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ABSTRACT State-of-health (SOH) estimation is a critical factor in ensuring the efficiency, reliability,
and safety of lithium-ion batteries (LIBs) in electric vehicles (EVs). However, due to the complexity of
electrochemical processes in batteries and the dynamics of working conditions, it is challenging to estimate
SOH accurately, especially in real-world EV application scenarios. Thus, various data-driven methods
with robust and adaptive features for SOH estimation have been widely proposed in the current literature.
However, there is a lack of a comprehensive investigation and performance comparison of those methods,
which makes them hard to be adopted in practice. Hence, in this paper, we have studied current major
data-driven methods with real-world EV battery data to evaluate the performance. Besides, we summarize
each method’s advantages and limitations with the consideration of the critical features required to achieve
accurate SOH estimation in real-world applications. Hopefully, this paper provides a practical insight into
the related fields.

INDEX TERMS Lithium-ion battery, state of health, data-driven methods, state estimation.

I. INTRODUCTION
With the merit of a long lifetime, high energy den-
sity, and fast response, lithium-ion batteries (LIBs) are
widely used in electric vehicles (EVs) and energy storage
scenarios [1], [2]. However, LIB performance declines over
time (calendar aging) and use (cycle aging), which can lead
to degraded performance, operational impairment, or even
catastrophic consequences [3]. Since the complex internal
electrochemical properties and uncertain external working
environments, LIB degradation is an extremely complex pro-
cess (as shown in Fig. 1), including physical mechanisms
(e.g., thermal stress and mechanical stress) and chemical
mechanisms (e.g., side reactions) [4], [5]. Generally, state of
health (SOH) estimation is a critical metric in a battery man-
agement system (BMS) to quantify the extent of degradation.
The most frequently used SOH indicator is battery capacity,
which is defined as the ratio of current maximum available
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capacity Ci over the nominal valueC0 as SOH =
Ci
C0
×100%.

With the gradually aging, when SOH reaches 70% − 80%,
LIBs are more prone to thermal runaway and cause a safety
risk [6]. An accurate and robust SOH estimation method
ensures the safety, reliability, and cost-efficiency of a battery
during operation [7].

In general, themethods for SOH estimationmethods can be
categorized into direct estimation and data-driven methods.
Direct estimation usually includes Coulomb Counting and
Impedance Spectroscopy [8]. In Coulomb counting, the inte-
gral of current is calculated with respect to time and divide
by their difference of state of charge (SOC). It is a simple and
widely used method, but its results are rather inaccurate, and
the errors would accumulate [9]. Impedance spectroscopy
applies a wide frequency spectrum to determine SOH [10].
However, the impedance spectroscopy method needs to carry
out numerous experiments and requires adequate intermedi-
ate time to rest before the cell reaches its balanced potential.

Even though data-driven models have been applied
in numerous SOH estimation processes, few available
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FIGURE 1. Degradation mechanisms in Li-ion cells.

investigations were focusing on the comprehension per-
formance of each method. Andre et al. only compared
the estimation performances of Neural Network (NN) and
Extended Kalman Filter (EKF) for their accuracy and training
speed [11]. Saha et al. employed Autoregressive Integrated
Moving Average (ARIMA), EKF, Particle Filter (PF), and
Relevance Vector Machine (RVM) to estimate the remaining
useful life (RUL) for LIBs [12]. Each method’s algorithm
is specifically introduced, but the estimation performance
results were only presented in figures without a quantitative
comparison. In [8], [13]–[16], various data-driven methods
were studied for their pros and cons, and the methods were
classified into different categories but lacking an objective
performance comparison.

To address the aforementioned challenges, this paper
makes the following main contributions:

• Review the major data-driven SOH estimation
approaches for LIBs reported in the recent literature.

• Compare the performance of three model-based models
and four model-less models, namely EKF, PF, ARIMA,
Extreme Learning Machine (ELM), Long Short-term
Memory (LSTM), Support Vector Machine (SVM), and
RVM, on a real-world EV dataset.

• Provide an overall discussion about the aforementioned
models in terms of their accuracies, confidence intervals,
abilities to deal with nonlinearity, robustness, computa-
tion complexities, capabilities to deal with data sparsity,
and generalization.

The remainder of this paper is organized as follows: For
different data-driven methods, Section II provides a short
theoretical explanation, their challenges, and a literature
review focused on SOH estimation application. In Section III,
the real-world operation EV data are shown, and the

comparison experiment of previously described methods is
explained in detail. The comparison result is analyzed and
discussed in Section IV. In Section V, the different mod-
els previously described are discussed for actual application
requirements. Section VI presents the conclusion drawn from
this paper. For the reader’ convenience, Tab1 lists all the
acronyms used in this article in alphabetical order.

