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ABSTRACT Due to the variety of video types and different quality on the Internet, it brings more
challenges to video processing algorithms such as video object segmentation. Most existing video object
segmentation methods rely on modules in other fields as an additional structure of the segmentation model.
The combination of modules can improve the accuracy of the model, but it will also reduce the algorithm
speed. This paper proposes a semi-supervised video object segmentation method based on local and global
consistency learning, which does not rely on additional structures to achieve fast segmentation. First,
we extract the embedding features of the image based on GhostNet which is the lightweight network.
By using the embedded features of pixels, the graph model is established based on the similarity between
pixels. Second, we adopt the local-global consistency learning framework to construct the label conduction
model. Third, to optimize the memory occupation and inference speed of the model, we propose a sampling
strategy for reference frames by considering local and global information. Finally, we establish a high-speed
monitoring video dataset to verify the practical application effect of the method. Our method achieves a
result of 69.5% J&F mean with 46 FPS on DAVIS 2017 dataset. At the same time, this paper constructed
a high-speed monitoring video dataset. The algorithm obtained 68.2% J&F on this dataset, indicating that
the method has good generalization and robust performance in practical applications.

INDEX TERMS Deep learning, video object segmentation, conductionmodel, high-speedmonitoring video.

I. INTRODUCTION
With the advancement of modern science and technology,
video has become the main form of media communication
and social interaction. Some mainstream media have also
joined the ranks of video media, marking that video has
become one of the most extensive information carriers for
audiences. At the same time, due to the application of video
in social and security supervision and other fields, video
processing technologies have also been developed rapidly,
such as temporal video segmentation (TVS) [27] and video
object segmentation (VOS) [24]. Therefore, how to improve
the accuracy and generalization ability of video segmentation
has become an important research topic. Among them, video
object segmentation has a wide range of applications in
areas such as autonomous driving [28], [29], and video
editing [13]. Video object segmentation is mainly divided into
unsupervised VOS, semi-supervised VOS, and interactive
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VOS. The main difference lies in the way users participate
in the testing phase.

This paper focuses on semi-supervised VOS. The semi-
supervised VOS is to divide the pixels in the video frame into
two subsets of the foreground and the background according
to the object pixels in the given first frame and generate the
mask. It is also the core issue of behavior recognition and
video retrieval. Compared with image segmentation, video
segmentation should not only consider the appearance of
the object but also pay attention to the spatial and temporal
changes of the object in the video sequence. This requires the
proposed method can fully utilize the temporal information
to set up the interdependence between frames and learn
the appearance, motion, and scale of the object in different
frames. At present, VOS technology has many difficulties in
practical application, such as appearance deformation, scale
change, occlusion, fast motion, and low resolution.

At present, there have been a lot of achievements and
progress in video object segmentation technology based on
deep learning. OSVOS [2], OSVOS-S [4], PReMVOS [6],
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etc., take the object annotation of the first frame given in the
semi-supervised VOS task as prior knowledge to guide the
segmentation of the current frame. The abovemethods greatly
improved the segmentation performance by optimizing the
spatial smoothness in the specific area. However, the
information obtained from the first frame may not be optimal
for the deformation, occlusion, and reappearance of the object
in the video. Therefore, some algorithms [3], [13], [14]
uses the similarity of embedded features of pixels to guide
model segmentation. These methods do not need to fine-tune
the first frame, and by establishing a connection between
the current frame and the previous frame, the segmentation
performance is significantly improved and better temporal
smoothness is achieved. However, this method of spreading
local sparse information has a drift problem. When the
prediction of the current frame has errors, the prediction
errors of the subsequent frames will continue to add up.

