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ABSTRACT This paper studies the multi-tracking problem of multiagent systems with second-order
dynamic. A pulse-modulation intermittent control protocol is proposed with only sampled position data of
each agent. To deal with the bandwidth limitation, a stochastic quantization scheme is introduced. And the
data of agents is quantified before transmission. Moreover, the proposed control protocol is improved under
communication delay. Based on algebraic graph theory, stochastic quantization and stability theory, some
necessary and sufficient conditions are obtained to ensure multi-tracking of the controlled system. Finally,
simulation results are presented to demonstrate the effectiveness of the proposed control protocol. Agents in
each subnetwork asymptotically converge to the same desired trajectory, while there is no consensus among
different subnetworks.

INDEX TERMS Multi-tracking, intermittent control, sampled position data, stochastic quantization, com-
munication delay.

I. INTRODUCTION
Cooperative control of the multiagent system has attracted
significant interest from various scientific communities in
recent years. Consensus problems are one kind of critical
problem of cooperative control. The aim of consensus is to
reach an agreement among agents under appropriate control
based on neighbor information [1]–[3]. Recently, consensus-
tracking has received considerable attention as a special
consensus problem with a dynamic leader, in which only
small part of agents can get the information from the leader.
Through information exchange among agents, all agents in
the network can track the dynamic leader finally [4]–[6].
Reference [4] shows, each follower can track the leader with
different high-dimensions through the information exchange
of the local observer. Reference [5] shows, fuzzy logic sys-
tem and neural networks are employed to approximate the
unknown nonlinear dynamics, the consensus tracking can
achieve in the second-order multiagent under the proposed
new adaptive fuzzy distributed controller. Reference [6]
shows, an observer-based adaptive consensus tracking control
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strategy is developed to solve the unmeasurable state problem
of high-order nonlinear multiagent systems.

In practice, the information exchange is discontinu-
ous because of the unreliable communication channels,
the limited transmission capability and the constrained
total cost. Thus, sampled-data control can be well used
in practical situations. Based on the sampled communi-
cation, many results on sampled consensus control are
reported.

Reference [7] shows, a new sampled-data consensus con-
trol protocol is proposed. A distributed linear consensus pro-
tocol is designed for multiagent systems with second-order
dynamics and sampled data [8]. Therefore, the communi-
cation between a group of agents may occur at some dis-
connected time intervals due to the failure of limited sensing
ranges. Hence, it is significant to study the consensus problem
with intermittent control. Reference [9] shows, some nec-
essary and sufficient conditions are obtained for consensus
of the second-order multiagent system with pulse-modulated
intermittent control, all agents are convergence to a common
constant. Notions of completely and partly intermittent com-
munication are proposed for achieving consensus tracking
[10]. References [11] presented the models of intermittently

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 131815

https://orcid.org/0000-0002-1994-1842
https://orcid.org/0000-0001-5968-8215
https://orcid.org/0000-0002-4761-5120
https://orcid.org/0000-0001-5056-5657


Q. Tang et al.: Quantized Multi-Tracking in Multiagent System

coupled complex-valued networks (ICCVNs) to reveal the
mechanism of intermittent coupling.

In the study of the consensus problem in second-order
multiagent system, most consensus protocol relies on the full
information of agents. However, compared to position infor-
mation of agents, velocity information can be hard obtained
for the reason of technology limitations and environmental
disturbances [12]–[15]. Thus, it is meaningful to investigate
the consensus-tracking problem ofmultiagent systemwithout
velocity measurement. A new class of distributed finite-time
protocol based on the position information is proposed [16].
Two robust controllers are proposed for the second-order
tracking without velocity measurements on directed commu-
nication topologies [17].

Early efforts on distributed consensus tracking problems
mainly focused on the assumption of unlimited communica-
tion channels capacity, which is may not be true in practical
systems. Thus, information of agents should be quantized
before transmission to subject to the channels with bandwidth
constraints. Consensus problem with quantized communica-
tion has attracted much attention in the past few years [18].
Reference [19] introduced the scheme based on encoding-
decoding to impulsive control protocol, the simulation results
present that the proposed control protocol is the key to achieve
the goal. Reference [20] studied two types of cases with and
without leader agent, proposed partial state constraint and full
state constraint impulsive control protocols to cut down the
cost of communication. Reference [21] considered the gen-
eral liner system models with and without finite time-varying
time delay, introduced an offset only containing desired for-
mation information. Stochastic quantization is adopted to the
information transmission among agents for the consensus
problem of multiagent systems [22]–[24]. Inspired by the
above discussion, stochastic quantization schemewill be used
to overcome the limited bandwidth of channels in this paper.

