1 (Z1)∈Rl1
is a Gaussian basis function vector with l1 > 1 being the
NN node number, W ∗1 ∈ Rl1 denotes the optimal weight
vector, ε1 (Z1) ∈ R is the approximation error.

∥∥W ∗1 ∥∥ ≤
W̄1, |ε1 (Z1)| ≤ ε̄1 with the constants W̄1 > 0, ε̄1 > 0.
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By substituting (25) into (23), we have

V̇1 ≤ µ11z1
(
W ∗T1 S1 (Z1)+ ε1 (Z1)

)
+ µ11g1β2z1z2

+µ11g1z1α1 + k1s1z1

+

(
2µ2

11 + (µ12 − µd1ẏd − µd2)2
)
z21

+
1
4
D2
1 +

1
4
R21 +

1
4

(26)

Using Young’s inequality, we get

µ11z1W ∗T1 S1 (Z1) ≤
θ

2a21
µ2
11z

2
1 ‖S1 (Z1)‖

2
+

1
2
a21 (27)

µ11z1ε1 (Z1) ≤
1
2
µ2
11z

2
1 +

1
2
ε̄21 (28)

where a1 in (27) is a positive design constant, θ =

max
{∥∥W ∗1 ∥∥2 , . . . , ∥∥W ∗n ∥∥2}, and ∥∥W ∗2 ∥∥ , . . . , ∥∥W ∗n ∥∥ will be

defined later. θ̃ = θ̂ − θ is the estimated error. θ̂ is the
estimate of θ and θ̂ (0) is the initial value of θ̂ such that
θ̂ (0) ≥ 0.
Design the virtual controller as

α1 =
1
g1

(
−

1
µ11

k1e1 −
1
µ11

kρ1z
2ρ−1
1

−
θ̂

2a21
µ11z1 ‖S1 (Z1)‖2

)
−

1
g1µ11

(
2µ2

11 + (µ12 − µd1ẏd − µd2)2
)
z1 (29)

where 0 < ρ < 1 and kρ1 are positive design constants.
Substituting (27)-(29) into (26) leads to

V̇1 ≤ −k1z21 − kρ1z
2ρ
1 −

θ̃

2a21
µ2
11z

2
1 ‖S1 (Z1)‖

2

+µ11g1β2z1z2

+

(
1
4
D2
1 +

1
4
R21 +

1
2
ε̄21 +

1
2
a21 +

1
4

)
(30)

Step i (2 ≤ i ≤ n− 1) : Define zi = ei − si. Based on (1),
(9), (10), (14), and (16), the time derivative of zi is

żi = µi1 (fi + hi (x̄i (t − τi (t))))+ µi1giβi+1zi+1 + µi1giαi
+µi1di + µi2 − ξ̇i,c + kisi + µ(i−1)1gi−1βisi−1 (31)

According to Lemma 1, we have

hi (x̄i (t − τi (t))) = hi
(
x̄i
(
t − τ̄i,σ (t)

))
+ ri (32)

where |ri| ≤ Ri,Ri is an unknown constant.
Define the Lyapunov function as Vi = 1

2 z
2
i + Vi−1.

From (31) and (32), the time derivative of Vi is given by

V̇i = ziżi + V̇i−1
= µi1zi

(
fi + hi

(
x̄i
(
t − τ̄i,σ (t)

))
+ ri

)
+ µi1giβi+1zizi+1

+µi1giziαi + µi1dizi +
(
µi2 − ξ̇i,c

)
zi + kisizi

+V̇i−1 + µ(i−1)1gi−1βizisi−1 (33)

Using Young’s inequality, we obtain

µi1dizi ≤ µ2
i1z

2
i +

1
4
D2
i (34)

µi1ziri ≤ µ2
i1z

2
i +

1
4
R2i (35)(

µi2 − ξ̇i,c
)
zi ≤

(
µi2 − ξ̇i,c

)2 z2i + 1
4

(36)

Substituting (34)-(36) into (33), one has

V̇i ≤ µi1zi f̄i + µi1giβi+1zizi+1 + µi1giziαi + kisizi

+

(
2µ2

i1 +
(
µi2 − ξ̇i,c

)2) z2i + θ̃i ˙̂θi + 1
4
D2
i +

1
4
R2i +

1
4

+V̇i−1 + µ(i−1)1gi−1βizisi−1 (37)

The uncertain term f̄i in (37) is defined as

f̄i = fi + hi
(
x̄i
(
t − τ̄i,σ (t)

))
(38)

The RBF NNs are used to approximate f̄i as

f̄i = W ∗Ti Si (Zi)+ εi (Zi) (39)

where Zi =
[
x1, . . . , xi, xi

(
t − τi,1

)
, . . . , xi

(
t − τi,m

)]T .
Si (Zi) ∈ Rli is a Gaussian basis function vector with li > 1
being the NN node number, W ∗i ∈ Rli denotes the optimal
weight vector, εi (Zi) ∈ R is the approximation error.