II. REVIEW OF DATA-DRIVEN ESTIMATION METHODS
The data-driven approach is a method that builds a rough
model and then refines themodel with numerous data tomake
the model consistent with the data. If the initial model is
an existing battery model, it is classified as a model-based
method; otherwise, it is a model-less method.

The existing battery model in model-based methods
usually involves Equivalent Circuit Model (ECM) and
electrochemical model. ECM model uses appropriate cir-
cuit components to constitute an equivalent circuit, and the
parameters of the circuit model can only obtain under lab-
oratory conditions and will change through battery aging.
The electrochemical model is to study the electrochemical
process through battery aging, and its strength resides on
no laboratory measurement required. However, developing a
detailed mathematical model including phase-changing typi-
cally requires cell disassembly [17].

On the other hand, model-less methods can avoid ana-
lyzing the complex electrochemical reaction and directly
use machine learning approaches to estimate the aging pro-
cess. Such methods do not need prior knowledge of battery
type and working conditions. The accuracy of the estima-
tion largely depends on the training data size. Nevertheless,
in most machine learning methods, we need to select a set of
external characteristics that can best represent SOH, which
may bring subjective factors into the estimation process.
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TABLE 1. List of acronyms and abbreviations.

TABLE 2. Different capacity degradation models.

A. MODEL-BASED METHODS
As mentioned earlier, model-based methods usually contain
an ECM or electrochemical model. ECM model is mainly
used to confirm SOC and difficult to estimate the remaining
capacity. Hence, the electrochemical model is adopted to esti-
mate SOH. Table 2 shows different electrochemical models
for SOH estimation [18].

The model parameters can be determined through adaptive
filter methods. The main concept is to filter the measure-
ment noise so it can update the model parameters with new
measurements. Kalman Filter (KF) and PF are two common
methods adopted for this purpose.

1) KALMAN FILTER (KF)
KF is a statistical-based filtering method proposed in 1960.
Through repeated iterations of the previous estimate and the
current measurement values, a relatively accurate value can
be derived. The state equation in KF is used to describe the
state process of the system based on the prior information, and
the measurement value obtained by the external observation
system is described by using the measurement equation [19].

However, the standard KF cannot solve the nonlinear
degradation model, so there are some improved algorithms
such as EKF and Unscented Kalman Filtering (UKF).

The basic principle of EKF is to use the expansion of the
Taylor series to linearize the nonlinear equation and then to
solve the linearized equation using the KF framework. There-
fore, it may be more suitable for battery state estimation.
Plett et al. showed that although EKF was usually used in
SOC estimation in the past decades, it may also be used to
estimate power fade and can keep the SOC estimate accu-
rate throughout the cell lifetime even though its dynamics
changing as it ages [20]. Before using the differential quotient
to calculate the state matrix and the measurement matrix,
Zhou et al. combined Gaussian Process Regression (GPR)
with EKF to approximate the state equation, the measurement
equation, and the noise equation of EKF [21].

In addition, UKF [22] was proposed in estimation process
at [23] and [24]. The advantage of UFK is that there is no
specific form of the nonlinear equation, so there is no demand
for the derivative and Jacobian matrix calculation.

2) PARTICLE FILTER (PF)
In PF, the particles are generated and recursively updated
from a nonlinear process that involves a system under analy-
sis, a measurement model, and a priori estimate of the state
probability density function (PDF) [25]. That is to say, using
Monte Carlo (MC) simulations, PF is a method for imple-
menting a recursive Bayesian filter, and this is also known as
the Sequential MC (SMC) method.

With regard to PF-based methods, Su et al. divided
the model into three categories: polynomial model, expo-
nential model, and Verhulst [26] model, to compare their
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performance [18].Miao et al. presented an improved PF algo-
rithm, the unscented particle filter (UPF), which combined
the idea of PF and UKF to improve the RUL prediction
accuracy [27]. UPF can be divided into two steps: firstly,
the UKF method was used to get the proposal distribution;
secondly, the standard PF method was applied to get the final
results. Zhang et al. proposed an improved UPF based on
the Markov chain Monte Carlo (MCMC) method, in which,
after resampling in UPF,MCMCwas adopted to approximate
the estimated state [28]. Therefore, it can maintain the parti-
cle’s diversity and suppress particle degradation to a certain
extent. Some other work also tried to solve the importance
function chosen and degradation of diversity in sampling
particles problems, using the linear optimization approach to
produce new particles from chosen particles and abandoned
particles [29].