Most of the aforementioned works are focused on a com-
mon consensus objective. This demand that all agents of a
second-order system must be in agreement so as to respond
to unanticipated situations. However, the agreements are
different due to the change of environments, situations or
cooperative tasks. As a result, a big complex network can
be regarded as a combination of some subnetworks, each
subnetwork achieves consensus-tracking. The corresponding
consensus problem is defined as multi-tracking problem,
in which different consistent states among agents in a network
can be reached instead of the fact that a consistent state is
reached by all agents. A multi-tracking problem was inves-
tigated by using a distributed impulsive protocol [25]. The
critical problem of multi-tracking is to design appropriate
algorithms such that the agents in each subnetwork asymptot-
ically converge to the same desired trajectorywhile there is no
consensus among different subnetworks. The multi-tracking
can be achieved by the information exchange among agents
and subnetworks. Time delay is inevitable in real systems,
reference [26] considered the influences of asynchronous
behavior that caused by nonuniform delays, and designed

a new distributed observer to eliminate the asynchronous
behavior. Reference [27] addresses the regulation control
problem of heterogeneous uncertain chaotic systems with
nonlinear dynamic and time delay. Reference [28] investi-
gated a class of neural networks with time-varying delays.

Enlightened by all the analysis above, multi-tracking prob-
lems of second-order multiagent systems without and with
communication delay are studied. Considering technology
limitations, only position data of agents is used in the
pulse-modulation intermittent control. Stochastic quantiza-
tion scheme is adopted before information transmission of
agents for the bandwidth limitations. Based on algebraic
graph theory, stochastic quantization and stability theory,
some necessary and sufficient conditions are obtained to
ensure multi-tracking of the controlled system. The rest of
this paper is organized as follows. Section II describes the
graph theory and quantization mechanism, formulate the
multi-tracking problem. Quantized intermittent control based
on sampled position data without and with delay are proposed
in Section III and Section IV, respectively. Numerical exam-
ples are given in Section V. Finally, Section VI concludes the
whole work.

The notion used in this paper is fairly standard. For conve-
nience, denote the identify and zero matrix of order N by I ∈
RN×N and 0 ∈ RN×N , respectively. Specially, I3 ∈ R3N×3N

and I5 ∈ R5N×5N are the identify matrix of order 3N and
5N . 1Nl ∈ RNl×1 is a column vector of all ones. Let Re(·)
and Im(·) be the real part and imaginary part of the complex
number. The symbol ⊗ is the Kronecker product operator.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. GRAPH THEORY
Let G = {V ,E,A} be a weighted directed graph with a set of
vertices V = {1, 2, · · · ,N }, a set of edges E ⊆ V × V and a
weighted adjacency matrix A = [aij]N×N . An edge (j, i) ∈ E
ofGmeans that jth agent is transport information to ith agent.
The adjacency elements aij are non-zero if an only if (j, i) ∈
E , we assume aii = 0 for all i ∈ V . For each node i ∈ V ,
denoted the set of in-neighbors by N+i = {j ∈ V , |(j, i) ∈ E}
with in-degree d+i =

∣∣N+i ∣∣ (where |·| is the number of a set),
and the set of out-neighbors by N−i = {j ∈ V |(i, j) ∈ E}.
DenoteD = diag{d+1 , d

+

2 , . . . , d
+
m } and the Laplacian matrix

of the digraph G is defined as L = D − A. A directed
path is a finite sequence of ordered edges with the form of
(i1, i2), (i2, i3), . . . , where (ij, ij + 1) ∈ E . A node is called
root such that it has a directed path to any other node of
the graph. We say that a directed graph has a spanning tree,
in which there are only one root and all other nodes of the
graph.
Definition 1: Define the network Gl = {Vl,El,Al} to be the

subnetwork of the network G = {V ,E,A} if Vl ⊆ V , El ⊆ E
and Al ⊆ A.
Lemma 1 [29]: G contains a spanning tree, if and only

if zero is a simple eigenvalue and all other eigenvalue have
positive real parts of the Laplacian matrix L.
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The Laplacian matrix L = [lij]N×N of graph G is defined
as lii =

∑
j∈Ni aij and lij = −aij for j 6= i.