∥∥W ∗i ∥∥ ≤
W̄i, |εi (Zi)| ≤ ε̄i with the constants W̄i > 0, ε̄i > 0.

By substituting (39) into (37), one gets

V̇i ≤ µi1zi
(
W ∗Ti Si (Zi)+ εi (Zi)

)
+ µi1giβi+1zizi+1

+µi1giziαi + kisizi +
(
µ2
i1 +

(
µi2 − ξ̇i,c

)2) z2i + 1
4
D2
i

+
1
4
R2i +

1
4
+ V̇i−1 + µ(i−1)1gi−1βizisi−1 (40)

Using Young’s inequality, we have

µi1ziW ∗Ti Si (Zi) ≤
θ

2a2i
µ2
i1z

2
i ‖Si (Zi)‖

2
+

1
2
a2i (41)

µi1ziεi (Zi) ≤
1
2
µ2
i1z

2
i +

1
2
ε̄2i (42)

where ai in (41) is a positive design constant.
Design the virtual controller as

αi =
1
gi

(
−

1
µi1

kiei −
1
µi1

kρiz
2ρ−1
i −

θ̂

2a2i
µi1zi ‖Si (Zi)‖2

)
−

1
giµi1

(
2µ2

i1 +
(
µi2 − ξ̇i,c

)2) zi − µ(i−1)1giµi1
gi−1βiei−1

(43)

where kρi is a positive design constant.
Remark 5: Using the command filter technique, the pro-

posed controller can be implemented without differentiation
of the virtual controllers αi, i = 2, . . . , n − 1. Removing

analytic computation of α̇i avoids the appearance of z2ρ−2i .
Therefore, the controller singularity problems will not occur.
This makes our proposed method more easily derived and
implemented.
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In step (i− 1), it can be obtained that

V̇i−1 ≤ −
i−1∑
j=1

kjz2j −
i−1∑
j=1

kρjz
2ρ
j −

i−1∑
j=1

θ̃

2a2j
µ2
j1z

2
j

∥∥Sj (Zj)∥∥2
+µ(i−1)1gi−1βizi−1zi

+

i−1∑
j=1

(
1
4
D2
j +

1
4
R2j +

1
2
ε̄2j +

1
2
a2j +

1
4

)
(44)

Substituting (41)-(44) into (40) results in

V̇i ≤ −
i∑

j=1

kjz2j −
i∑

j=1

kρjz
2ρ
j −

i∑
j=1

θ̃

2a2j
µ2
j1z

2
j

∥∥Sj (Zj)∥∥2
+µi1giβi+1zizi+1

+

i∑
j=1

(
1
4
D2
j +

1
4
R2j +

1
2
ε̄2j +

1
2
a2j +

1
4

)
(45)

Step n : Define zn = en− sn. From (1), (9), (10), (13) (14),
and (16), the time derivative of zn is

żn = µn1 (fn + hn (x̄n (t − τn (t))))+ µn1gnu+ µn1dn
+µn2 − ξ̇n,c + knsn − ψ̇ + µ(n−1)1gn−1βnsn−1 (46)

According to Lemma 1, we have

hn (x̄n (t − τn (t))) = hn
(
x̄n
(
t − τ̄n,σ (t)

))
+ rn (47)

where |rn| ≤ Rn,Rn is an unknown constant.
Design the Lyapunov function as Vn = 1

2 z
2
n +

1
2 θ̃

2
+

Vn−1. Based on (46) and (47), the time derivative of Vn is
given as

V̇n = znżn + θ̃
˙̂
θ + V̇n−1

≤ µn1zn
(
fn + hn

(
x̄n
(
t − τ̄n,σ (t)