3) AUTOREGRESSIVE INTEGRATED MOVING AVERAGE
(ARIMA)
ARIMA requires only the historical time series data. This
model is fitted to time series data to forecast future points in
the series. Therefore, ARIMA is more suitable for single-step
estimation instead of multi-step prediction.

In an ARIMA model, the choice of its parameters is usu-
ally subjective. In this regard, Long et al. used a high-order
Autoregressive (AR) model to replace the ARIMA model
and transformed the problem of seeking nonlinear param-
eters of ARIMA into seeking linear parameters in the AR
model [30]. Furthermore, he proposed the Particle Swarm
Optimization (PSO) algorithm to avoid the uncertainty of
human subjective order determination. The data metabolic
technology is also used to make the AR model change
adaptively.

In order to improve the accuracy in the long-term pre-
diction process, Liu et al. introduced an influence factor
to characterize ’accelerated’ degradation and combined this
influencing factor with the AR model [31]. In his following
work [32], he introduced a regularized particle filter to further
improve the prediction accuracy.

B. MODEL-LESS METHODS
Instead of considering the electrochemical reaction and the
failure mechanism inside batteries, the model-less meth-
ods, which require no explicit battery models and regard
the battery system as a black box, and then infer bat-
tery SOH or lifespan directly from extracted features.
In literature, many statistical, computational, and artificial
intelligence algorithms and models, such as Artificial Neural
Network (ANN) [33]–[38], SVM [39], [40], RVM [41], [42],
GPR [43], Gradient Boosted Regression (GBR) [44], [45],
have been adopted for battery state estimation in various
applications. However, data-driven techniques are usually
unstable as they may show different performances with dif-
ferent datasets [46]. Among all these model-less methods,
ANNs and SVMs are regarded as the two most representative
ones for nonlinear modeling [47].

FIGURE 2. A topological structure of BP neural network.

1) ARTIFICIAL NEURAL NETWORK (ANN)
ANN is intended to imitate the human brain’s behavior, with
artificial neurons arranged at the input layer, hidden layer(s),
and output layer, respectively. The ANN topology is illus-
trated in Fig. 2. The input layer gathers the preprocessed
information and acts as a conduit to the hidden layer(s).
Each neuron can be represented by a weighted linear com-
bination and contains a mathematical model based on its
input for determining its output in the hidden layers [48].
The ANN-based method has long been used for modeling
as they provide automated knowledge extraction and high
inference accuracy if a sufficient amount of operation data
is used for model training [49]. There are many kinds of
network selection methods. A typical type having been suc-
cessfully applied for SOH estimation is Feed Forward Neu-
ral Network (FFNN), also known as Multi-layer Perceptron
(MLP), which is usually trained by the back-propagation
algorithm.

So far, it is generally believed that the internal resistance
is the most representative feature of the remaining useful
capacity of the battery. Xia et al. used FFNN to prove
the relationship between the complex impedance zero-phase
crossing frequency of a battery and its SOH [33]. How-
ever, the measurement speed of internal resistance is usu-
ally slow, which is almost impossible to realize for online
applications. Zhang et al. proposed an online method for
SOH and RUL monitoring based on the fusion of partial
incremental capacity and FFNN [34]. After smoothed the
initial partial incremental curve and carried out the Spear-
man correlation analysis, two strongly correlated features
were extracted from the partial incremental curve as input,
and then two FFNN models for simultaneous estimation of
SOH and RUL were established, leading to a simple model
structure and the satisfactory accuracy and generalization
performance.

However, ANNs usually suffer from slow training speed
and high computational requirements. Therefore, a kind of
fast learning model called ELM has been proposed for
onboard estimation.
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2) EXTREME LEARNING MACHINE (ELM)
Different from other ANNs, the connection weight between
the input layer and hidden layer and the threshold of the
hidden layer can be set randomly, with no adjustment required
after setting. Moreover, the connection weights between the
hidden layer and the output layer can not be adjusted iter-
atively but determined by solving the generalized inverse
matrix [50]. Thus, compared with the traditional neural net-
works, especially with the Single Hidden Layer Feed Forward
Neural Network (SLFN), it delivers faster performance than
traditional learning algorithms in the premise of ensuring
learning accuracy.

Pan et al. used the Thevenin equivalent model to calculate
the ohmic internal resistance and polarization internal resis-
tance of the battery with easily measured terminal voltage,
load current, and ambient temperature [35]. The increment of
the two resistance values was taken as the health factor, and
the ELM method was used to estimate the battery life online.
Compared with the traditional FFNN, the results showed that
the estimation error is significantly reduced with a faster
training speed.