Based on these problems, we propose a semi-supervised
video object segmentation algorithm based on local and
global consistency learning. We use a local and global
consistency learning algorithm to process video frames,
establish a label transmissionmodel between frames, and take
longer-term information into the video segmentation model.
The sampling method of the reference frame is proposed
to reduce the calculation amount of the algorithm and the
time cost of model inference. Finally, to verify the actual
application performance of the algorithm, in addition to the
DAVIS and Youtube-VOS datasets, this paper constructs a
high-speed monitoring video dataset, taking the vehicles on
the road as the foreground target in the figure, including
the rapid movement of the vehicles, scale changes, and low
resolution. Complicated conditions such as speed, mutual
occlusion, etc., are used as a supplement to the generalization
of the verification algorithm.

This paper is organized as follows. Section II presents a
survey on the related work. Section III describes the proposed
framework of the video object segmentation approach. The
datasets and experimental results on three datasets are
presented in Section IV. In Section V, we conclude from the
results and discuss our future work plans.

II. RELATED WORK
The popular VOS methods include the single-frame process-
ing method, propagation-based method, and remote spatio-
temporal method.

A. THE SINGLE-FRAME PROCESSING METHOD
It is to separate the video into multiple images without
considering the temporal information. Fully Convolution
Network (FCN) [1] was a classical image segmentation
model, which directly predicted the category of pixels
through up-sampling to obtain the object mask. Then,
OSVOS [2] applied FCN to the video segmentation task,
which processed each frame of the video individually.
OSVOS-S [4] added an instance-level segmentation module
in OSVOS to distinguish each object. A classifier was used

to generate the semantic prior information, and another was
used to model the appearance of the object. Then, by fusing
semantic and appearance information, the model outputted
the segmentation mask of the current frame. OnAVOS [5]
was also a method based on OSVOS, which selected the
credible region in the test sequence as per the reliability
and spatial configuration to enhance the training data and
adapt the model to the appearance changes of the object.
The PReMVOS [6] first employed Region Proposal Network
(RPN) and ROIAlign [7] to obtain the rough recommendation
of the object, and segmented the object region after clipping,
then tracked each instance in the first frame combined with
the optical flow of the object, Re-ID feature embedding vector
and spatial constraints. To deal with the problems of object
deformation, occlusion, disappear and reappear, DyeNet [8]
and BubbleNets [9] attempted to improve the performance
by searching for more superior initial frames. The above
methods greatly improved the segmentation performance
by optimizing the spatial smoothness in the specific area.
However, due to ignoring the temporal information, they had
poor stability in general when the object changes in scale,
deformation, and occlusion.

B. THE PROPAGATION-BASED METHOD
It adopted the similarity of embedded features between pixels
to guide segmentation. PML [10] transformed pixels in the
reference frame into the embedding space and then predicted
the pixel category. VideoMatch [11] used a siamese network
to extract pixel features and then used the similarity of pixels
to match the pixel category. The above two methods selected
the first frame as the reference frame. MaskTrack [12],
RGMP [13], and FEELVOS [14] added the information of
the last frame to the segmentation model, then established the
local relevance. These methods improved the segmentation
performance by making associations with the first frame or
the last frame. However, the above methods only established
inter-frame dependencies locally, which will lead to the error
expansion with the increase of the number of prediction
frames, so the robustness of the algorithm needs to be further
improved. TVOS [15] modeled all frames before the current
frame and sampled the reference frame, but the complicated
network and rough sampling process result in the loss of the
segmentation speed and accuracy.

C. REMOTE SPATIO-TEMPORAL METHOD
It was to optimize the dense long-distance space-time,
taking into account spatial and temporal information. Tsai
et al. [16] employed the multi-label Markov Random
Field (MRF) to represent the video, then completed
the segmentation by solving the minimum energy label
allocation. CNN-MRF [17] utilized Convolutional Neural
Network (CNN) to encode the spatial correlation of pixels
and then described temporal information by optical flow.
Finally, a new MRF model was established by combining
spatial and temporal correlation, which did not rely on
additional modules. BVS [18] designed new energy to
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FIGURE 1. A global framework for semi-supervised video object segmentation based on local and global consistency learning. It mainly includes
four parts: conduction model, affinity matrix, video frame sampling, and appearance embedding model.

approximate the long-distance spatio-temporal connection
between pixels, which only contained few variables. These
models have high computational complexity, and their
performance cannot be compared with the current learning
algorithm.