))
+ rn

)
+µn1gn (v+ ψ + F1)+ µn1dnzn +

(
µn2 − ξ̇n,c

)
zn

+knsnzn + θ̃
˙̂
θ + V̇n−1 + µ(n−1)1gn−1βnznsn−1 (48)

Using Young’s inequality, we can obtain

µn1dnzn ≤ µ2
n1z

2
n +

1
4
D2
n (49)

µn1znrn ≤ µ2
n1z

2
n +

1
4
R2n (50)(

µn2 − ξ̇n,c
)
zn ≤

(
µn2 − ξ̇n,c

)2 z2n + 1
4

(51)

Remark 6: The purpose of inequalities (36) and (51) is to
cope with the terms

(
µi2 − ξ̇i,c

)
zi in (33) and

(
µn2 − ξ̇n,c

)
zn

in (48).
Substituting (49)-(51) into (48) yields

V̇n ≤ µn1zn f̄n + µn1gn (v+ ψ + F1)+ knsnzn

+

(
2µ2

n1 +
(
µn2 − ξ̇n,c

)2) z2n + θ̃ ˙̂θ + 1
4
D2
n

+
1
4
R2n +

1
4
+ V̇n−1 + µ(n−1)1gn−1βnznsn−1 (52)

The uncertain term f̄n in (52) is defined as

f̄n = fn + hn
(
x̄n
(
t − τ̄n,σ (t)

))
(53)

The RBF NNs are used to approximate f̄n as

f̄n = W ∗Tn Sn (Zn)+ εn (Zn) (54)

with Zn =
[
x1, . . . , xn, xn

(
t − τn,1

)
, . . . , xn

(
t − τn,m

)]T .
Sn (Zn) ∈ Rln is a Gaussian basis function vector with ln > 1
being the NN node number, W ∗n ∈ Rln denotes the opti-
mal weight vector, εn (Zn) ∈ R is the approximation error.∥∥W ∗n ∥∥ ≤ W̄n, |εn (Zn)| ≤ ε̄n with the constants W̄n > 0,
ε̄n > 0.
By substituting (54) into (52), one can get

V̇n ≤ µn1zn
(
W ∗Tn Sn (Zn)+ εn (Zn)

)
+ µn1gn (v+ ψ + F1)

+knsnzn +
(
µ2
n1 +

(
µn2 − ξ̇n,c

)2) z2n
+θ̃
˙̂
θ +

1
4
D2
n +

1
4
R2n +

1
4
+ V̇n−1

+µ(n−1)1gn−1βnznsn−1 (55)

Using Young’s inequality, we have

µn1znW ∗Tn Sn (Zn) ≤
θ

2a2n
µ2
n1z

2
n ‖Sn (Zn)‖

2
+

1
2
a2n (56)

µn1znεn (Zn) ≤
1
2
µ2
n1z

2
n +

1
2
ε̄2n (57)

where an in (56) is a positive design constant.
Design the actual controller as

v =
1
gn

(
−

1
µn1

knen −
1
µn1

kρnz
2ρ−1
n −

θ̂

2a2n
µn1zn ‖Sn (Zn)‖2

−
µ(n−1)1

µn1
gn−1βnen−1−

1
µn1

(
2µ2

n1+
(
µn2−ξ̇n,c

)2) zn)
−ψ − F1 (58)

where kρn is a positive design constant.
Remark 7: Compared with the infinite-time control design

approaches [39, 42, 46, 49], our designed finite-time con-
troller has the advantages of high tracking precision and fast
transient performances.

The adaptive law is chosen as

˙̂
θ =

n∑
j=1

θ̃

2a2j
µ2
j1z

2
j

∥∥Sj (Zj)∥∥2 − δθ̂ (59)

where δ is a positive design constant.
In step (n− 1), it can be obtained that

V̇n−1 ≤ −
n−1∑
j=1

kjz2j −
n−1∑
j=1

kρjz
2ρ
j −

n−1∑
j=1

θ̃

2a2j
µ2
j1z

2
j

×
∥∥Sj (Zj)∥∥2 + µ(n−1)1gn−1βnzn−1zn
+

n−1∑
j=1

(
1
4
D2
j +

1
4
R2j +

1
2
ε̄2j +

1
2
a2j +

1
4

)
(60)
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By substituting (56)-(60) into (55), one deduces