3) DEEP LEARNING NETWORK
With multi-layer perceptron and hidden layers, the concept
of deep learning is originated from the ANN and rising in
recent years. Shen et al.first applied the deep learningmethod
to the online capacity estimation of Li-ion batteries [36].
He utilized a deep convolutional neural network (DCNN) for
the battery capacity estimation based on the voltage, current,
and charge capacity measurements during a partial charge
cycle. The proposed structure successfully avoids the manual
feature extraction process, which has the risk of dropping
useful information. Tian et al. also construct a convolutional
neural network (CNN) to estimate electrode capacities and
initial SOCs, termed electrode aging parameters (EAPs) [51].

Recurrent Neural Network (RNN) is another type of the
deep learning methods that have certain advantages in learn-
ing nonlinear features of sequences. With the assumption
that the attenuation of battery capacity is continuous in time,
Eddahech et al. demonstrated an RNN model to predict the
remaining capacity and internal resistance through the col-
lected SOC difference, pulse current, temperature, and three
latest-predicted internal resistance values [37].

However, RNN suffers from learning long-term depen-
dencies. If RNN stores information over a period of time,
the network gradient tends to vanish, meaning that the net-
work is unable to learn anymore. Zhang et al. synthesized a
data-driven battery RUL predictor by using Long Short-term
Memory Recurrent Neural Network (LSTM-RNN) [38]. The
Root Mean Square Prop (RMSProp) method for small batch
training data samples was used to train the constructed neural
network [52], and a rejection technique was proposed to
solve the over-fitting problem [53]. The results showed that
with similar accuracy, compared with other methods [18],
[54]–[57], the number of offline training data samples can be
reduced by 20% - 50%.

4) SUPPORT VECTOR MACHINE (SVM)
The main concept of SVM is to find a small set of support
vectors out of a large number of data samples, which can
still describe the system. SVM has been successful in a wide
range of applications, especially for nonlinear problems with
small samples, and can effectively prevent local minimiza-
tion. In theory, there is a global optimum and can avoid the
defect of the local extremum. Nevertheless, it is sometimes
troublesome to determine the optimal kernel function and
hyperparameters for nonlinear modeling [47].

In [39], PSO was employed to obtain the Support Vector
Regression (SVR) kernel parameter. By adopting a fresh
validation method, the fusion PSO–SVR model can well
grasp the global degradation trend of SOH with little inter-
ference from local regenerations and fluctuations. Tao et al.
imbedded the PF method into the SVR paradigm to opti-
mize the hyperparameters due to its ability to update the
parameters dynamically, providing the PDF of the opti-
mal parameters [40]. Possibilistic Clustering Classifica-
tion (PCC) was also induced to cluster different operational
states to clusters and then estimate through their belonging
model.

Another drawback of SVM is lacking the ability to out-
put the confidence intervals, so the variation model, RVM,
is widely adopted.

5) RELEVANCE VECTOR MACHINE (RVM)
RVM is also a supervised learning method similar to SVM.
It is based on the Bayesian framework theory, which can
eliminate the irrelevant points through the Automatic Cor-
relation Determination (ARD) and then derive the sparse
model. Compared with SVM, RVM can construct any ker-
nel function without the restriction of the Macy’s theorem.
In terms of parameters, SVMneeds to be initializedmanually,
and different values may have a great influence on the results,
while RVM can be operated automatically.

However, RVM involves a combination of kernel func-
tions, and determining the weight of each function is vital
to the performance. In [58], Yang et al. proposed a fusion
method by using the Discrete Particle Swarm Optimiza-
tion (DPSO) [59] algorithm for selecting kernels adaptively,
and Continuous Particle Swarm Optimization (CPSO) [60]
to adjust kernel combinations as well as kernel parameters
adaptively.

In order to find an alternative online health indicator (HI)
to quantify the battery degradation, Zhou et al. chose the
mean voltage falloff as a HI in each charging and discharging
cycle [42]. After the extraction, Box-Cox transformation was
adopted to enhance the degree of linear correlation between
the HI and the capacity. Then the author compared the per-
formance of the simple statistical regression model and the
RVM model. The result indicated that the proposed RVM
model was more accurate than the simple statistical regres-
sion model and with the confidence interval.

To verify the SVM and RVM performance, Widodo et al.
used the Sample Entropy (SampEn) [61] as a HI to estimate
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TABLE 3. A synopsis of the reviewing results for the data-driven estimation methods.

SOH through both methods [41]. The results showed that
RVM outperforms SVM-based battery health prognostics in
the aspect of accuracy.

