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ABSTRACT Since unmanned aerial vehicles (UAV) are easily deployed, highlymobile, and hover capability,
they are utilized for many commercial applications. In particular, small cells mounted on UAVs, also known
as drone small cells (DSC), may provide temporary relief or ancillary programs for the wireless network.
In this paper, we design a prediction-based proactive drone management (P2DM) framework to reduce
network interference and improve energy efficiency in the multiple DSCs scenario. The P2DM framework
can be divided into offline and online phases. In the offline phase, supervised learning is used to build a highly
accurate mobility prediction model according to the historical data. The prediction model is launched in the
online phase to predict the user position only using a small sample set. The system proactively determines
whether a DSC should be awake or asleep at the next timeslot due to the predicted user positions. Since DSC
has more longer awake time in the deep sleeping mode, it is previously awoken to avoid data propagation
delay. To further overcome the difficulty of obtaining the key performance indicator data (i.e., labeled data) in
the online phase, an unsupervised learning technique is employed for DSC repositioning and power control
to improve energy efficiency. Our simulation results show that the P2DM framework can demonstrate the
advantage in terms of execution time and energy efficiency compared to the existingmethod based on genetic
algorithm (i.e., a heuristic algorithm).

INDEX TERMS Data driven, supervised learning, unsupervised learning, mobility prediction, drone small
cells.

I. INTRODUCTION
Unmanned aerial vehicles (UAV), also known as drones,
can serve as aerial small cells to improve service cover-
age for enhanced wireless network capacity due to flexible
motility [1]. This will enable visual line-of-sight (LoS) com-
munications and open many emerging services [2]. Indeed,
the drone small cells (DSCs) can deliver disaster recovery
and temporary networking and can follow a group of users
assuring service continuity [3]. Notably, artificial intelli-
gence (AI) has been considered as a key enabling technology
for beyond 5G wireless networks integrated with Drones.
AI-based methods act as powerful tools to promote highly
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dynamic DSCs communication networks [4]. Hence, there is
a growing commercial interest in integrating DSCs and AI
into the wireless mobile network ecosystem.

A. MOTIVATION
Single DSC has limited power capacity, payload capacity, and
flight time, whereas a group of DSCs can be coordinated to
provide better quality-of-service (QoS) levels [5]. However,
there are still several challenges that must be overcome.
1) Since DSCs and users are both mobile, the correspond-
ing wireless network scenarios are intrinsically dynamic and
complex. Hence, it isn’t easy to build optimizationmodels via
current techniques or experts’ experience in such networks.
2) To conserve frequency band resources, DSCs will use the
same frequency band. This could lead to interference in user

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 126735

https://orcid.org/0000-0001-6013-1676
https://orcid.org/0000-0002-3759-4805


S.-H. Cheng et al.: Proactive Power Control and Position Deployment for DSCs

devices that are served by multiple DSCs. The interference
becomes particularly severe when the DSCs are close to each
other. 3) DSCs can only carry a limited number of batteries,
and flight time is shortened if communication devices share a
drone’s battery. Therefore, energy efficiency is an important
problem for DSCs.

If the DSC does not serve any served users, it can reduce
energy consumption and extend the flight time by switching
to sleeping mode. When more components of a DSC have
turned off, the DSC has less energy consumption. But, this
increases the time needed to wake the DSC. Before mobile
users begin to request data, we expect a sleeping DSC to be
proactively woken up based on themobility predictionmodel.
This can achieve significant amounts of energy saving with-
out additional delays. According to a small amount of input
data, the accurate prediction of mobile users is a challenging
problem.

In recent years, some data-driven solutions for complex
telecommunication problems have been suggested in the liter-
ature. Hence, machine learning is now rapidly being applied
to communication networks [6]. The most commonly used
machine learning methods may be broadly categorized as
supervised learning (SL), unsupervised learning (UL), and
reinforcement learning (RL) [7].

1) In the SL approach, labeled historical data are ana-
lyzed to construct prediction or classification models
suitable for practical application. If labeled data cor-
respond to key performance indicators (KPIs) (e.g.,
system throughput), the labeled data must be obtained
by collecting data from real operational networks over a
sufficiently long time or simulating the data. In our pre-
vious work [8], a data-driven biadaptive self-organizing
network (Bi-SON) framework based on a SL tech-
nique was developed to improve energy efficiency for
ultra-dense small cells. It assumes that the labeled
throughput data is available. Also, the training process
and updating process of data-driven models spend a
certain amount of execution time.

2) In the UL approach, the hidden structures can be
found from the unlabeled data. It can save the time
of collecting labeled data and the training time. Our
previous work [9] compared the proposed affinity prop-
agation power control (APPC) mechanism based on an
UL technique with the data-driven Bi-SON framework
based on a SL technique. The energy efficiency of small
cell networks in the APPC mechanism is similar to that
in the Bi-SON framework. Because the UL approach
does not require any labeled data, it is unnecessary to
collect real data or perform simulation, which easier
to implement the temporary dispatched DSC networks.
Our previous work [10], [11] proposed an UL approach
to reduce interference for the temporary and dynamic
drone base stations (i.e., an instant network topology).