B. QUANTIZATION MECHANISM
In this section, some brief review of the quantization scheme
is introduced. Assume the value R ∈ [−U,U] is a scalar
to be quantized. We wish to obtain the quantized message
Q(R) with length κ bits before transmit to neighbors. Then,
we will have s = 2κ quantization points given by the set
η = η1, η2, . . . , ηs. The quantization interval is θ = ηj+1−ηj
for j ∈ 1, 2, . . . , s − 1. Suppose R ∈ [ηj, ηj+1] and R is
quantized in the following manner:

P{Q(R)) = ηj} = 1− δ, P{Q(R)) = ηj+1} = δ, (1)

where δ = (R− ηj)/θ . Thus, we can get an important lemma
from [29].
Lemma 2: Assume R ∈ [ηj, ηj+1] and Q(R) is an κ-bite

quantized message. Q(R) can unbiased representation of R,
which implies

E{Q(R)} = R, E{Q(R)− R)2} ≤
θ2

4
(2)

Define ε = Q(R) − R as the quantization error, we have
E(ε2) ≤ θ2/4.

C. PROBLEM FORMULATION
Suppose that the network G = {V ,E,A} is composed of
N vertices and M ≥ 2 subnetworks, each subnetwork has
Nl,

∑M
l=1 Nl = N vertices, which is represented as Gl =

{Vl,El,Al} , l = 1, 2, . . . ,M ,Vl 6= ∅,∪Ml=1 Vl = V . For any
l ′ ∈ l, l ′′ ∈ l, l ′ 6= l ′′, define Vl ∩ Vl′ = ∅. Labeled
the vertex indexes of the lth subnetworks by Vl = {1 +∑l

i=1 Ni−1, . . . ,
∑l

i=1 Ni} and N0 = 0.
Consider a group of agents with second-order dynamic

described as {
ẋi(t) = νi(t),
ν̇i(t) = µi(t),

(3)

whereµi(t) is the control information to agent i. xi(t) ∈ R and
νi(t) ∈ R represent the position and velocity value of agent i,
respectively.

Specifically, the second-order dynamic of the lth subnet-
works desired trajectory is given by{

ẋdl (t) = ν
d
l (t),

ν̇dl (t) = fl(t), l = 1, 2, . . . ,M
(4)

where xdl (t) ∈ R and νdl (t) ∈ R is the desired position and
velocity of agent lth subnetwork, respectively. The function
fl ≥ 0 ∈ [0,+∞) is the piecewise continuous in time t . The
topology of leader and followers denoted by G̃.
Assumption 1: The desired trajectories are controlled by a

common virtual pinner which labeled by vertex 0.
Remark 1: In the case of large multi-agent system, it is

difficult to control all agents simultaneously. The pinning
control scheme is introduced, where the vertex 0 and the

vertexes in each subnetwork should form a directed spanning
tree. Therefore, vertex 0 is the only root and a small portion
of the vertexes in each subnetwork is pinned. The pinning
matrix is denoted by B = diag(b1, b2, . . . , bN ). Moreover,
the vertices with zero in-degree must be pinned, i.e., d+i =
0⇒ bi > 0.
Definition 2: The multi-tracking of the second-order multi-

agent system (3) can be reached if for any initial value,

lim
t→∞

E(|xi(t)− xdl (t)|
2) ≤ gx(θ ), ∀i ∈ Vl

lim
t→∞

E(|νi(t)− νdl (t)|
2) ≤ gν(θ ), l = 1, 2, . . . ,M .

where gx and gν are two monotonically increasing functions
to θ which satisfied:

lim
θ→0

gx(θ ) = 0, lim
θ→0

gν(θ ) = 0.

Let x(t) = [x1(t), x2(t), . . . , xN (t)]T , ν(t) = [ν1(t), ν2(t),
. . . , νN (t)]T and µ(t) = [µ1(t), µ2(t), . . . , µN (t)]T . Under
the control input µi(t), the multi-tacking of second-order
multi-agent systems (3) can be rewritten as[

ẋ(t)
ν̇(t)

]
=

[
0 I
0 0

] [
x(t)
ν(t)

]
+

[
0
µ(t)

]
. (5)

Next, quantized intermittent control schemes µ(t) are pro-
posed to solve the multi-tracking problem under the situation
of without and with communication delay, respectively.

III. QUANTIZED INTERMITTENT CONTROL BASED ON
SAMPLED POSITION DATA WITHOUT DELAY
In the following, a distributed intermittent control based
quantization sampled position data is proposed for each
subnetwork reaching a desired trajectory. The information
exchange among agents occurs at sampling instant, the sam-
pling time sequence satisfies 0 ≤ t0 < t1 < · · · < tk < · · ·
and τ = tk − tk−1 represent the sampling interval.