So far, the primary data-driven estimation methods in the
literature have been reviewed, and a detailed synopsis of the
estimation results is provided in Table 3. As can be seen from
the table, the dataset is vital to the estimation performance.
Most of these studies used the publicly available data from
NASA Ames Prognostics Center of Excellence (PCoE) [62],
or the Center for Advanced Life Cycle Engineering (CALCE)
at the University of Maryland [56]. However, even with
the same dataset, some articles proposed abnormally highly

accurate estimation results, which may bring confusion to
actual implementation. Therefore, it is necessary to eval-
uate the performance of major data-driven methods on a
real-world dataset with the same evaluation indices.

III. A COMPREHENSIVE AND QUANTITATIVE STUDY
WITH REAL-WORLD DATA
As mentioned earlier, different types of models exhibit con-
troversial results since they had been testedwith different data
sets. Therefore, in this work, we have chosen the aforemen-
tioned major data-driven methods for battery SOH estimation
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FIGURE 3. The electric bus studied in this work.

TABLE 4. Specifications of the electric bus and the battery pack.

based on real-world operation EV data and compare their
performance.

A. REAL-WORLD BATTERY OPERATION DATA
The real-world data adopted in this work was obtained from
six electric buses running in Yingshang County, Fuyang City,
Anhui Province in China. An electric bus is shown in Fig. 3.
All buses are loaded with lithium iron phosphate battery
packs produced by Hefei Gotion High-tech Power Energy
CO., Ltd.

BMS units are used for logging all battery operate data,
including voltage, current, temperature, and 20 other param-
eter values. The data logging interval is 30 seconds, and the
time frame of the recorded data is from January 2017 to
June 2019. The specifications of the electric bus and the
battery pack data are summarized in Table 4.

Due to the dynamics of discharging process, which makes
it difficult to calculate the remaining useful capacity dur-
ing the discharging process. However, the charging current
remains at a relatively stabilized value. Hence, the charge
capacity of a battery pack can be expressed as:

Qi =
∫ ti1

ti2
Idt (1)

FIGURE 4. Diagram of six set of capacity degradation curve.

whereQi stands the total capacity charged in i cycle. ti1 and ti2
represents the initial charging time and ending time, respec-
tively. Accordingly, the available capacity of the battery pack
was:

Ci =
Qi

SOCend − SOCstar
× 100. (2)

As shown in (2), the denominator will approach zero when
the difference of SOC is small. Hence, we only consider the
deep charging cycle (SOC difference ≥ 30%).

As we mentioned in Section I, since SOH quantifies the
degradation degree of LIBs, it will provide guidance for
battery replacement [63]. Most current research works use
characterization parameters of battery aging (e.g., capac-
ity, internal resistance, and power) to define SOH [64].
Among those parameters, internal resistance can only be
acquired in the laboratory condition, and power measure-
ment makes the computation more complex. Hence, for
convenience in real-world applications and maximum effi-
ciency, SOH in this paper is defined as the ratio of current
maximum available capacity Ci over the nominal value C0,
as:

SOH =
Ci
C0
× 100% (3)

In this study, four hundred deep charging cycles were
selected for each bus. After ranking the absolute percent-
age error between each data point and the average value
in the corresponding cycle, the data points with the highest
five percentage errors were regarded as outliers. Their curve
diagrams and the statistical results are shown in Fig. 4 and
Table 5, respectively. It can be seen that some onboard mea-
surement data points show large deviations, and the calcu-
lated remaining useful capacity dropped about 8% at around
the hundredth cycle for all six datasets. Therefore, an appro-
priate data-driven estimation model must be able to reject
those outliers.
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TABLE 5. The statistics results derived from six curves.

B. EXPERIMENTAL SETTINGS
For the data-driven methods mentioned above, some
data-driven models can not deal with the time series directly,
so it’s necessary to use other features to train them. In addi-
tion, the optimization algorithms can not automatically opti-
mize some parameters called hyperparameters, which need to
be set manually. Therefore, the following is a description of
the selected features and hyperparameters of the models used
in this paper. These hyperparameters are determined through
cross-validation, but there is no guarantee that all parameters
are the globally optimal values.

1) EXTENDED KALMAN FILTER
By using the No.6 capacity degradation model listed in the
Table 1 as the measurement equation and the four param-
eters adding noise as the estimation equation, EKF iterates
through the Kalman gain and updates four parameters of the
model when new measurement data are available. The four
parameters and covariance matrix are initialized to ’[0.5, 0,
0.5, 0]’ and ’[1; 0.005; 1; 0.005]’, respectively. We have also
adopted the one-step estimation method, i.e., estimating the
next cycle SOH from the existing model, because the radical
change SOH in real-world applications may not be estimated
by a fixed model and then need to be updated in a real-time
fashion.

2) PARTICLE FILTER
The PF model is developed with the same measurement
equation and initial parameters as used in EKF. One-step
estimation is adopted as same as used in EKF.