3) In the RL approach, each action is matched to a cor-
responding reward, and the system learns the opti-
mal actions that lead to the greatest accumulation of

rewards. [12] devised a double deep Q-network-based
resource allocation method that minimizes the total
power consumption subject to the constraints on the
transmit power of each remote radio head (RRH) and
user rates in the cloud radio access network. [13] is an
extension of [12] which focuses on energy efficiency
maximization instead of power minimization. In the
offline stage, the RL agent calculates the reward by
combining the user satisfaction (i.e., greater than or
equal to the target data rate of the user) and power
saving of all RRH in a centralized manner. The user
data rate may be reported from a pre-built cloud radio
access network or be obtained from simulation.

According to different network scenarios, a suitable solution
may be selected by analyzing the network’s optimization
targets and the characteristic of its data.

B. CONTRIBUTIONS
In this paper, we propose a prediction-based proactive drone
management (P2DM) framework to mitigate interference and
increase energy efficiency in DSC networks. The P2DM
framework utilities the SL techniques in the offline stage
and the UL techniques in the online stage to improve sys-
tem performance without setting up real DSC networks or
performing simulation previously. The contributions of this
paper are described as follows:

1) The P2DM framework is proposed to enhance the
energy efficiency of moving group users and DSCs.
Compared with the baseline scheme, the proposed
mechanism can improve that by 133.9%.

2) The random forest (RF) is one of the SL techniques
used to predict and estimate users’ location by analyz-
ing the historical position data. These data are collected
by the originalmacro cell in the service area. According
to the mobility prediction model using a small amount
of input data, each DSC’s operating parameters can be
proactively determined in advance.

3) The K-means clustering (KMC) is one of the UL tech-
niques applied to find the hidden cluster structures via
the input data of user location information predicted by
RF. In the cluster structures, the found cluster centers
are used as candidate positions of the adjacent DSCs,
and our algorithm further performs power control to
reduce interference and save energy.

4) The UL of the proposed P2DM in operation does not
require any labeled data. Because of this, we need
not collect the labeled data from real operational DSC
networks over a sufficiently long time or perform
the simulation to obtain the data. The advantage of
P2DM with the KMC in terms of execution time is
demonstrated.

C. ORGANIZATION
The remainder of this article is organized as follows. A lit-
erature review is presented in Section II. Section III details
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the system architecture, channel model, and KPIs of the DSC
networks. The P2DM framework and its important algorithms
are described in Sections IV and V, respectively. An assess-
ment of the P2DM framework’s performance is provided in
Section VI. Finally, Section VII concludes the paper.

II. RELATED WORK
Table 1 summarizes the mobility prediction of user and
energy efficiency improvement of small cells according to
the following conditions: 1) Prediction of mobile users;
2) Placement of DSCs; 3) Deep sleep of small cell; 4) Energy
efficiency; and 5) Multiple DSCs. In this paper, our pri-
mary objectives are the resource allocation of small cells
and the reposition of drones via mobile users’ mobility pre-
diction. In the literature, [14]–[17] discussed the prediction
model for mobile users. In [14], the use of support vec-
tor machines (SVMs) was proposed to predict the mobile
users’ movements over short time scales in highly dynamic
ultra-dense small cell networks with frequently switching
users. This approach allowed for real-time position predic-
tions without invoking a high data collection load. However,
the authors of [14] only provided the concepts and process
flow of this method without providing experimental evi-
dence to prove their efficacy. [15] proposed a Spatio-temporal
location prediction model based on Long Short-Term Mem-
ory (LSTM) model for mobile users. LSTM was an arti-
ficial recurrent neural network (RNN) architecture used in
the field of deep learning. The prediction model can predict
the user’s location at the next timeslot, and then the edge
server can preload the user’s requirement and enhance the
quality of experience. In [16], the authors proposed a novel
deep learning-based predictive beamforming scheme in the
presence of UAV jittering. In particular, the altitude angle
between the UAV and the user at the current timeslot was
predicted using the angle estimates in the previous slots.
Simulation results showed that the proposed scheme could
accurately track the variation of the angles. In [17], machine
learning techniques are utilized to learn mobile users’ mobil-
ity and predict their moving directions. By tracking users’
trajectories, the authors brought out the beam tracking meth-
ods based on users’ mobility. The learned deep neural net-
work was used to predict the user’s trajectory with up to
80 percent prediction accuracy. The authors of [18] evaluated
the accuracy of many classifiers using 121 datasets of the
University of California (UCI)Machine Learning Repository.
They concluded that the best classifier was the RF, followed
by the SVM and neural networks. However, the RF was not
utilized to predict the location ofmobile users in the literature.

In [19]–[23], the authors proposed to update the position
of UAVs for enhancing the KPI of the wireless networks.
In [19], the authors proposed a novel Quality-of-Experience-
driven UAV-assisted communications framework, which uses
the mean opinion score (MOS) to assess user satisfaction.
In this framework, Q-learning is used to solve UAV positions
and dynamic movements that maximize the MOS. In [20],
the authors focused on investigating the performance of two

TABLE 1. Summary of mobility prediction of user and energy efficiency
improvement of small cells.