III. METHODOLOGY
A. FRAMEWORK OF METHOD
Fig. 1 is the schematic diagram of the video object segmen-
tation method proposed in this paper. The process of video
object segmentation based on local and global consistency
learning mainly includes label propagation model, affinity
matrix W, sampling method, and appearance embedding
model. First, we construct the online video segmentation
model through the local and global consistency learning
framework, which is the label propagation model, to establish
the connection between the current frame and the historical
frame. The affinity matrix W in the propagation model
is to describe the similarity measure between pixels. The
sampling method obtains a certain number of reference
frames from historical frames to improve the inference
speed. The appearance embedding model learns the object
appearance features in the video.

B. THE FRAMEWORK OF LOCAL AND GLOBAL
CONSISTENCY LEARNING
Semi-supervised learning has two important prior consis-
tency hypothesizes [19]: 1) Points with similar locations
tend to have the same label; 2) Points with similar internal
structures tend to have the same label. Learning with Local
and Global Consistency (LLGC) is a graph-based learning

algorithm [20], [21]. It constructs a graph model according to
the correlation between samples, then obtains a classification
function based on the graph model and optimizes it, and
finally predicts the label of unlabeled data. The essence of the
LLGC is to smooth the classification function, which makes
the labels of each sample spread to the adjacent samples until
it reaches a stable state.

For the classification problems, it is assumed that there
is a sample set D = {(x1, y1), (x2, y2), (xl, yl), xl+1, . . . , xn},
where the xi(i ≤ l) are labeled samples and the xu(l + 1 ≤
i ≤ n) are unlabeled, the label set L = {1, . . . , c}. The
task of the classification algorithm is to predict the label of
unlabeled samples. In the LLGC algorithm, F is defined as
a series of non-negative n × c matrices, representing the
label probability corresponding to the sample set D. F can
be regarded as a vector function and the label of xi is the
category of the column where the maximum value is in Fi.
Define matrix Y ∈ F , when xi is marked as yi = j, Yij = 1,
otherwise the Yij = 1, somatrix Y is consistent with the initial
label of the sample.

The steps of the LLGC are as follows:
1. Define the affinity matrix W , which represents the

spatial relationship between samples. When i = j, the affinity
matrix Wii is set to 0 to prevent the sample point from
transmitting the label information to itself. When i 6= j,
the affinity matrix W is shown in equation 1. is defined as
the norm. σ is a constant, usually set to the mean value of the
distance between each sample.

Wij = exp

(
−
||xi − xj||2

2σ 2

)
(1)
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TABLE 1. The existing method, brief methodology, highlights, and limitations of the related works.

2. Construct the matrix S = D−1/2WD−1/2. Where D is
a diagonal matrix, and Dii is equal to the sum of the i-th
row ofW .

3. Initialize F(0), and iterate equation 2 until convergence.
α takes (0,1) to weigh the proportion of labeled samples and
unlabeled samples.

F (t + 1) = αSF (t)+ (1− α)Y (2)

4. F∗ represents the limit of F(t), then the label of the
sample point xi is yi = argmax

j≤c
F∗ij .

The LLGC algorithm regards the sample set D as a graph
G = (V ,E). The vertex set V is composed of samples
X . The edge E is weighted by W , indicating the similarity
between samples. The matrixW is symmetrically normalized
to obtain the matrix S, which is conducive to the convergence
of the iterative calculation. During the iteration, each sample
receives the label information from its adjacent samples and
maintains the initial label information of the sample set.
Finally, the most label information received by unlabeled
samples is the prediction of the model for these samples.

C. VIDEO OBJECT SEGMENTATION APPROACH
The LLGC algorithm can be used to construct the label
conduction model, which is used to predict the object mask of
unknown video frames. The stable segmentation of the video
object needs to rely on the dense pre-frame information, and
the video data processing is different from the point data:
(1) Since the video frame is processed sequentially, the infer-
ence of the current frame cannot rely on the subsequent
video frames, the model must be predicted online. (2) The
video is composed of multiple single-frame images, and each
image has thousands of pixels, so the designed similarity
measurement between pixels should be simple and efficient.