µi(t) = −φ(t − tk )(αϕi(tk )+ βψi(tk )),

ϕi(tk ) = bi(xi(tk )+ εxi (tk )− (xdl (tk )+ εxdl (tk )))

+

∑
j∈Ni

lij(xj(tk ) + εxj (tk )− (xi(tk )+ εxi (tk ))),

ψi(tk ) = biζi(k)+
∑
j∈Ni

lij(ζj(k)− ζi(k)),

ζi(k + 1) = −γ ϕi(tk ), i ∈ Vl (6)

where tk < t ≤ tk+1, α > 0, β > 0, γ > 0, εxdl (tk ) =

Q(xdl (tk )) − xdl (tk ) is the desired position quantized error of
lth subnetwork and εxi (tk ) = Q(xi(tk ))− xi(tk ) is the position
quantized error of the ith agents. φ(t) is the pulse function
which is defined below:

φ(t) =

{
φ̂(t), t ∈ (0, %]
0, t /∈ (0, %]

where % ∈ (0, τ ] is the control duration, the function φ̂(t) can
be chosen depending on different control constraints. From
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the Lemma 2, we can get some properties of the position
quantized error:

E{εxj (tk )} = 0, E{εTxj (tk )εxj (tk )} ≤
θ2xj

4
,

E{εxdl (tk )} = 0, E{εT
xdl
(tk )εxdl (tk )} ≤

θ2
xdl

4
,

where θxj and θxdl are constants and denoted as the quanti-
zation intervals of the position and desired position, respec-
tively.

Let p(t) = x(t) − xd (t) and y(t) = ν(t) − νd (t),
where xd (t) = [xd1 (t) · 1

T
N1
, xd2 (t) · 1

T
N2
, . . . , xdM (t) ·

1TNM ]
T , νd (t) = [νd1 (t) · 1

T
N1
, νd2 (t) · 1

T
N2
, . . . , νdM (t) · 1TNM ]

T .
Denote ω = ω =

∫ %
0 φ(t)dt , $ =

∫ %
0 tφ(t)dt ,

ϕ(tk ) = [ϕ1(tk ), ϕ2(tk ), . . . , ϕN (tk )]T and ψ(tk ) =

[ψ1(tk ), ψ2(tk ), . . . , ψN (tk )]T .
For t ∈ (tk , tk + %], one has

y(tk + %) = y(tk )− (αϕ(tk )+ βψ(tk ))ω,

p(tk + %) = p(tk )+
∫ tk+%

tk
y(t)dt

= p(tk )+ %y(tk )− (αϕ(tk )+ βψ(tk ))

×

∫ tk+%

tk

∫ t−tk

0
φ̂(s)dsdt

= p(tk )+ %y(tk )− (αϕ(tk )+ βψ(tk ))(%ω −$ ).

For t ∈ (tk + %, tk+1], µ(t) = 0 then

y(tk+1) = y(tk + %)

= y(tk )− (αϕ(tk )+ βψ(tk ))ω

= y(tk )− ω(αε(k)+ (L + B)(αp(tk )+ βζ (k))),

p(tk+1) = p(tk + %)+ (τ − %)y(tk + %)

= p(tk )+ τy(tk )+ α($ − τω)ε(k)+ ($ − τω)(L

+B)(αp(tk )+ βζ (k)),

ζ (k + 1) = −γ ((L + B)p(tk )+ ε(k)), (7)

where εi(k)=bi(εxi (tk )−εxdl (tk ))+
∑

j∈Ni lij(εxj (tk )− εxi (tk )),

ε(k) = [ε1(k), ε2(k), . . . , εN (k)]T , and ζ (k) = [ζ1(tk ), ζ2(tk ),
. . . , ζN (tk )]T .
Let D(tk ) = [pT (tk ), yT (tk ), ζ T (k)]T and ϑ = $ − τω,

from (6) and (7), we have

D(tk+1) = (W (τ )+ Z (τ ))D(tk )+ C(τ )ε(k),

W (t) =

 I tI 0
0 I 0
0 0 0


Z (t) =

αL($ − tω) 0 βL($ − tω)
−ωαL 0 −ωβL
−γL 0 0

 ,
C(t) =

 ($ − tω)αI
−ωαI
−γ I

 , (8)

where L = L + B. Motivated by [30] ℵ = W (τ ) + Z (τ ),
the Lemma below can be obtained.

Lemma 3: Under the control scheme (6), the multi-tracking
in the second-order multi-agent system (3) can be reached if
and only if ρ(ℵ) < 1, where ρ(·) is the matrix spectral radius
of ℵ.