UAV selection strategies and maximizing the throughput of
the network. Further, an algorithm was proposed to find the
optimal position/coordinates of the selected UAV. In [21],
the UAVs’ location planning problem was investigated based
on the RL algorithm. By deploying multiple UAVs in suitable
locations, the communication services can meet different
users’ different requirements. In [22], the authors studied
the joint optimization of UAVs’ 3D placement and resource
allocation in a multi-UAV system. Numerical results show
that the proposed algorithm maximizes the minimum achiev-
able expected rate with low complexity. In [23], the author
investigated a multi-UAV-aided relaying network to maxi-
mize the minimum rate by optimizing the UAVs’ positions
and resource allocations.

On the other hand, in [24]–[27], the authors considered the
power control of small cells to improve energy efficiency.
In [24], sleeping strategies for small cells were investigated
by switching off certain hardware modules to reduce power
consumption without degrading the QoS. The power-saving
modes of small cells were categorized by sleeping depth.
In stand-by sleeping mode (i.e., the light sleeping depth),
the small cell only turns off its radio frequency compo-
nents and power amplifier (PA) so that it can be woken
up very quickly. The small cell further turns off the base-
band (BB) component in the deep sleeping mode while its
power source and back-end connections are the only active
hardware modules. Hence, the deep sleeping DSC needs to
take a longer wake up to switch the active mode. In the
passive cell ON/OFF process, the awakening time required
for the cell could cause additional data propagation delay
between the cell and the user. In [25], the stand-by and deep
stages for sleep mode were also considered. The authors
proposed a novel sleep mode optimization approach to min-
imize the power consumption while the arriving user traffic
is sufficiently covered. In [26], a noncooperative game was
used to model the relationship between LoS links, energy
management, and the optimal 3D location of each UAV for
improving the downlink coverage and energy efficiency of
multi-UAV networks. This approach allows UAVs to update
their network scheduling schemes and resource allocation
strategies dynamically. In [27], a learning-based approach
was developed to solve the energy efficiency problem. The
trajectories and transmission powers of the UAVs were
determined by a multi-agent Q-learning-based trajectory-
acquisition and power-control algorithm. The energy effi-
ciencymaximization problems in small cells’ communication
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FIGURE 1. The dorn small cell (DSC) architecture.

services have been well studied in [24]–[27], where the com-
puting process was not considered. [28], [29] applied the
computation energy efficiency, which additionally consid-
ered the number of computation bits performed by the user
and the user’s total consumed energy in the process of local
calculation.

Although the abovementioned studies have contributed
significantly to the optimization of UAV-enabled wireless
networks [16], [19]–[23], [26], [27], [29], dynamic group user
movement prediction, multi-DSC sleep-mode power con-
sumption control, DSC repositioning, and simple machine
learning techniques were not utilized simultaneously to
improve energy efficiency.

III. SYSTEM MODEL
A. SYSTEM ARCHITECTURE
Fig. 1 illustrates the system architecture in this study. The
service coverage zone in a macro cell is presumed to be
rectangular in shape and divisible into N small areas. One
small area is w(m) × w(m). Each small area may be further
divided into F × F small grids. Each small area is assumed
to be serviced by only one DSC. Each DSC will only fly
within its small area, which prevents DSCs from colliding
with each other. The N DSCs fly at a fixed altitude of h,
and the horizontal coordinates of the n ∈ N DSCs are
Dn = [xn, yn] ∈ R2. The system environment has K users,
and the dynamic horizontal coordinates of the k-th user are
Mk = [xk , yk ] ∈ R2.
The access links of N DSCs are all set as the same fre-

quency band fAL . Hence, the users may be interfered with
by the unserved DSCs. Each DSC/user has only one omni-
directional antenna. Each user only is served by one DSC.
The backhaul links between the macro cell and DSCs use
the frequency band fBL that is different from fAL . There-
fore, the interference from the macro cell is negligible. Opti-
cal fibers connect the macro cell to the core network. The
reported data from the DSCs are collected and analyzed by an
edge control center in the macro cell. Then the control center
makes decisions about the DSCs’ operating parameters after
analyzing these data.

B. USER MOBILITY MODEL
We create our user mobility dataset from simulated data.
In real life, mobile users are often involved in team activi-
ties. The reference point group mobility (RPGM) model is
one of the most commonly used group mobility for mobile
networks [30]. In a group, each user follows a group leader
that determines the group’s motion behavior. The random
waypoint mobility model generates the predefined paths of
group leaders [31]. The group members in a group are usually
randomly distributed around the group leader. Equation (1)
determines how much the motion of group members deviates
from their group leader as follows [32]:{∣∣vtmember ∣∣ = random(−1, 1) · ηs · vmax +

∣∣vtleader ∣∣
θ tmember = random(−1, 1) · ηa · θmax + θ tleader ,

(1)

where θmax is the maximum shift angle of each user and
Vmax is the maximum moving speed of each user. Thus,
the moving speed of each user varies over time (i.e., not a
fixed value). Denote ηs and ηa as the speed deviation factor
and the angle deviation factor, respectively, where 0 < ηs< 1,
and 0 < ηa < 1. Based on the group leader, ηs and ηa are
used to control the deviation of the velocity (magnitude and
direction) of group members. The total number of users in
the user mobility dataset equals the sum of group members in
each group leader.