V̇n ≤ −
n∑
j=1

kjz2j −
n∑
j=1

kρjz
2ρ
j − δθ̃ θ̂

+

n∑
j=1

(
1
4
D2
j +

1
4
R2j +

1
2
ε̄2j +

1
2
a2j +

1
4

)
(61)

Using Young’s inequality, one has

−θ̃ θ̂ ≤ −
(1− ρ) θ̃2

2
+
θ2

2
−
θ̃2ρ

2
+

1− ρ
2

(62)

Substituting (62) into (61) provides

V̇n ≤ −
n∑
j=1

kjz2j −
(1− ρ) δθ̃2

2
−

n∑
j=1

kρjz
2ρ
j −

δθ̃2ρ

2

+

n∑
j=1

(
1
4
D2
j +

1
4
R2j +

1
2
ε̄2j +

1
2
a2j +

1
4

)

+
1
2
δθ2 +

1
2
(1− ρ) δ

≤ −λ1Vn − λ2V ρn + C (63)

where λ1 = min
{
2kj, δ (1− ρ) , j = 1, . . . , n

}
, λ2 =

min {2 × kρj , 2
ρ−1δ, j = 1, . . . , n

}
and

C =
n∑
j=1

(
1
4
D2
j +

1
4
R2j +

1
2
ε̄2j +

1
2
a2j +

1
4

)
+
1
2
δθ2 +

1
2
(1− ρ) δ.

Theorem 1. Consider the closed-loop system consisting of
the nonlinear system (1), the virtual controllers (29), (43),
the actual controller (58), and the adaptation law (59).
Suppose that Assumptions 1-3 hold and the initial states
satisfy xi (0) ∈ �i, then all signals in the closed-loop
system are bounded, the tracking error converges to a
small bound around the origin in a finite time, and the
asymmetric time-varying full state constraints are never
violated.

Proof. According to (63), we can obtain

V̇n ≤ −λ1Vn + C (64)

Multiplying both sides by eλ1t and integrating it over [0, t] ,
one has

Vn ≤
(
Vn (0)−

C
λ1

)
e−λ1t +

C
λ1
≤ Vn (0) e−λ1t +

C
λ1
(65)

Therefore, Vn ∈ L∞ for any initial conditions satis-
fying xi (0) ∈ �i, which indicates that zi ∈ L∞ and
θ̃ ∈ L∞. From (59) and the boundedness of θ̃ , we know
that θ̂ is bounded. Based on the singular perturbation theory
[53, 54] and (15), it can be proved that ϕi,2, ξi+1,c, i =
1, . . . , n − 1 are bounded. Based on the work in [55]
and (16), we know that si, i = 1, . . . , n are bounded.

From z1 = e1 − s1 and the boundedness of z1, s1, we can
infer that e1 is bounded. Based on Assumption 2 and the
definition of ξd , we can obtain ξd is bounded. Combined with
e1 = ξ1 − ξd , we have ξ1 ∈ L∞. Then, it can be obtained
that the state x1 never violates the predefined constrained state
space �1 =

{
x1 ∈ R : −ka1 (t) < x1 < kb1 (t)

}
. From (29),

we can further have α1 is bounded. Similarly, we can
obtain ξi ∈ L∞, the state xi remains in the space �i =

{xi ∈ R : − kai (t) < xi < kbi (t)
}
, αi and v are bounded for

i = 2, . . . , n − 1. Furthermore, we can obtain u is bounded
from (2). Thus, all closed-loop signals are bounded, and
the asymmetric time-varying full state constraints are not
violated.

According to Corollary 1 in [51], Lemma 3, and (63),
we have Vn ≤ (C/λ2 (1− χ))1/ρ , 0 < χ < 1 in a finite
time. Based on the above discussion, one has

1
2
z2i ≤ Vn ≤

(
C

λ2 (1− χ)

) 1
ρ

(66)

Then, we have

|zi| ≤
(

C
λ2 (1− χ)

) 1
2ρ

(67)

in the settling time

T0 ≤
1

λ1 (1− ρ)
ln

λ1V 1−ρ (x0)+ χλ2

λ1

(
C

λ2(1−χ)

) 1−ρ
ρ
+ χλ2

.