Proof: Let η(k) = E(D(tk )⊗D(tk )), from (8),

η(k + 1) = (ℵ ⊗ ℵ)η(k)+ (C ⊗ C)E(ε(k)⊗ ε(k)). (9)

Obviously, ‖η(k)‖1 = E(‖D(tk )‖21). And ‖x‖
2
2 ≤ ‖x‖1 ≤√

3N (‖x‖22), then

E(‖D(tk )‖22) ≤ ‖η(k)‖1 ≤ 3NE(‖D(tk )‖22).

where ‖·‖1 and ‖·‖2 denote the 1-norm and 2-norm, respec-
tively. Thus, the consensus problem of the multi-agent sys-
tem (3) under the control (6) can be studies by analyzing η(k).
Necessity: If ρ(ℵ) ≥ 1, then ρ(ℵ⊗ℵ) ≥ 1, the multi-agent

system (3) under the control (6) must be diverging and cannot
reach multi-tracking.
Sufficient: If ρ(ℵ) < 1, then ρ(ℵ ⊗ ℵ) < 1. There must

exist a small enough constant `, such that ‖ℵ⊗ℵ‖2 = ` < 1.
Combined with (9), we can conclude that

‖η(k + 1)‖2 ≤ `k+1‖η(0)‖2 +
k∑
i=0

`if (θz),

where f (θz) =
√
27N 3‖Q⊗ Q‖2θz and θz = max(θxj , θxdl ).

Due to ` < 1, we have

lim
k→∞
‖η(k)‖2 ≤ f (θz)/(1− `).

Then

E(‖D(tk )‖22) ≤ lim
k→∞
‖η(k)‖1 ≤

√
3Nf (θz)/(1− ı).

Thus, there exist positive constants a > 0 and b > 0, such
that lim

t→∞
E(‖p(t)‖22) ≤ af (θz)/(1−`) and lim

t→∞
E(‖y(t)‖22) ≤

bf (θz)/(1− `). That is mean

lim
t→∞

E(|xi(t)− xdl (t)|
2) ≤ aθz,

lim
t→∞

E(|νi(t)− νdl (t)|
2) ≤ bθz, i ∈ νl, l = 1, 2, . . . ,M .

Obviously, the right hand of the inequality is the
monotonously increasing function of θz. Based on Defini-
tion 2, the multi-tracking of the system (3) is said to be
achieved.
Lemma 4 [31]: The complex polynomial R(σ ) = σ 3

+

(a2 + b2i)σ 2
+ (a1 + b1i)σ + a0 + b0. R(σ ) is stable if and

only if a2 > 0, a2b2b1 + a22a1 − b
2
1 − a2a0 > 0 and

a2det


b2 −a1 −b0 0
a2 b1 −b1 0
1 b2 −a1 −b0
0 a2 b1 −a0



− det


b1 −a0 0 0
a2 b1 −a0 0
1 b2 −a1 −b0
0 a2 b1 −a0

 > 0. (10)
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Theorem 1: Suppose the direct graph G̃ contains a span-
ning tree, κi, i = 1, 2, . . . ,N is the ith eigenvalue of L + B,
define the parameters below:

c1 = Re
(

1
τωα − τωγβκi

)
, c2= Im

(
1

τωα − τωγβκi

)
,

c3 = Re
(

κi

τωα − τωγβκi

)
, c4= Im

(
κi

τωα − τωγβκi

)
,

c5 = Re
(

1
(τωα − τωγβκi)κi

)
,

c6 = Im
(

1
(τωα − τωγβκi)κi

)
,

a2 = (τω + 2$ )γβc3 − ϑαc1,

b2 = (τω + 2$ )γβc4 − ϑαc2,

a1 = 4c5 − 4$βγ c3, b1 = 4c6 − 4$βγ c4,

a0 = 4c5 − a2, b0 = 4c6 − b2.

Under the distributed intermittent control (6), the uniform
multi-tracking of the second-order system (3) can be asymp-
totically reached if and only if inequalities (10) are satisfied.

Proof: Inspired by [32], the characteristic polynomial of
ℵ is given by

det(λI3 − ℵ)

= det

 (λ− 1)I − αϑL −τ I −βϑL
ωαL (λ− 1)I ωβL
γL 0 λI


= det

(
λ(λ− 1)2I − (λ− 1)λϑαL

+ λ(ωαL+ γβϑL2)−$γβκ2i
)

=

N∏
i=1

{λ(λ− 1)2 − (λ− 1)λϑακi

+ λ(ωακi + γβϑκ2i )−$γβκ
2
i }, (11)

where κi is the eigenvalue of L. Thus, three eigenvalues of
H can be obtained for each κi. The roots of characteristic
polynomial det(λI3 − ℵ) = 0 can be denoted as

λ(λ− 1)2 − (λ− 1)λακi + λ(ωακiτ + γβϑκ2i )

−$γϑκ2i = 0. (12)

Let λ = z+ 1/z− 1, applying a bilinear transformation,
(12) can be cast to

Ri(z) = z3 + (a2 + ib2)z2 + (a1 + ib1)z+ a0 + ib0. (13)

From Lemma 3 we know that the multi-tracking in the
second-order multi-agent system (3) can be achieved if and
only if ρ(ℵ) < 1, which is mean the (13) is Hurwitz stable.
From Lemma 4, polynomial (13) is Hurwitz stable if and only
if the inequalities in (10) holds. Thus, the proof is completed.