C. RADIO PROPAGATION MODEL
Unlike terrestrial base stations, DSCs can provide LoS com-
munication links to users on the ground. The radio propa-
gation model is used to model the downlink transmission
from a DSC to a user and is commonly modeled by con-
sidering the LoS and Non-line-of-sight (NLoS) signals and
their probabilities separately [33]. Considering the free space
propagation loss, the channel model [34] of the air-to-ground
link is expressed as follows:

Lϕn,k = 20 log(
4π fALdn,k

c
)+ δϕ(dB), ϕ ∈ {LoS,NLoS},

(2)

where c is the speed of light, δϕ is the mean additional losses
for link, and ϕ ∈ {LoS,NLoS} indicates the LoS and NLoS
cases, respectively. The euclidean distance between DSC n
and user k is dn,k =

√
h2 + (Mk − Dn)2.

To characterize the random effect of LoS and NLoS chan-
nel for the air-to-ground link [35], the probabilities of LoS for
a user k associated with DSC n is

PLoSn,k =
1

1+ τ1 exp(−τ2[θn,k − τ1])
, (3)

where θn,k = arctan( h
rn,k

) is the elevation angle and rn,k =√
(xk − xn)2 + (yk − yn)2 is the horizontal distance between

the DSC n and user k . By definition, the NLoS probability is
expressed as PNLoSn,k = 1− PLoSn,k . Then, the average path-loss
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for the link Ln,k can be written as

Ln,k =
∑

ϕ∈{LoS,NLoS}

PϕL
ϕ
n,k

=
δLoS − δNLoS

1+ τ1 exp(−τ2[θn,k − τ1])

+20 log(
rn,k

cos(θn.k )
)+ 20 log(

4π fAL
c

)+ δNLoS . (4)

Let Ptran denote the transmission power of DSC n. In addi-
tion, Ptramax is the maximum transmission power of a DSC. The
received signal power of user k from DSC n is given by

Precn,k = Ptran (10Ln,k/10 )
−1
. (5)

D. SYSTEM THROUGHPUT
In the downlink of the DSC networks, the signal-to-
interference-plus-noise-ratio ζn,k from DSC n to user k can
be expressed as

ζn,k =
Precn,k

Bn,kN0 +
∑N

l 6=n P
rec
l,k

, (6)

where Precl,k is the strength of the interference signal fromDSC
l to user k and N0 is the power spectral density of additive
white Gaussian noise. Bn,k is the bandwidth allocated to the
downlink between DSC n and user k . We assume Bn,k =
B/ |Un| based on the bandwidth allocations are performed in
full-buffer mode. The available bandwidth of each DSC is B,
the set of users served by DSC n is Un, and the number of
users in DSC n is |Un|. The total system throughput of the
DSC networks ϒsum is expressed as

ϒsum =

N∑
n

K∑
k

rn,k =
N∑
n

K∑
k

Bn,k log2(1+ ζn,k ), (7)

where the throughput rn,k of user k from DSC n.

E. POWER CONSUMPTION
The energy consumption of a small cell comes from its PA,
BB engine, radio frequency small-signal transceiver, direct
current (DC) converter, and main supply (MS) [36], [37]. It is
assumed that the operating modes of each DSC n include the
‘‘active,’’ ‘‘stand-by sleeping,’’ ‘‘deep sleeping,’’ and ‘‘off’’
modes. The number of components turned off in each mode is
different. All of the components are turned off in the offmode,
resulting in zero energy consumption. All of the components
are turned on in the active mode. The power consumption of
DSC n in the active mode PACTn is given by [38]

PACTn =
ιnPPA,max + Nant B

10[MHz] [PRA + PBB]

(1− σDC )(1− σMS )
, (8)

where PRA and PBB denote the radio frequency and BB base
power consumptions (i.e., using one antenna and 10 MHz)
while PPA,max is the PA maximum transmission power. σDC
and σMS denote the loss factors of the different components.
Nant is set to 1 based on each DSC has only one omnidirec-
tional antenna. We adopt the full-buffer traffic model [39],

i.e., the cell load of ιn = 1. Each small cell has two sleep
states, namely stand-by and deep sleeping [40]. The stand-
by model consumes higher power but is faster to wake up
compared to the deep sleeping model. In the case of stand-by
sleeping mode, since the BB component is ON during the
sleep period, wake-up time is shorter than in the deep sleeping
model [41]. Based on the PA and radio frequency components
are turned off in the stand-by sleeping mode, the power con-

sumption of DSC n is expressed as PSBSn =

B
10[MHz]PBB

(1−σDC )(1−σMS )
.

The BB component is further turned off in the deep sleeping
mode to reduce energy consumption while the small cell only
remains base circuit power. The power consumption of deep
sleeping DSC n is expressed as PDESn = PSBSn −

B
10[MHz]PBB.