1) ONLINE SEGMENTATION METHOD
According to the iterative of LLGC, a label conduction
regularization framework is proposed, and the loss function
Q (F) related to the sample label matrix ŷ is defined as shown

in equation 3.

Q
(
ŷ
)
=

n∑
i,j

wij

∥∥∥∥∥ ŷi
√
di
−

ŷj√
dj

∥∥∥∥∥
2

+ µ

l∑
i=1

||ŷi − yi||2 (3)

wij represents the similarity between pixel i and j and di
represents the sum of row i in the affinity matrix of pixel j
and reference pixel j. The first term represents the smoothing
constraint, which makes the sample points with similar
locations more likely to be in the same label category. The
latter term represents a consistency constraint, which can be
used as the penalty when the prediction result is inconsistent
with the initial label. This constraint includes labeled data and
unlabeled data.µ is a positive parameter that balances the two
constraints.

Therefore the classification problem can be expressed as
the following equation:

ŷ = argminQ (y) (4)

For the VOS task, when inferring the t frame, the front
t − 1 frames of the video have been predicted. Therefore,
the iterative process can be realized in the order of video
sequence. According to equation 2, the iterative equation of
the video can be approximated as the following equation:

ŷ (t + 1) = S1:t→t+1ŷ (t) (5)

S1:t→t+1 represents the similarity matrix S, which calcu-
lates the similarity between the pixels from the first frame to
the t frame and the pixels from the t+ 1 frame. Since there is
no label before the first frame, the initial label value Y item
is omitted for the t + 1 frame.

For t+1 frame, the label propagation process of the above
equation can be expressed as minimizing the smoothing term
in the loss function. i is the index of t+1 frame, j is the index
of all previous frames.

Qt+1
(
ŷ
)
=

∑
i

∑
j

wij

∥∥∥∥∥ ŷi
√
d i
−

ŷj
√
d j

∥∥∥∥∥
2

(6)
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FIGURE 2. Schematic diagram of the sampling method. Intensive sampling is used in the sequence closer to the current frame, while sparse sampling
is used in the long-distance frame.

2) SIMILARITY MEASURE
The similarity measure is the core of the label propagation
model, which defines the similarity between two pixels, and
is the basis to predict the pixel category. Therefore, the quality
of video object segmentation depends heavily on similarity
measures.

To establish a smooth classification function, the similarity
measures should consider both semantic and spatial infor-
mation. The similarity measure wij is shown in equation 7,
which includes an appearance item and a space item. fi, fj are
the embedded feature values extracted from the pixels pi, pj
through CNN. loc(i) represents the spatial position of pixel i.
The spatial term is controlled by the locality parameter σ .

wij= exp
(
f Ti , fi

)
· exp

(
−
‖loc (i)− loc (j)‖2

σ 2

)
(7)

3) SAMPLING METHOD
For video sequences of hundreds of frames or more,
the computation of similarity matrix S on all previous frames
has high complexity, so reasonable simplification methods
need to be adopted to increase the model rate. Since the
video has the characteristics of the small difference between
close range frames and the weak connection between distant
range frames, sampling methods need to take into account
both close and distant range frames. Close range frames can
achieve local information association, while distant range
frames can contact global information so that the local and
global information is integrated to ensure the accuracy and
robustness of the model. In this paper, small amount frames

are sampled according to the temporal redundancy in the
video.

Specifically, We save the 40 frames before the current
frame as historical frames. 9 frames are sampled from the
historical frames: the first frame; 4 consecutive frames before
the current frame; and the other 4 frames are sparsely sampled
in the sequence between 40 and 5 frames from the current
frame. That is, dense sampling is used in the sequence closer
to the current frame, while sparse sampling is adopted in the
long-distance frame. When the current frame t is less t han
10, all frames must be sampled.