3) AUTOREGRESSIVE INTEGRATED MOVING AVERAGE
The ARIMA model is possible to handle the non-stationary
series of data if the series of data can achieve stationary by dif-
ferentiating it to a sufficient degree. Therefore, the parameters
of the ARIMAmodel, including the differentiating times, ’d’,
autoregressive terms, ’p’, and moving average terms, ’q’, can
be determined through the autocorrelation function (ACF)
and the partial autocorrelation function (PACF). In our case,
the model derives the best estimation performance when
(p, d, q) is set to ’4,1,2’.

4) EXTREME LEARNING MACHINE
Different from themodel-based algorithms, model-less meth-
ods estimate SOH through observing a few external feature
values. In this paper, five values - starting SOC, ending SOC,
starting voltage, ending voltage, and average charging current
- extracted from the battery charging data sets are used to train
the ELMmodel. In our case, we set the activation function as

FIGURE 5. Prediction procedure with a sliding window of N in the recent
observation cycles: The relationship between attributes in the current
cycle and the SOH in the next cycle is modeled by the attributes of first N
cycles, which are used as the training data; the SOH in the future is
forecasted by the attributes of the last/current cycle, which are used as
the prediction data; the rest of cycles beyond the sliding window are
irrelevant to the prediction of SOH in this cycle.

the hyperbolic tangent activation function and a single hidden
layer with 30 nodes.

5) SUPPORT VECTOR MACHINE
For the SVMmodel, the five values mentioned above in ELM
are used to train this model, the penalty coefficient is 100,
and the kernel function is radial basis function (RBF) with a
variance of 16.67.

6) RELEVANCE VECTOR MACHINE
For the RVM model, the aforementioned five values in ELM
are also used to train the RVMmodel, and the kernel function
is RBF.

7) LONG SHORT-TERM MEMORY
LSTM cannot directly process the time series, so the time
series obtained by a sliding window is used to train the LSTM
model. As shown in Fig. 5, previous N−1 cycles are used to
form the observation matrix, with the SOH of the subsequent
cycles as the target value [65]. In our case, the size of the
sliding window is ten, and the neuron in the single hidden
layer is four.

The experiments are conducted on a computing platform
with Intel Core i7-6700K processor at 4.0 GHz using 32 GB
of RAM, running Win10 Pro version.

IV. PERFORMANCE EVALUATION AND ANALYSIS
To compare the performance of the aforementioned data-
driven models, 10% of one dataset preprocessed as described
in Section III-A are used for training, and the remaining 90%
are used for testing. The corresponding estimation results are
shown in Fig. 6(a). It can be seen that the SOH estimation
results for EKF, PF, and LSTM models are closer to the real
SOH than ARIMA, ELM, SVM, and RVM model results.
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FIGURE 6. Real and predicted SOH using size of training set.

The fitting curve for ARIMA even shows an upward trend
in the rest of the life cycle, indicating a large estimation

FIGURE 7. The performance of SOH estimation for SVM and RVM models
with 70% data samples for training.

error contained within. The error mainly comes from the out-
liers from the training data because ARIMA is not equipped
with any mechanism to reject those outliers. After training,
the intrinsic structure was fixed, and the estimation results
were only related to the cycle index.

The estimation results for all the models mentioned above
by using 40% data samples for training and 60% data samples
for testing are shown in Fig. 6(b). It can be found that the
results of EKF, PF, and LSTM methods are still closer to the
real SOH than others. Specifically, the fitting curve for ELM
shows a large deviation in the beginning, which is similar
to what ARIMA presents by using 10% data samples for
training. However, ELM failed to estimate SOH because it
could not deal with data sparsity. The single hidden layer
and the non-iterative training process in ELM would lead to
underfitting with small training samples.

The estimation results for all aforementioned data-driven
models by using 70% data samples for training and 30% data
samples for testing are shown in Fig. 6(c). As is observed
from the figure, the estimation results are all close to the real
SOH, which validates the effectiveness of all the aforemen-
tioned models with the substantial number of training data
samples. In this sense, confidence intervals for the outputs are
more significant than their accuracy. The estimation results of
RVM and SVM by using 70% data samples for training are
compared with the real values and presented in Fig. 7. RVM is
advantageous because it can output confidence intervals, and
most of the real values reside in the 95% confidence interval
of estimation results.