According to the mobility prediction model in the P2DM
framework, some DSCs can be switched to the deep sleeping
mode. The deep sleeping DSCs are added to the 8sleeping
set. We assume that the number of deep sleeping DSCs is∣∣8sleeping

∣∣. The total power consumption of the system Psum
can be expressed as

Psum = (N -
∣∣8sleeping

∣∣ )PACTn +
∣∣8sleeping

∣∣PDESn . (9)

F. ENERGY EFFICIENCY
The edge control center connects to the macro cell, which
acts as a central controller to collect the information from
all DSCs and perform complex computing tasks to set the
operation parameters of DSCs. This paper aims to obtain a
high downlink throughput with low energy consumption for
the communication services of DSCs. Therefore, we define
energy efficiency as the ratio of total system throughput
ϒsum to total power consumption Psum, where the process of
local calculation is not considered in the DSCs. The energy
efficiency 9 can be expressed as

9=
ϒsum

Psum
=

N∑
n

K∑
k
Bn,k log2(1+ ζn,k )

(N -
∣∣8sleeping

∣∣ )PACTn +
∣∣8sleeping

∣∣PDESn
. (10)

IV. PREDICTION-BASED PROACTIVE DRONE
MANAGEMENT (P2DM) FRAMEWORK
Fig. 2 illustrates the process flows of the proposed P2DM
framework. It is shown that the framework consists of two
major phases: offline training and online decision-making.
A detailed description of these phases is provided in the
following subsections.

A. OFFLINE TRAINING PHASE
In this subsection, we describe the procedures of the offline
training phase.
• Historical data:
Before the DSCs are temporarily dispatched for wireless
networks, the macro cell’s edge control center has been
responsible for collecting past user’ locations in the ser-
vice area. In the past total T timeslots, the user position
dataset is presented as M = {M1

k ,M
2
k , . . . ,M

T
k }, called

the historical user mobile data. The training data are
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FIGURE 2. Process flow of the P2DM framework.

obtained from the historical data to construct the mobile
users’ mobility prediction model.

• Data preprocessing:
In the data preprocessing step, we can perform data
transformation, formulation, or cleaning. Our mobility
prediction model will infer the reached small grid gt+1k
of user k at timeslot t + 1, also called labeled data. The
input data of the prediction model are set as the past
continuous s samples set of user k at timeslot t , that is
given by Xt

k = {M
t−s+1
k , . . . ,M t−1

k ,M t
k}. We assume

that s value is far smaller than T (i.e., short-term location
information). To prevent errors due to the diversity of the
input data and labeled data, the positional data samples
are normalized to the range [−1, 1]. The normalized
samples are given by the following equation [14]:

M t
k,nor = 2 ·

M t
k −Mmin

Mmax −Mmin
− 1, (11)

where Mmax and Mmin are the maximum and minimum
horizontal coordinates of the user in the rectangular
service coverage area, respectively.

• Training phase:
In our considered scenario, both the drones and users
are mobile, leading to a highly dynamic and frequently
changing network system. Therefore, it is not feasible
to use long-term prediction methods. It is necessary to
choose a suitable SL method for short-term predictions.
To this end, we chose to use multi-class SVM and RF
classifiers for training highly accurate prediction mod-
els. Seventy percent of the historical user mobile data
is used as training data. Notably, one training data of
the prediction model includes input data and label data,

that is given by Ttk = {M
t−s+1
k , . . . ,M t−1

k ,M t
k , g

t+1
k }.

The prediction model is used to predict the user’s arrival
small grid at the next timeslot. Our system architec-
ture has N × F × F small grids (i.e., the number of
classes in the mobility prediction model). In the simula-
tion, we compare the accuracy of the prediction models
trained by multi-class SVM and RF classifiers.

• Testing phase:
The remainder of the historical user mobile data (i.e.,
30%) is used as testing data to test the constructed pre-
dictionmodel. If a model is not sufficiently accurate, it is
re-trained with updated training data (i.e., re-sampled
70% of the historical data) until a high accuracy in the
testing step.

B. ONLINE DECISION-MAKING PHASE
In the online decision-making phase, the user position predic-
tion model is used to make decisions. The procedures of the
online decision-making phase are described below.
• Data collection:
The edge control center of the macro cell is used to
configure and collect the operational parameters. The
network parameters include the users’ and DSCs’ identi-
fication numbers, position information, and the number
of users in each DSC.

• Data preprocessing:
The collected data are preprocessed, analyzed, and orga-
nized into a suitable form of input data for the prediction
models to enable mobile users’ location prediction.

• Active waking/sleeping decisions:
According to the mobility prediction model, the reached
small grid gt+1k of user k at the next timeslot t + 1 can be

126740 VOLUME 9, 2021



S.-H. Cheng et al.: Proactive Power Control and Position Deployment for DSCs

FIGURE 3. Fixed position and intuitive repositioning schemes.

predicted. When an active DSC is not serving any user,
it can be switched to deep sleeping mode. We assume
that each timeslot’s length is longer than the awaken-
ing time from the deep sleep state. If gt+1k is located
in the service coverage zone of a deep sleeping DSC,
the control center proactively requires to wake up the
deep sleeping DSC in timeslot t . This avoids the delay
resulting from the awakening time and helps to save
energy. Conversely, the DSC is passively woken after a
user reaches its service coverage zone so that the QoS
becomes instability.

• UL repositioning mechanism:
The operation-state control of DSCs via the user mobil-
ity prediction model can significantly enhance energy
efficiency. However, the interference construct in the
DSC networks is changed when some of the DSCs are
switched to sleeping mode. We use the UL technique
to re-position DSCs and further perform power control
to improve marginal users’ throughput and the overall
downlink reliability.

In the dynamic environment, the prediction model will
be updated periodically for the online operation. The new
user location information can be stored in the existing user
position dataset at the online stage. In this way, the mobility
prediction model needs to be renewed periodically based on
the newest user position dataset.