During sparse sampling, the sampling frames are selected
based on the similarity between frames. Firstly, embedding
features of the video frames from t−40 to t−5 and the current
frames are reduced by using the feature hashing method [22],
that is, the feature vector is mapped to the low-dimensional
space using a hash function. The hash function uses the
non-cryptographic hash function MurmurHash3. Since the
number of sparsely sampled candidate video frames is not
more than 35, the number of columns of the hash matrix
output by the hash function is set to 6, which can represent
26 − 1 feature vectors at most to avoid hash collisions in
low-dimensional spaces. Figure 3 is a schematic diagram of
dimensionality reduction using the feature hash method.

Then we measure the distance of the low-dimensional
vector output by the feature hash and utilize the Hamming
distance [23] to calculate the distance between the vectors.
By calculating the Hamming distance between the current
frame and the corresponding embedding vector of the
previous t−40 to t−5 frames in the low-dimensional space,
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FIGURE 3. Dimensionality reduction through feature hashing.

FIGURE 4. Schematic diagram of ordinary convolution and Ghost module.

the first 4 frames with the smaller value are taken as the sparse
sampling frames.

D. APPEARANCE EMBEDDED MODEL
The CNN is adopted to learn the appearance feature of the
object in the video so that the method can adapt to the
short-term and long-term changes caused by the movement,
deformation, and scale change. In this paper, we employed
the lightweight CNN GhostNet as the backbone network of
the appearance embedding model. Similar feature map pairs
are generally obtained in deep CNN, and the key idea of
GhostNet is to obtain these similar feature maps by simpler
calculation. Firstly, a small number of convolution kernels
are used to manipulate the image, and then the redundant
feature maps are mapped from the feature maps derived from
the convolutions with cheap linear operations. It reduces
parameters and computation with a low cost of precision
without changing the output size and channel number of the
feature maps.

The appearance embedding model learns the appearance
of the object from the training data. Firstly, given the object
pixel xi, and all pixels in the previous frame are regarded as
references. fi, fj represents the embedded features extracted in
the backbone network of the pixel xi and its reference pixel
xj, and the predicted label ŷi of the pixel xi can be expressed
as equation 8.

ŷi =
∑
j

exp
(
f Ti fj

)∑
k
exp

(
f Ti fk

) · yj (8)

The reference indexes j and k indicate the time range
before the current frame. The VOS task is to classify pixels,
so the cross-entropy loss function is applied to optimize the
appearance learning model. In Equation 9, xi is all the pixels

in the current frame, and yi, ŷi are the labels and predicted
labels of the pixels.

L = −
∑
i

logP
(
ŷi = yi | xi

)
(9)

IV. EXPERIMENTAL RESULTS
In this section, we introduce the details of the evaluation,
including the datasets, settings of the experiments, and
obtained results.

A. DATA PREPARATION
We use DAVIS 2017 [24], Youtube-VOS [25], and a self-
built high-speed monitoring video database to verify the
effectiveness of the method. DAVIS is the most representative
database in the field of VOS, covering complex scenes such
as object deformation, occlusion, rapid movement, blur and
defocus. DAVIS database has high quality and all frames of
the video sequence are marked with high-resolution pixels.
Youtube-VOS is the largest and most comprehensive dataset
in the VOS field. The videos are from the YouTube video
website. The target category and scene are comprehensive,
and the video shooting equipment is very diverse, so the
video quality and resolution are very different, which is close
to the actual application of video segmentation. In addition,
we select the monitoring video on the high-speed lane as
the sample, take the driving vehicle in the video as the
foreground object, and intercept the video clips to construct
the high-speed monitoring video dataset. The fixed position
of cameras results in a limited viewing angle. Since the
vehicle is in a state of high-speed motion, to maintain the
continuity between video frames, we set the frame rate of
the extracted frame to 1, then convert the video into images,
and utilize the image annotation tool named labelme [26]
for pixel-level annotation of video frames. According to the
proportion of vehicles in the video, we divide the vehicles in
the road into two labels: small buses (cars) and large trucks
(trucks), and multiple vehicles of the same category require
instance differentiation. The high-speed monitoring video
dataset contains 30 video sequences, and the entire dataset has
1425 frames, with an average of 47.5 frames per video. The
dataset is randomly divided into 18 training sets and 12 test
sets.