To further discuss the impacts of different size of training
set on SOH estimation performance, we apply three metrics
to evaluate the aforementioned models. The first metric is
the mean absolute percentage error (MAPE) to evaluate the
general accuracy, which are defined as follows:

MAPE =
1
m

m∑
i=1

|
yi − ŷi
ŷi
× 100%| (4)
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FIGURE 8. The performance of SOH estimation influenced by different size of training set.

where m is the total number of data samples; yi and ŷi are the
estimated and real values of cycles i, respectively. The second
metric is the time to train each model, and the third metric
is the computational time to complete SOH estimation. The
comparison of three metrics under different training set for
each model by using one dataset are presented in Fig. 8(a),
Fig. 8(b), and Fig. 8(c), respectively.

In Fig. 8(a), the MAPE of PF and EKF are lower than other
methods across all sizes of training samples, while LSTM
presented a similar accuracy after 50% of the data samples are
used for training. The MAPE of ELM and ARIMA are over
7.5% before adopting 30% of data samples for training, indi-
cating that both methods need substantial training samples to
avoid underfitting. In addition, SVM outperforms RVM after
using 60% data samples for training.

Fig. 8(b) and Fig. 8(c) show the average training and
computation time of different models with varied training
samples, respectively. The training and computation steps
were interlaced in EKF and PF models so that the time results
are not shown in Fig. 8(b) and Fig. 8(c). Among other data-
driven models, the training speed of ELM is the fastest. For
the rest of the models, the training speed of ARIMA is almost
equal to that of SVM or RVM, whereas the LSTM model is

more than ten times slower than others. However, although
the computation times between LSTM and other methods are
still vastly different by ten times, the absolute difference is
only within 0.005s, which is tolerable in actual practice.

To find out a more generalized conclusion, the average
MAPE, training time, and computation time results by using
all the six datasets are shown in Fig. 8(d), Fig. 8(e), and
Fig. 8(f), respectively. Each dataset is tested ten times and
records to find the average result so as to reduce randomness
to the utmost extent. The results are graphically depicted
in Table 6. It can be seen that PF shows the best average
accuracy, followed by EKF, LSTM, SVM, RVM, ARIMA,
and ELM. However, ELM is the fastest model for training on
average, followed successively by ARIMA, SVM, RVM, and
LSTM. Additionally, the average computation speed of SVM
is the fastest, followed by ARIMA, RVM, ELM, and LSTM.
These rankings are similar as reported.

The above comparison results indicate that EKF and PF
exhibit a relatively high accuracy (MAPE <2.5%) by using
any proportion of data samples for training. In another word,
as long as an electrochemical model and its initial parameters
are correctly chosen, these adaptive filters could accurately
estimate SOH without extensive operating data. However,
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TABLE 6. The average estimation performance comparison of seven data-driven models by using different proportion of data samples from six different
datasets for training.

this conclusion can only stand if high-precision data mea-
surement devices are applied. Another model-based method,
ARIMA, is somewhat on the opposite. Unlike EKF and PF,
it needs a substantial set of data to fit with a time series model,
which makes it more suitable for short-term prediction.

On the other hand, without requirements on prior knowl-
edge, the ’black box’ framework adopted in model-less meth-
ods would produce results that are entirely dependent on the
training samples. Among these models, ELM is the fastest
in training speed because no iteration was involved in its
training. However, it suffers from low accuracy and the
incapability to reject the outliers. On the opposite, LSTM
demonstrates the best accuracy with the longest training time.
SVM is superior to RVM in terms of accuracy, as well as
shorter training and computation time. Despite that, RVM can
output confidence intervals, which makes it one of the most
prospective models in the future.

V. FURTHER DISCUSSION
Application categories and resource limits are determined in
which cases a data-driven method can be applied. Thus, dif-
ferent elements should be viewed when choosing the appro-
priate method for a certain context [66]. In this section, some
aspects that need considerations in future applications of LIB
aging estimation will be discussed.

A. ACCURACY
The accuracy of a data-driven method is one way to indi-
cate how successfully it fulfills its goal by a fair metric.
For instance, EKF proposed in section IV was evaluated by
MAPE, which was shown to be less than 3%. In this case,
we can say it is a highly accurate method.

B. CONFIDENCE INTERVAL
When applying data-driven methods, the bias-variance trade-
off needs to be considered [67]. Thosemethods that specialize
in error minimization are possible to end up with the overfit-
ting issue. Therefore, instead of getting rid of errors, a better
result should give a confidence interval within which the true
value is located. In this regard, an ideal estimation model
should be probabilistic so that it can provide a range of values
to represent the estimation results with a specified confidence
level.

Among all the methods reviewed, RVM employs a proba-
bilistic Bayesian framework, while PF is based on Bayesian

filtering and Monte Carlo simulation. Thus, both meth-
ods are capable of producing confidence intervals as their
output.