Define the Lyapunov function as

Vs =
n∑
i=1

1
2
s2i (68)

Based on (16), the time derivative of Vs is

V̇s = −
n∑
i=1

kis2i +
n−1∑
i=1

si (µi1giβi+1)
(
ξi+1,c −

αi

βi+1

)
(69)

From Assumption 3, we can obtain that gi is bounded.
From (9) and the boundedness of xi, it can be obtained
that µi1 and βi+1 are bounded. In [55], we know that(
ξi+1,c − αi/βi+1

)
is bounded. Then, it can be inferred

that (µi1giβi+1)
(
ξi+1,c − αi/βi+1

)
is bounded. It is assumed

that
∣∣(µi1giβi+1) (ξi+1,c − αi/βi+1)∣∣ ≤ ψi, where ψi is a

positive constant. Together with (69), one obtains

V̇s ≤ −
n∑
i=1

kis2i +
n−1∑
i=1

siψi (70)

By employing Young’s inequality, we get

n−1∑
i=1

siψi ≤
n−1∑
i=1

1
4
s2i +

n−1∑
i=1

ψ2
i (71)
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Substituting (71) into (70) leads to

V̇s ≤ −
n∑
i=1

kis2i +
n−1∑
i=1

1
4
s2i +

n−1∑
i=1

ψ2
i

≤ −

n∑
i=1

(
1
2
kis2i

)ρ
−

n∑
i=1

kis2i +
n∑
i=1

1
4
s2i

+

n−1∑
i=1

ψ2
i +

n∑
i=1

(
1
2
kis2i

)ρ
(72)

By means of Lemma 3 in [56], we can obtain(
1
2
kis2i

)ρ
≤ (1− ρ) e

ρ
1−ρ ln ρ

+
1
2
kis2i (73)

Substituting (73) into (72), we have

V̇s ≤ −
n∑
i=1

(
1
2
kis2i

)ρ
−

n∑
i=1

1
4
kis2i +

n−1∑
i=1

ψ2
i

+n (1− ρ) e
ρ

1−ρ ln ρ

≤ −λ̄1V ρs − λ̄2Vs + Cs (74)

where λ̄1 = min
{
kρi , i = 1, . . . , n

}
, λ̄2 = min

{
ki
2 , i =

1, . . . , n
}
and Cs =

n−1∑
i=1

ψ2
i + n (1− ρ) e

ρ
1−ρ ln ρ . Like (66)

and (67), we can obtain that |si| <
(
Cs/

(
λ̄2 (1− ϑ)

))1/(2ρ)
,

i = 1, . . . , n in a finite time. The convergence time Ts can be
estimated as

Ts ≤
1

λ̄1 (1− ρ)
ln

λ1V
1−ρ
s (s0)+ υλ̄2

λ̄1

(
Cs

λ̄2(1−υ)

) 1−ρ
ρ
+ υλ̄2

, 0 < υ < 1.

Thus, it can be inferred that the tracking error converges to
a small bound around the origin in a finite time by choosing
appropriate parameters.

The proof is completed.
Remark 8:Comparedwith the command-filter-based adap-

tive fuzzy finite-time control method in [57], the advantages
and merits of the proposed method are twofold. First, our
proposed method can handle the full state constraints and
time-varying delays. However, the control method in [57]
cannot be applied to the systemswith full state constraints and
time-varying delays. Second, unlike multiple adaptive laws
in [57], fewer adaptive laws are introduced in this paper. Thus,
the computational burden is greatly reduced, which makes
our proposed method more suitable and effective for practical
systems.
Remark 9: Although there are some meaningful stud-

ies on nonlinear full state-constrained [28], [37]–[40]
and time-varying delay systems [12]–[14], there are still
some problems that need to be improved. For exam-
ple, the feasibility conditions [28], [37]–[40], the restric-
tion on time delays [12]–[14], and the ignorance of input
saturation [12]–[14], [28], [38]–[40] remain to be solved.
In this paper, the above-mentioned problems have been

solved by the proposed adaptive finite-time controller for
the nonlinear time-varying delay systems with full state con-
straints and input saturation.
Remark 10: The tracking performance depends on the

design parameters ki, kρi , ai, δ. From (9) and (14), we know
that the tracking error (y− yd ) is small if e1 is small. From
z1 = e1−s1, small z1 and small s1 results in small e1. Tomake
z1 small, we need to choose small C and large λ2 from (67).
From (63), we select small ai, δ and large kρi to obtain smallC
and large λ2. Similarly, we need to choose large ki to make s1
small from (74).