Considering the cost of annotation, we expand the video
frames and the corresponding annotations of the self-
built dataset. The clockwise 180◦ rotation and mirroring
method are used to transform the video frame, and then the
obtained image is recombined into a new video sequence.
Figure 5 shows the original high-speed monitoring
video sample and its corresponding expanded sample.
Table 2 shows the basic information of the above three
datasets.

B. IMPLEMENTATION
The proposed approach is implemented in PyTorch. It is
running on a computer equipped with Intel(R) Core

127298 VOLUME 9, 2021



H. Liang et al.: Semi-Supervised VOS Based on Local and Global Consistency Learning

TABLE 2. Summary of DAVIS 2017, Youtube-VOS, and high-speed monitoring video data sets.

FIGURE 5. Sample expansion example. (a) is the original video frame;
(b) is after mirror flipping; (c) is after 180◦ rotation.

(TM)i7-7700K CPU, an NVIDIA GeForce GTX 1080 TI
GPU, and 16GB of RAM under Ubuntu16.04.

1) TRAINING PHASE
In this section, GhostNet is employed as the backbone of
the method to extract the appearance embedding features of
the object. To better retain the high-pixel features, the Ghost
module adopts a convolution operation with a step length of 1
in the fourth and fifth stages of the network. At the same
time, a layer of 1 × 1 convolution kernel is added at the
end of the network to generate 256-dimensional embedding
features. When training the appearance embedding model,
the GhostNet weights are pre-trained on the ImageNet
dataset, and then fine-tuned on different datasets. Iterated
240 epochs on the Davis 2017 dataset and self-built high-
speed monitoring video dataset, and 30 epochs on the
Youtube-VOS dataset.

In this paper, the input image is randomly flipped and
randomly cropped to 256 × 256 size for data enhancement.
The SGD stochastic gradient descent training strategy is
adopted, the number of batches is set to 2, the initial learning
rate is 0.0025, and cosine annealing is used to reduce
the learning rate. Use NVIDIA GeForce GTX 1070 GPU
to optimize 60 hours, 160 hours, and 17 hours on Davis
2017, Youtube-VOS, and high-speed monitoring datasets
respectively.

2) INFERENCE PHASE
On the test video, the proposed method is used for online
derivation. Based on this prior knowledge, we set an adaptive
object action prior, that is, the value of σ in wij varies with the
distance between the sampling frame and the current frame.
When the frame obtained by dense sampling is close to the
current frame, σ is 8. And for frames obtained by sparse
sampling, σ is 21.

C. COMPARISON OF SAMPLING METHODS
Effective use of local and global information is the key
to ensuring the accuracy of the video segmentation model.
To verify the effectiveness of the proposed sampling method,
this section uses different reference frame sampling strategies
in the training phase and the test inference phase to study
the impact of local and global information on the model’s
segmentation accuracy. We have selected: 1) 1 reference
frame before the target frame; 2) 3 consecutive frames before
the target frame; 3) 9 consecutive frames before the target
frame; 4) Even in the first 40 frames of the target frame
Sampling 9 frames; 5) The proposed sampling method in
section 3.3.3. Table 3 shows the results of the regional
similarity J of the different sampling methods on the DAVIS
2017 validation set.

In table 3, when the test sequence is inferred, the more
consecutive frames before the target frame are selected,
the higher the segmentation accuracy of the model, which
indicates that the dense sampling before the target frame is
helpful to improve the accuracy of the segmentation model.
At the same time, when training the appearance embedding
model, the model with 9 consecutive frames before the frame
has the best segmentation effect, reaching a region similarity
of 68.5, which shows that the long-distance frame does
not improve the segmentation accuracy of the target frame.
The method of uniformly sampling 9 frames has limited
improvement in the algorithm. This may be because when
the video is too long, the long-distance frame changes greatly
from the current frame, which leads to worse training effects.
The accuracy of the 9-frame sparse sampling method in
this paper is between the uniform sampling and continuous
sampling methods.
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TABLE 3. Comparison of results of different sampling methods.