V. UL REPOSITIONING MECHANISM
In this section, we describe the UL repositioning mechanism
procedures in the P2DM framework. In essence, this mecha-
nismwith the UL technique updates the positions of the DSCs
and executes power control for interference mitigation and
energy saving. Due to cost concerns in commercial applica-
tions, it is impractical to set up real DSC networks or perform
detailed simulations for collecting the labeled data or rewards
before providing communication services. The performance
models are difficult to be built by data-driven SL or RL tech-
niques. The UL techniques without any label data can find
hidden structures by simply performing similarity analyses
on the input data. Therefore, UL is suitable as a solution to
improve energy efficiency in dynamic DSC networks.

The SL-based mobility prediction model is used to pre-
dict the reached small grid of each user at timeslot t + 1,
as shown on the left side of Fig. 3. The DSC is switched

FIGURE 4. Illustration of UL repositioning.

to the deep sleeping mode when the coverage zone has no
served users. The DSCs in the left side of Fig. 3 are fixed
at the center of their service coverage zones. However, it is
possible to improve QoS by suitably repositioning the DSCs
to shorten the DSC-to-user distances. The intuitive reposi-
tioning approach is illustrated on the right side of Fig. 3.
The intuitive method for calculating the position of a drone at
timeslot t + 1 is as follows:

Dt+1n (x t+1n , yt+1n ) =

∑|Un|
k∈Un g

t+1
k (x t+1k , yt+1k )

|Un|
,

if |Un| 6= 0
Dt+1n (x t+1n , yt+1n ) = Dtn(x

t
n, y

t
n),

if |Un| = 0

(12)

where the gt+1k (x t+1k , yt+1k ) is the central coordinates of the
reached small grid of user k at timeslot t + 1. In this intuitive
scheme, the center location of gt+1k , k ∈ Un in the service
coverage zone of DSC n is calculated. The DSCs are moved
to their corresponding center locations to improve the QoS
of the users. If an active DSC at timeslot t is switched to
deep sleeping mode at the next timeslot t + 1, the DSC
hovers in the original position. We observe that the drones
may come close to each other in the intuitive approach (e.g.,
in the bottom right corner of the Fig. 3), which leads to severe
interference.

We propose a UL repositioning mechanism to address the
interference problem. The KMC [43] is used to cluster users
according to their predicted positions at timeslot t + 1. Each
DSC’s reposition and power control is adjusted according to
the clustering results within their limited range of flight to
mitigate inter-DSC interference and reduce power consump-
tion. The UL repositioning algorithm consists of two phases,
as described below.

A. PHASE 1: DETERMINATION OF PUTATIVE DSC
POSITIONS AND CANDIDATE RECOMMENDATION
In this stage, we use the KMC algorithm to cluster the pre-
dicted small grids of users at timeslot t + 1, as shown on the
left side of Fig. 4. Before performing the KMC algorithm,
it is necessary to set the K value (1 < K ≤ N ).

∣∣∣8t+1
active

∣∣∣
denotes the number of active DSCs, which is inferenced by
the predicted small grids of users at timeslot t + 1. 8t+1

active is
the set of active DSCs at timeslot t + 1. The K value is set
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Algorithm 1Unsupervised Learning (UL) Position Updating
(Phase 1)
1: Phase 1: The Candidate DSCs of the Cluster Center.
2:
∣∣∣8t+1

active

∣∣∣ is # of the active DSCs at timeslot t+1.

3: K-means clustering is used to find the cluster centerµt+1i
based on the predicted arrival grids of the users, where the
presetting K is equal to

∣∣∣8t+1
active

∣∣∣, 1 ≤ i ≤ K.

4: The candidate DSC n of the cluster center µt+1i , 8t+1
i is

initialized to empty set.
5: for each DSC n of 8t+1

active do
6: for each cluster i do
7: min

i

∥∥∥Dtn(x tn, ytn)− µt+1i (x t+1i , yt+1i )
∥∥∥

8: end for
9: n→ 8t+1

i , q becomes a member of 8t+1
i .

10: end for

to
∣∣∣8t+1

active

∣∣∣. The clustered objects are set to the predicted
small grids of users at timeslot t + 1. The horizontal coor-
dinate of the object is the center position of the predicted
small grid. The similarity matrix of the KMC algorithm is
the Euclidean distance between a pair of objects. Two objects
are close to each other, meaning that they have high similarity
and vice versa. The KMC algorithmwill place high similarity
objects into the same cluster. Initial K cluster centers are
selected randomly. Then the Euclidean distances between
these centers and each object are calculated. Each object
selects the closest cluster center as its center. If some objects
select the same center, they are grouped into the same cluster.
After the initial clusters have been formed, all objects’ mean
position in each cluster is calculated. This means the mean
position will is set as the new cluster center. The objects
are clustered iteratively by this procedure until the cluster
centers satisfy the target function. The target function being
minimized by the KMC algorithm is the squared Euclidean
distance between the objects and their respective cluster
centers:

min
K∑
i=1

|Ci|∑
gt+1k ∈Ci

∥∥∥gt+1k (x t+1k , yt+1k )−µt+1i (x t+1i , yt+1i )
∥∥∥2, (13)

where µt+1i is the cluster center of the i-th cluster, ci. When
the selected cluster centers are stable by iteration processes,
the algorithm and the target function have been converged
and minimized, respectively. Based on the cluster centers
are determined by the KMC algorithm, the candidate new
positions of all drones can be found at timeslot t + 1.
Each DSC in the limited zone will try to choose the closest

cluster center as its new position at timeslot t + 1, which is

min
i

∥∥∥Dtn(x tn, ytn)− µt+1i (x t+1i , yt+1i )
∥∥∥ . (14)