The algorithm of the proposed adaptive finite-time tracking
control method is given as follows:

Step 1. Calculate gi, yd , ẏd , kai , kbi , βi in (9), and µi1
in (11) for i = 1, . . . , n.
Step 2. Choose appropriate design parameters ρ, δ, ς, ωn,

ki, kρi , ai for i = 1, . . . , n.
Step 3. Choose Gaussian basis function vectors Si (Zi) for

i = 1, . . . , n.
Step 4. Solve adaptive law to find θ̂ in (59).
Step 5. Solve adaptive laws to find ψ in (13), ξi+1,c and

ξ̇i+1,c in (15), sj in (16) for i = 1, . . . , n− 1, j = 1, . . . , n.
Step 6. Calculate virtual controllers α1 in (29), αi in (43)

for i = 2, . . . , n− 1, and actual control law v in (58).
Step 7. Calculate saturated control input p (v) using (3).

IV. SIMULATION EXAMPLES
In this section, two simulation examples are given to demon-
strate the effectiveness of our proposed method
Example 1:Consider the nonlinear time-varying delay sys-

tem in strict-feedback form as follows: ẋ1 = f1 + g1x2 + h1 (x̄1 (t − τ1 (t)))+ d1 (t)
ẋ2 = f2 + g2u (v)+ h2 (x̄2 (t − τ2 (t)))+ d2 (t)
y = x1

(75)

where f1 = x1e−0.2x1 , f2 = x1x22 , g1 = 1 + x21 , g2 =
3 + cos (x1x2), h1 (x̄1 (t − τ1 (t))) = cos (x1 (t − τ1 (t))) ,
h2 (x̄2 (t − τ2 (t))) = sin (x1 (t − τ2 (t))) x2 (t − τ1 (t)). The
external disturbances are d1 (t) = 0.1 sin

(
2et
)
and d2 (t) =

0.2e−t
2
. The time delays are given as τ1 (t) = 1 +

sin (t) , τ2 (t) = 1.2 (1+ cos (t)). The states are constrained
by −kai (t) < xi < kbi (t) , i = 1, 2 with ka1 (t) = 0.8 −
0.1 cos (t) , kb1 (t) = 1.4 + 0.5 cos (t) , ka2 (t) = 1.5 −
0.5 cos (t) and kb2 (t) = 0.5 − 0.5 sin (t). In this simulation,
the desired signal is chosen as yd = 0.5 (cos (t)+ cos (0.5t)).
The saturation bounds are chosen as: umax = 8, umin = −5.
Choose the initial value x1 (0) = 1.6, x2 (0) = −0.4,
θ̂ (0) = 0.6, s1 (0) = s2 (0) = 0. The design parameters are
chosen as: k1 = 50, k2 = 210, kρ1 = kρ2 = 1, ρ = 0.5,
a1 = 7, a2 = 2, δ = 1, ς = 0.8, and ω2 = 100.
To further demonstrate the validity of our proposed

method, the infinite-time control method proposed by
Li et al. [42], in which both time delays and full state
constraints were taken into account, is also applied to (75)
for comparison. The same initial conditions are chosen
for the system states. The simulation results are shown
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FIGURE 1. Trajectories of the desired signal yd and the system output y
(Example 1).

FIGURE 2. Trajectory of the state variable x2 (Example 1).

in Figure 1- Figure 5. The trajectories of the desired signal yd
and system output y are presented in Figure 1. It is obvious
that good tracking performance is achieved by using our
proposed controller. Figure 2 shows the trajectory of the
state x2. As observed from Figure 1 and Figure 2, all states
satisfy the predefined constraints by using both our proposed
method and the infinite-time control approach proposed by
Li et al. Figure 3 depicts the tracking error (y− yd ). From
Figure 1 and Figure 3, it can be seen that our proposedmethod
not only has a faster convergence rate but also achieves better
tracking performance than the infinite-time tracking control
method in [42]. Figure 4 draws the trajectory of the system
input u, from which we can see that the system input under
our proposedmethod never transgresses the saturation bound,
while the system input using method in [42] violates the
saturation bound. The boundedness of the adaptive parameter
can be obtained from Figure 5. Based on the above analysis,
it is clearly seen that the proposed control strategy for the non-
linear time-varying delay systems with full state constraints
and input saturation is rational and feasible.

FIGURE 3. Trajectory of the tracking error
(
y−yd

)
(Example 1).