IV. QUANTIZED INTERMITTENT CONTROL BASED ON
SAMPLED POSITION DATA WITH DELAY
As we know, communication delay always exists in practical
application. And it has great impact on consensus perfor-

mance of multi-agent system. In this section, the communica-
tion delay ı < τ is considered in the multi-agent system (3).
A quantized intermittent control with communication delay
for each subnetwork reaching a desired trajectory is proposed
below:

µi(t) = −φ(t − tk )(αϕi(tk − ı)+ βψi(tk )),

ϕi(tk − ı) = bi(xi(tk − ı)+ εxi (tk − ı)− (xdl (tk − ı)

+ εxdl
(tk − ı)))

+

∑
j∈Ni

lij(xj(tk − ı)+ εxj (tk − ı)− (xi(tk

− ı)+ εxi (tk − ı))),

ψi(tk ) = biζi(k)+
∑
j∈Ni

lij(ζj(k)− ζi(k)),

ζi(k + 1) = −γ ϕi(tk ), i ∈ Vl (14)

Similar to the analysis of Section (III), for t ∈ (tk , tk + %],

y(tk + %) = y(tk )− (αϕ(tk − ı)+ βψ(tk ))ω,

p(tk + %) = p(tk )+
∫ tk+%

tk
y(t)dt

= p(tk )+ %y(tk )− (αϕ(tk − ı)+ βψ(tk ))

×

∫ tk+%

tk

∫ t−tk

0
φ̂(s)dsdt

= p(tk )+ %y(tk )− (αϕ(tk − ı)

+βψ(tk ))(%ω −$ ).

For t ∈ (tk + %, tk+1], µ̂i(t) = 0, one has

y(tk+1) = y(tk + %)

= y(tk )− (αϕ(tk − ı)+ βψ(tk ))ω

= y(tk )− ω(ας (k)+ L(αp(tk − ı)+ βζ (k))),

p(tk+1) = p(tk + %)+ (τ − %)y(tk + %)

= p(tk )+ τy(tk )+ αϑς (k)+ ϑL(αp(tk − ı)

+βζ (k)),

ζ (k + 1) = −γ (Lp(tk − ı)+ ς (k)), (15)

where ς (k) = [ε1(tk − ı), ε2(tk − ı), . . . , εN (tk − ı)]T and
εi(tk − ı) = bi(εxi (tk − ı) − εxdl (tk − ı)) +

∑
j∈Ni

lij(εxj (tk −

ı) − εxi (tk − ı)). Let F(tk ) = [p(tk )T , y(tk )T , ζ (k)]T , under
the control (14), the multi-agent system (3) can be expressed
as:

F(tk+1) = W (τ )F(tk )+ Z (τ )F(tk − ı)+ C(τ )ς (k). (16)

In order to obtainF(tk−ı), we discuss two cases of ı below:
case 1): ı < τ − %

y(tk+1 − ı) = y(tk + %)

= y(tk )− ω(ας (k)+ L(αp(tk − ı)+ βζ (k))),

p(tk+1 − ı) = p(tk + %)+ (τ − % − ı)y(tk + %)

= p(tk )+ (τ − ı)y(tk )+ ($ − (τ − ı)ω)(ας (k)

+L(αp(tk − ı)+ βζ (k))).
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Then

F(tk+1 − ı)

= W (τ − ı)F(tk )+ Z (τ − ı)F(tk − ı)+ C(τ − ı)ς (k).

(17)

LetM(tk ) = [p(tk )T , y(tk )T , p(tk − ı)T , y(tk − ı)T , ζ (k)]T

and ϑı = $ − (τ − ı)ω. Combing the equation (16) and (17),
one can obtain:

M(tk+1) = HM(tk )+ Dς (k).

H =


I τ I αLϑ 0 βLϑ
0 I −ωαL 0 −ωβL
I (τ − ı)I αLϑı 0 βLϑı
0 I −ωαL 0 −ωβL
0 0 −γL 0 0

 ,

D =


ϑαI
−ωαI
ϑıαI
−ωαI
−γ I

 . (18)

case 2): τ − % ≤ ı < τ

Let ωı =
∫ τ−ı
0 φ(t)dt , $ı =

∫ τ−ı
0 tφ(t)dt and ϑ̂ = $ı −

(τ − ı)ωı .

y(tk+1 − ı) = y(tk )−
∫ tk+1−ı

tk
φ(t − tk )

× (αϕ(tk − ı)+ βψ(tk ))dt

= y(tk )− ωı (ας (k)+ L(αp(tk − ı)+ βζ (k))),

p(tk+1 − ı) = p(tk )+
∫ tk+1−ı

tk

∫ t−tk

0
y(t)dt

= p(tk )+ (τ − ı)y(tk )+ ϑ̂(ας (k)

+L(αp(tk − ı)+ βζ (k))).