According to (13), each DSC can choose its closest cluster
center at timeslot t + 1. Multiple DSCs may select the same
cluster center. Therefore, a candidate DSC set is constructed
for each cluster center (i.e., new position). 8t+1

i denotes the

Algorithm 2Unsupervised Learning (UL) Position Updating
(Phase 2)
1: Phase 2: The Specified DSC of the Cluster Center.
2:
∣∣∣8t+1

active

∣∣∣ is # of the candidate DSCs of the µt+1i at times-
lot t+1.

3: for each cluster i do
4: if

∣∣∣8t+1
i

∣∣∣ ≥ 2 then

5: for each DSC n ∈ 8t+1
i do

6: min
i

∥∥∥Dtn(x tn, ytn)− µt+1i (x t+1i , yt+1i )
∥∥∥

7: end for
8: Specified DSC n ∈ 8t+1

i can fly to the position
of µt+1i .

9: Unspecified DSC l 6= n, l ∈ 8t+1
i switch deep

sleeping its small cell.
10: end if
11: if

∣∣∣8t+1
i

∣∣∣ = 1 then

12: The DSC l 6= n, l ∈ 8t+1
i can fly to the position

of µt+1i .
13: end if
14: if

∣∣∣8t+1
i

∣∣∣ = [ ] then

15: No Drone fly to the position of µt+1i .
16: end if
17: end for

set of candidate drones for the i-th cluster center at timeslot
t + 1. We have described the first phase of the UL reposi-
tioning algorithm. The corresponding pseudocode is shown
in Algorithm 1.

B. PHASE 2: DRONE SELECTION AND
POWER-CONSUMPTION ADJUSTMENT
Each cluster center (i.e., the putative drone position) has
a candidate drone set during the first phase. Suppose that∣∣∣8t+1

i

∣∣∣ is the number of candidate drones in the candidate
drone set of the i-th cluster center. There are three different
decisions that could be made depending on the value of∣∣∣8t+1

i

∣∣∣:
•

∣∣∣8t+1
i

∣∣∣ ≥ 2:
This means that there are more than two candidate
drones at cluster center i. The closest DSC n ∈ 8t+1

i
is moved to the coordinates of cluster center i at timeslot
t + 1, according to the following expression:

min
n

∥∥∥µt+1i (x t+1i , yt+1i )− Dtn(x
t
n, y

t
n)
∥∥∥ , n ∈ 8t+1

i . (15)

The other DSCs l 6= n in 8t+1
i are switched to

the deep sleeping mode for energy saving and inter-
ference reduction, as shown in the bottom right of
Fig. 4.

•

∣∣∣8t+1
i

∣∣∣ = 1:
This means that there is only one candidate drone for the
i-th cluster center. The closest DSC moves itself to the
i-th cluster center at timeslot t + 1.
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TABLE 2. DSC system parameters.

•

∣∣∣8t+1
i

∣∣∣ = [ ]:
This means that there are no candidate drones for the i-
th cluster center. Therefore, this cluster center µt+1i will
not be set to the putative drone positions at timeslot t +
1, as shown in the upper right of Fig. 4.

We have described the procedures of the second phase of the
UL repositioning algorithm. The corresponding pseudocode
is shown in Algorithm 2.

To summarize the discussion above, the first phase of the
UL repositioning algorithm determines the putative drone
positions and their corresponding set of candidate drones.
In the second phase, drone repositioning and power adjust-
ments are performed according to the clustering results. The
object of the UL repositioning algorithm is to reduce interfer-
ence and power consumption for DSC networks.

VI. SIMULATION RESULTS
In our considered scenario, we evaluate the performance of
the proposed power control and positional updating in the
P2DM framework. Fig. 1 shows the simulation environment,
where w and F are set to 40 m and 4, respectively. The
simulated scenario has 9DSCs (N = 9), and the altitude of the
all drones are set to h= 10 m owing to user safety considera-
tions [44]. Themacro cell operates with fBL = 3.5 GHz carrier
frequency [45]. The DSC’s data transmission frequency is
set to fAL = 2 GHz [46]. The DSC system parameters are
listed in Table 2 [34], [38], [39], [47]. The system bandwidth
B = 10 MHz of each DSC can be shared to served group
users (i.e., each channel is fully loaded) [39]. In the air-
to-ground channel model, we consider the urban scenario
and its environmental parameters are (τ1, τ2, δLoS , δNLoS ) =
(9.61, 0.16, 1, 20) given by [34], [47]. The PA maximum
consumption is PPA,max & = 3.2 W, the radio frequency base
consumption is PRA = 1.5 W, and the BB base consumption
is PBB = 6.8 W. In the loss factors, the DC-DC conversion
losses is σDC = 6.4 % and the main supply losses is σMS =
7.7 % [38]. Furthermore, maximum transmit power per cell
is Ptramax = 30 dBm [47]. In the user mobility model, the max-
imum shift angle θmax is π . The historical user mobility
data set contains about 36,000 location information. Besides,
we evaluate the energy consumption of DSCs flight. When
the drone’s flying speed is lower than 8 m/sec, the drone’s
energy consumption is the same as the energy consumed by

FIGURE 5. The out-of-bag error rate of random forest (RF) mobility
prediction models.

hovering [48]. We assume that the drone’s flying speed is less
than 8 m/sec, according to the user’s maximummoving speed
Vmax is about 3 m/sec. Therefore, the low-speed mobile flight
of the UAV will not generate additional energy consumption
in our simulation.