C. ABILITY TO DEAL WITH NONLINEARITY
SOH recession is a strongly nonlinear process, so the capa-
bility to model nonlinear relations is crucial for data-driven
methods. Both EKF and PF can take nonlinear equations for
measurement and transition. Besides, ANN and SVM frame-
works also allow nonlinear regressions. However, ARIMA is
one of the linear regressionmodels. Consequently, limitations
could be seen in practical applications.

D. ROBUSTNESS
A severe limitation for current data-driven methods is
that their development has been limited to aspects about
measurement accuracy. In the literature, such measure-
ment data were considered as known and accurate [68].
Nevertheless, when estimations are performed in practice,
such data typically contain a certain amount of noise.
This inaccurate measurement can lead to a huge estima-
tion error, resulting in misleading conclusions. Hence, it is
of practical importance to build a robust model against
noises.

SVM and RVM involve robust mechanisms to deal with
small data fluctuation and aberration. In fact, they are
engaged with an inherent sparse mechanism that allows them
to neglect small data variation, and RVM can even dis-
card irrelevant data [68]. Besides, EKF is also competent in
terms of noise exclusion. On the other hand, ARIMA and
ELM do not include any comparable mechanism to reinforce
estimation robustness. Furthermore, in PF, the outliers will
also cause filter divergence, leading to unwanted estimation
performance [25].

E. COMPUTATION COMPLEXITY
The computation complexity is evaluated as the resources
required by a data-driven method to run. In particular,
it focuses on their time (amount of time it takes to run an
algorithm) and memory (amount of memory space required
to solve an instance) requirements. The determination of a
model’s computational complexity is useful because by this
way, we can (i) decide whether a part of the assignments
should be carried out online or offline, (ii) distribute storage
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TABLE 7. The summary of different models.

space in a more effective manner, and (iii) suggest modifica-
tions that would improve the computation results [66].

Since the computation complexity is generally difficult to
quantify, one common representation of it is the asymptotic
behavior expressed by big-O notations, which character-
ize functions according to the correlation between run time
or space requirements and the input size in a data-driven
method.

Among the aforementioned models, the complexity of PF
is independent of the state dimension and increases by the
function of the particle number (Np). The corresponding time
complexity is O(Np) [68]. The computational complexity of
ARIMA was found to depend on its order. In this sense, its
big-O complexity cannot be determined. The computational
complexity of the ANN framework model is varied based
on the number of training samples, input dimensions, hidden
units, and outputs [69].

F. CAPABILITY TO DEAL WITH DATA SPARSITY
Data sparsity is a term used to describe insufficient data in a
dataset [70]. This is a common problem in data-driven meth-
ods since datasets for training are usually incomplete in many
real-world applications. On the other hand, the computation
time may grow to be unacceptable when the training data size
exhibits a small increment because of the big-O complexity.
Consequently, an ideal estimation model should achieve a
high degree of accuracy with fewer training data, such as EKF
and PF.

G. GENERALIZATION
In practice, thousands of single batteries are connected in
series to form a package, making it inefficient to build the
estimation models for each individual battery. Therefore,
a generalized estimation model is essential, and such a model
must react to a new dataset or a new battery without much
training.

Model-based methods are based on a specific battery
model (e.g., an electrochemical model) to estimate the battery
SOH. Nevertheless, even batteries of the same prototype
could exhibit completely different electrochemical models
due to the variances in running conditions. On the other hand,
model-less methods are more flexible because they are not
subjective to such limitations.

The characteristics of the aforementioned SOH estimation
methods are summarized in Table 7.

VI. CONCLUSION
Recently, data-driven approaches have been widely adopted
to developmethods for accurate SOH estimation to ensure the
efficiency, reliability, and safety of LIBs in EVs. Although
data-driven methods have been applied in numerous SOH
estimation processes, few comprehensive studies have com-
pared the performance of these methods. Therefore, in this
study, several different data-drivenmethods, namely EKF, PF,
ARIMA, ELM, SVM, RVM, and LSTM, were investigated
and evaluated. To our best knowledge, this is the first work to
compare their performance with the real-world EV operation
data.

The comparison showed that PF yielded the highest perfor-
mance in terms of the average accuracy, while ELM was the
model with the fastest training and SVM was the model with
the fastest computation. Hence, none of the aforementioned
methods can be considered an absolutely superior method,
and a trade-off among the desired accuracy, the output
confidence interval, the ability to deal with nonlinearity,
robustness, computation costs, the ability to deal with data
sparsity, and generalization should be considered for each
particular situation. Table 7 gives a summary of the afore-
mentioned methods.

Finally, this investigation is limited because only the differ-
ent methods were compared, but the electrochemical model
and HI might also affect the estimation performance. In the
future, more explorations are needed by comparing the esti-
mation inputs to provide insights into designs.
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