FIGURE 6. Comparison of different sampling methods.

Figure 6 shows the test video segmentation results of
different sampling strategies. The sampling method of con-
tinuously sampling 9 frames has a more stable segmentation
result than the method of sampling 3 frames and 1 frame,
indicating that the continuous frame before the current frame
is sampled, and the local information of the video sequence is
taken into account. The more the number of sampling frames,
the more the segmentation effect The better. Compared with
the uniform sampling method and the continuous sampling
method, the segmentation effect is unstable. The 9-frame
sparse sampling method used in this article can segment
the target more completely after the video is divided into
50 frames. This is because the sampling method in this article
considers both the long-distance frame and the short-distance

frame, and is compared with the first frame of the video.
Establish a dependency relationship, ensure that the initial
information is not lost, and take into account the local and
global information of the video so that the model has a better
segmentation effect and robustness.

D. SEGMENTATION RESULTS
The experiments in this section were carried out on the
DAVIS 2017 data set, Youtube-VOS data set and high-speed
monitoring video data set. The results of this model on
different data sets were obtained and compared with other
advanced algorithms. Figure 7 shows the change of the loss
function value of the model in this paper when it is trained on
different data sets.
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FIGURE 7. Loss changes during model training.

According to Figure 7, the loss value of the model in this
paper can be stable on different data sets. When training on
the high-speed monitoring video data set and DAVIS data set,
the loss value of the training set and the validation set was
relatively large at first. By continuously adjusting the learning
rate to adapt to the sample, the loss value dropped rapidly
after training to about 60 epochs. After epochs reached
60 times, the loss changes began to stabilize. The Youtube-
VOS dataset only labels the first frame on the validation set,
so only the loss of the training set changes. After training
for two epochs, the loss value drops rapidly, and then after
25 epochs, the loss change gradually stabilizes.

The loss value during training is finally stable in a small
range, indicating that the model training effect is good. The
segmentation results of the model on different data sets are
analyzed below.

1) DAVIS 2017 VALIDATION SET
To verify the effect of the segmentation algorithm based
on the conduction model, Table 4 shows the test results of
different segmentation algorithms on the DAVIS 2017 vali-
dation set in recent years. FT means that the algorithm needs
to be fine-tuned online in the first frame, J&F means the
average of regional similarity and contour similarity, and FPS
is the number of frames processed by the model per second.
Figure 8 shows a comparison of performance and speed
for semi-supervised video object segmentation methods on
the DAVIS 2017 validation set. Among the algorithms that
do not need to be fine-tuned, the method in this paper
achieves a regional similarity of 67.4 and a contour accuracy
of 71.6. The number of frames processed by the algorithm

reaches 46 frames per second. The rate of the model is the
highest, and the accuracy exceeds that of other algorithms
without fine-tuning except the TVOS algorithm. This is
because the appearance embedding model in this paper uses
GhostNet as the appearance learning network, which has
fewer network parameters and a small memory footprint,
but the network feature learning ability has declined. The
PReMVOS algorithm has the highest accuracy, reaching an
area similarity of 73.9 and a contour similarity of 81.7.
However, the network is more complicated, the algorithm
calculation is large, and the running speed of the model is
not high. The method in this paper has the same accuracy
as the DyeNet and CNN-MRF algorithms that need to be
fine-tuned and has a greater speed advantage. Compared
with FEELVOS, the regional similarity of the method in this
paper is slightly higher. This is because although FEELVOS
considers the information of the previous frame and the first
frame, the inter-frame dependence established is very sparse,
and the calculation method of pixel matching is complicated,
and the algorithm is real-time. not tall.