FIGURE 4. Trajectory of the system input u (Example 1).

FIGURE 5. The adaptive parameters (Example 1).

Example 2: A practical example of a two-stage chemical
reactor system with delayed recycle streams and external
perturbations [58] is considered. Tacking time-varying delays
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FIGURE 6. Trajectories of the desired signal yd and the system output y
(Example 2).

into account, the balance equation for the above system is
given as:

ẋ1 =
1− R2
V1

x2 − 1
21
x1 − K1x1 + d1 (t)

ẋ2 =
F
V2
u−

1
22

x2 − K2x2 +
R1
V2
x1 (t − τ1 (t))

+
R2
V2
x2 (t − τ2 (t))+ d2 (t)

y = x1

(76)

where x1 and x2 are the compositions, R1 and R2 are the
recycle flow rates, 21 and 22 are the reactor residence rate,
K1 andK2 are the reaction constants,F is the feed rate,V1 and
V2 are the reactor volumes, d1 (t) and d2 (t) are the external
perturbations, τ1 (t) and τ2 (t) are the time- varying delays,
u and y are the input and output of the system.

In this paper, the system parameters are chosen as
R1 = R2 = 0.5,21 = 22 = 2,K1 = K2 = 0.5,
F = 0.5,V1 = V2 = 0.5. The time-varying delays
are τ1 (t) = 1.2 ln

(
1+ t2

)
and τ2 (t) = 1 + cos (t).

The external perturbations are d1 (t) = 0.01 sin (t) and
d2 (t) = 0.01 cos (t). The desired signal is yd =

0.5 sin (t). The state constraint conditions are taken as
ka1 (t) = 0.7 − 0.4 sin (t) , kb1 (t) = 0.6+ 0.3sin (t) ,
ka2 (t) = 0.7 − 0.2 sin (t) , kb2 (t) = 0.8+ 0.2sin (t). The
input saturation boundaries are umax = 2 and umin = −10.

In the simulation, the initial conditions are set as
x1 (0) = 0, x2 (0) = 0.5, θ̂ (0) = 0.8, s1 (0) = s2 (0) = 0.
The design parameters are given as k1 = 210, k2 = 300,
kρ1 = kρ2 = 1, ρ = 0.5, a1 = 6, a2 = 3, δ = 0.5,
ς = 0.9, ω2 = 1000.

The simulation results are shown from Figure 6 to
Figure 10. The trajectories of the desired signal yd and
the system output y are displayed in Figure 6. It is seen
from Figure 6 that the output y can track the desired sig-
nal yd satisfactorily. The trajectory of the state x2 is given
in Figure 7. As observed from Figure 6 and Figure 7, all

FIGURE 7. Trajectory of the state variable x2 (Example 2).

FIGURE 8. Trajectory of the tracking error
(
y − yd

)
(Example 2).

FIGURE 9. Trajectory of the system input u (Example 2).

states never violate the asymmetric time-varying constraints.
Figure 8 plots the trajectory of the tracking error (y− yd ).
The trajectories of the system input u and the adaptive
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FIGURE 10. The adaptive parameters (Example 2).

parameter θ̂ are plotted in Figure 9 and Figure 10, respec-
tively. Based on the simulation results, it is shown that our
proposed method is effective and practicable.

V. CONCLUSION
In this paper, an adaptive finite-time tracking control
approach has been proposed for a class of nonlinear
time-varying delay systems in strict-feedback form with
asymmetric time-varying full state constraints and input sat-
uration. By combining finite covering lemma with RBF NNs,
the effect of unknown time-varying delays is eliminated and
the assumption that derivative of time delays is less than
one is relaxed. The NSDFs and backstepping technique are
used to guarantee that all states never violate the asym-
metric time-varying constraints, and the feasibility condi-
tions on virtual controllers are not required. The explosion
of complexity problem in backstepping is handled by the
command filter method. Moreover, the augmented function
with an auxiliary control signal is introduced to solve the
input saturation. The proposed scheme can guarantee that
all signals in the closed-loop system are bounded and the
tracking error converges to a small neighborhood around
the origin in a finite time. Finally, not only a numerical
example but also a practical example is given to verify the
effectiveness of the proposed scheme. In the future research,
we will employ the Nussbaum gain technique to deal with
the unknown control directions and extend this result to the
nonlinear pure-feedback systems with completely unknown
control gains.
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