Then

F(tk+1 − ı) = W (τ − ı)F(tk )+ Ẑ (τ − ı)F(tk − ı)

+ Ĉ(τ − ı)ς (k). (19)

where

Ẑ (t) =

αL($ı − tωı ) 0 βL($ı − tωı )
−ωıαL 0 −ωıβL
−γL 0 0

 ,
Ĉ(t) =

 ($ı − tωı )αI
−ωıαI
−γ I

 .
Combing the equation (16) and (19), one can obtain:

M(tk+1) = ĤM(tk )+ D̂ς (k).

Ĥ =


I τ I αLϑ 0 βLϑ
0 I −ωαL 0 −ωβL
I (τ − ı)I αLϑ̂ 0 βLϑ̂
0 I −ωıαL 0 −ωıβL
0 0 −γL 0 0

 ,

D̂ =


ϑαI
−ωαI
ϑ̂αI
−ωıαI
−γ I

 . (20)

Similar analysis by Lemma 3, for case (1), one can deduce
that the multi-agent system (3) with communication delay
can be reached multi-tracking if an only if ρ(H ) < 1. And
for case (2), one can obtain that the multi-agent system (3)
with communication delay can be reached multi-tracking if
an only if ρ(Ĥ ) < 1.
Theorem 2: Suppose the direct graph G̃ contains a span-

ning tree, κi, i = 1, 2, . . . ,N is the ith eigenvalue of L + B.
Under the distributed intermittent control (14), the multi-
tracking of the second-order system (3) can be asymptotically
reached if and only if the polynomial:

R̂(z) = (1+ d3+d2+d1 + d0)z4 + (4+ 2d3 − 2d1 − 4d0)z3

+ (6− 2d2 + 6d0)z2 + (4− 2d3 + 2d2 − 4d0)z+ (1

− d3 + d2 − d1 + d0) (21)

is Hurwitz stable, where

d3 = −(2+ ακi}),
d2 = 1+ 2ακi}+ ακiϑ + γ κ2i β}+ ωακi(τ − ı),

d1 = ωβκ2i γ (τ − ı)+ γβκ2i ϑ + ακiϑ + ακi}+ ωαıκi,

d0 = ωβκ2i γ (2τ − ı)+ γ κ2i β}+ γ κ
2
i βϑ (22)

1). when ı < τ − %, } = ϑı ;

2). when τ − % ≤ ı < τ , } = ϑ̂ .
Proof: For the case (1), the characteristic polynomial of

H is given by

det(λI5 − H )

= det



(λ− 1)I −τ I −αLϑ 0 −βLϑ

0 (λ− 1)I ωαL 0 ωβL
−I −(τ − ı)I λI − αLϑı 0 −βLϑı
0 −I ωαL λI ωβL
0 0 γL 0 λI




= det(λ((λ4 − 2λ3 + λ2)I − (αϑıλ
3
−(2αϑı + αϑ − ωα(τ

− ı))λ2−(αϑ+αϑı + ωαı)λ)L+(γβϑıλ
2
−(ωβγ (τ−ı)

+ γβϑ)λ+ ωβγ (2τ − ı)+ γβϑı + γβϑ)L2))

=

N∏
i=1

{λ((λ4 − 2λ3 + λ2)− (αϑıλ
3
− (2αϑı + αϑ − ωα(τ

− ı))λ2 − (αϑ+αϑı+ωαı)λ)κi+(γβϑıλ
2
−(ωβγ (τ−ı)

+ γβϑ)λ+ ωβγ (2τ − ı)+ γβϑı + γβϑ)κ2i )}. (23)

The eigenvalues of H satisfy

λ(λ4 − (2+ ακiϑı )λ3 + (1+ 2ακiϑı + ακiϑ + γ κ
2
i βϑı

+ωακi(τ − ı))λ2 − (ωβκ2i γ (τ − ı)+ γβκ2i ϑ + ακiϑ

+ακiϑı + ωαıκi)λ+ ωβκ2i γ (2τ − ı)+ γ κ2i βϑı

+ γ κ2i βϑ) = 0.
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FIGURE 1. Topology graphs of a multi-agent system with seven agents.