2) YOUTUBE-VOS VERIFICATION SET
Table 5 shows the segmentation results of the algorithm on
the Youtube-VOS verification set. There are two different
evaluation methods of seen and unseen on this data set,
which respectively represents the existing target category
and the unknown target category in the training set. Unseen
can be used to verify the generalization performance of
the algorithm to general foreground targets. The method in
this paper surpasses all algorithms except PREMVOS, and
the average accuracy Overall is equivalent to PREMVOS.
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TABLE 4. Comparison of advanced methods on DAVIS 2017 dataset.

TABLE 5. Comparison of advanced methods on Youtube-VOS dataset.

FIGURE 8. A comparison of performance and speed for semi-supervised
video object segmentation methods on the DAVIS 2017 validation set.

Compared with the two single-frame processing models of
OSVOS andOnAVOS, as well as the RGMPmethod that only
considers the prediction mask and features of the previous
frame, the accuracy advantage of the algorithm in this paper
is more significant under the unseen category than under
the seen category, indicating that it is especially For random
videos of unknown categories, methods that do not consider

TABLE 6. Comparison of advanced methods on high-speed monitoring
video dataset.

timing information or only consider local sparse information
are less robust and difficult to adapt to changes in new videos.
For the segmentation of unseen category, the method in this
paper achieves a regional similarity of 61.4 and a contour
accuracy of 69.2, which surpasses all other methods in the
table, indicating that the algorithm in this paper can adapt to
the target of unknown categories in the video and has good
generalization performance.

127302 VOLUME 9, 2021



H. Liang et al.: Semi-Supervised VOS Based on Local and Global Consistency Learning

FIGURE 9. Part of the results of the method in the high-speed monitoring video dataset.

3) HIGH-SPEED MONITORING VIDEO DATA SET
To verify the actual application performance of the proposed
method, we tested the method on the constructed high-speed
monitoring video dataset. Table 6 shows the results of differ-
ent algorithms on the high-speed monitoring video dataset.
The proposed method has the best effect in algorithms
that do not require fine-tuning of the first frame, reaching
the region similarity of 66.3 J and the contour accuracy
of 70.2 F , and the average accuracy J&F is also the highest,
reaching 68.2. The algorithm PReMVOS has the highest
accuracy among all the algorithms in the table, with an
average accuracy J&F of 75.9. Compared with VideoMatch
considering pixel similarity matching in the first frame,
the local and global dependencies established by the proposed
method can effectively improve the accuracy of the algorithm.
Figure 9 is the segmentation result of this algorithm on the
video sequence. It can be seen that the proposed method has
a good segmentation effect when the object is fast-moving
and scale transformation, and when the object is occluded
in the third row, it can ensure better edge segmentation. The
results show that the proposed method has better robustness
and generalization in practical applications.

V. CONCLUSION
In this paper, we propose a semi-supervised video object seg-
mentation method based on local global consistency learning.
This method combined the classic semi-supervised learning
method with the video object segmentation task and applied
the graph-based learning algorithm framework to process
video. Instead of establishing dependencies between the
previous frame or the initial frame, we used more unlabeled
frames to improve the robustness and generalization of the
method. Then we proposed the sampling method which takes
into account the local and global information of the video.
It not only reduced the complexity and memory consumption
but also ensures the segmentation stability of the model.
To verify the practical application performance of themethod,

in addition to the DAVIS-2017 and Youtube-VOS datasets,
we constructed a high-speed monitoring video dataset. The
experimental results showed that the proposed method had
a great segmentation effect and high prediction speed in
the methods without fine-tuning, indicating that it had good
practical application value.

At present, the real-time and lightweight model is a trend.
This method adopted GhostNet as the backbone network
to reduce the parameters and designed a sampling method
to reduce memory occupation and computation. However,
the accuracy of the model was insufficient. The backbone
network more suitable for image segmentation tasks should
be used to improve the segmentation accuracy. At the same
time, the background of the high-speed monitoring video
dataset constructed in this paper was relatively single, and
the samples were fewer, which were not comprehensive to
measure the generalization of the method. Therefore, further
research can be conducted on scene selection and annotation
of video.
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