It not difficult to see, for each given κi, five eigenvalues
of H can be obtained where 0 is a special eigenvalue. For
simplified calculation, let

λ =
z+ 1
z− 1

and

d0 = ωβκ2i γ (2τ − ı)+ γ κ2i βϑı + γ κ
2
i βϑ,

d1 = ωβκ2i γ (τ − ı)+ γβκ2i ϑ + ακiϑ + ακiϑı + ωαıκi,

d2 = 1+ 2ακiϑı + ακiϑ + γ κ
2
i βϑı + ωακi(τ − ı),

d3 = −(2+ ακiϑı ).

One has

(1+ d3 + d2 + d1 + d0)z4 + (4+ 2d3 − 2d1 − 4d0)z3

+ (6− 2d2 + 6d0)z2 + (4− 2d3 + 2d1 − 4d0)z+ 1

− d3 + d2 − d1 + d0 = 0 (24)

It is not difficult to know that ρ(H ) < 1 if and only if
R(z) is Hurwitz stable. It implies that the multi-tracking of
the second-order system (3) can be asymptotically achieved
if and only if the polynomial (21) is Hurwitz stable.

For the case (2), the characteristic polynomial of Ĥ is given
by det(λI5 − Ĥ ). By an analysis similar to proof of case 1),
one can easily get the Hurwitz stable of (21) in case 2).

V. NUMERICAL EXAMPLES
In this section, several simulations are shown to demonstrate
the effectiveness of the proposed control protocol. A directed
multi-agent system with seven agents is considered, and the
topology graph is given in Figure. 1. From Figure. 1, it is
easy to known the network is divided into two subnetworks:
V1 = {1, 2, 3, 4} and V2 = {5, 6, 7}. Only the agent 1 and
5 are pinned, and the matrix B = diag(1, 0, 0, 0, 0, 1, 0).
Next, we will evaluate the performance of the intermittent
control without and with communication delay, perspective.

A. MULTI-TRACKING WITHOUT COMMUNICATION DELAY
In this section, the multi-tracking problem of second-order
multi-agent system without communication delay is consid-
ered. In particular, let the function φ̃ = 1/%, one has ω = 1
and $ = %/2, in which the control scheme (eq6) is reduced
to an impulsive control. We denote the control parameters
α = 3, β = 0.4, γ = 0.1 and the control duration % = 0.001.

FIGURE 2. Static multi-tracking. (a) τ = 0.14. (b) τ = 0.1476.

FIGURE 3. Dynamic multi-tracking. (a) τ = 0.5. (b) τ = 0.58. (c) τ = 0.59.

Let the desired positions are xd1 = 10 and xd2 = −1. Then, it is
not difficult to get that 0.001 < τ < 0.1476 from Lemma 1.
Simulation results are shown in Figure. 2, one can see that
the multi-tracking can be achieved with τ = 0.14 form
Figure. 2(a), while themulti-tracking cannot be achievedwith
τ = 0.1476 form Figure.2 (b).

B. MULTI-TRACKING WITH COMMUNICATION DELAY
In this section, the multi-tracking problem of second-order
multi-agent system with communication delay is considered.
We denote the control parameters α = 4.5, β = 3 and γ =
0.3. In particular, let the function φ̃ = 1, in which the control
scheme (14) is reduced to a sample control. Let the desired
positions are xd1 = t2 and xd2 = 5.
Case 1): ı < τ − %. Choose ı = 0.05 and % = 0.1.

By Theorem 2, one has that multi-tracking of system (3)
under protocol (14) can be achieved if and only if 0.1 < τ <

0.58. From Fig. 3, one has the multi-tracking can be reached
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FIGURE 4. Dynamic multi-tracking. (a) τ = 0.65. (b) τ = 0.7. (c) τ = 0.71.

if τ = 0.5 and τ = 0.58, while it can note be reached if
τ = 0.59.

Case 2): τ − % < ı < τ . Choose ı = 0.1 and % = 0.2.
By Theorem 2, one has that multi-tracking of system (3)
under protocol (14) can be achieved if and only if 0.2 < τ <

0.7. From Fig. 4, one has the multi-tracking can be reached
if τ = 0.65 and τ = 0.7, while it can note be reached if
τ = 0.71.

VI. CONCLUSION
In this paper, we investigated the multi-tracking problem
of the second-order multi-agent system with directed com-
munication topology. A pulse-modulated intermittent control
protocol is proposed, which only use the sampled position
data of each agent. To overcome the limitation of com-
munication bandwidth, the stochastic quantization scheme
is introduced. And the information of agents is quantified
before transmission. Moreover, an improved control protocol
is proposed, which consider the influences of communication
delay. Finally, under some necessary and sufficient condi-
tions, the effectiveness of proposed multi-tracking control
protocols is demonstrated.
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