A. COMPARISON OF SUPPORT VECTOR MACHINE (SVM)
AND RANDOM FOREST (RF) MOBILITY PREDICTION
MODELS
This section compares the performance of the mobility pre-
diction models trained by the SVM and RF methods. The
out-of-bag (OOB) error [49] is an error estimation technique,
which is often used to evaluate the accuracy of a RF and to
select appropriate values for tuning the number of the grown
tree (i.e., predictors). It has been proved that OOB error
estimation can be used as a generalization error to evaluate
the classification ability of the classifier [50]. Fig. 5 shows
the OOB of the RF mobility prediction model for different
the number of grown trees.

From this figure, the following can be observed.
1) The OOB error estimation is an unbiased estimation of

the RF algorithm. We can see that the error decreases
concerning the number of grown trees increases.

2) When the number of grown trees |G| of 15 and above,
the optimal OOB error rate is about 0.07.

Fig. 6 compares the accuracy of the mobility predic-
tion models versus the number of past continuous samples
|s| when applying various supervised learning technologies:
1) prediction model trained by SVM; 2) prediction model
trained by RF with the number of grown trees of 15; 3) pre-
diction model trained by RF with the number of grown trees
of 30. From this figure, the following can be observed.

1) In the SVM mobility prediction model, we observe
that increasing the number of past continuous samples
|s| may clearly enhance the prediction accuracy due
to the number of features (i.e., dimensions) growth.
When the number of past continuous samples |s| is 35,
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FIGURE 6. Comparison between the accuracy of support vector
machine (SVM) and random forest (RF) mobility prediction models.

the prediction accuracy of the SVM model can achieve
91.91%. But high |s| needs more execution time for
training phase.

2) In the RF mobility prediction model, we first note
that the number of grown trees |G| of 15 and 30 have
approximate accuracies. In addition, the accuracy of the
RFmobility prediction model is slightly affected by the
number of past continuous samples |s|. To accomplish
the purpose, the RF builds a sufficient number of deci-
sion trees (i.e., 15 and above) and merges them to get a
more accurate and stable prediction.

3) The RF mobility prediction model with |G| = 15 can
run over the accuracy of 93.14% under the number of
past continuous samples |s| = 10 and above. Therefore,
the RF mobility prediction model with |s| = 10 and
|G| = 15 can achieve high prediction accuracy while
has relatively less execution time for training phase.

In the following, the benefits of RF and SVM prediction
models combined with the deep sleeping mode compare
with those of a few conventional operating schemes. In this
comparison, the following schemes include: 1) The ‘‘all on’’
mode, where all of the DSCs are constantly active; 2) The
DSC is switched to stand-by sleeping mode if there are no
users to service in its service coverage zone; and 3) The
DSC is switched to deep sleeping mode based on the actual
positions of users at timeslot t + 1. Fig. 7 shows the total
system throughput versus the ratio of user density λk to
DSC density λn for various power control schemes. From the
figure, we observe the following:

1) The stand-by and deep sleep states with actual positions
have consistent performances because they have the
same small cell on/off configuration in the system.

2) Under the deep sleep, the mobile user prediction by
the SVM (|s| = 35) and RF (|s| = 10, |G| = 15)
have approximate performance compared to the actual
position of users.

FIGURE 7. Improvements in total system throughput according to each
power control scheme.

3) Compared to the baseline scheme (i.e., all on), the deep
sleep with RF prediction can improve total system
throughput by 18.1% when the ratio is λk/λn = 1.

Fig. 8 shows the energy saving of each scheme versus the
ratio of λk/λn for various power control schemes. From the
figure, we have the following observation:

1) We first note that the deep sleeping mode saves consid-
erably more energy than the stand-by sleeping mode.
This is because the BB component is completely turned
off in deep sleeping to reduce more energy consump-
tion.

2) Secondly, this observation suggests that the energy
saving of the deep sleep with RF prediction model
(|s| = 10, |G| = 15) and the deep sleep with the actual
position are very close.

3) The deep sleep with RF prediction model (|s| = 10,
|G| = 15) can achieve 29.1% of energy saving over the
baseline scheme when the ratio is λk/λn = 1.

B. EFFECT OF PREDICTION-BASED PROACTIVE DRONE
MANAGEMENT (P2DM) FRAMEWORK
In the previous section, the network performance of DSCs
with fixed flying positions (i.e., the center of their service
coverage zones) is evaluated. In this section, we compare the
energy efficiency of repositioning schemes based on the RF
mobility prediction model with deep sleeping mode. In this
comparison, six schemes include: 1) The baseline ‘‘all on’’
scheme; 2) The ‘‘stand-by’’ sleeping scheme with the fixed
central position in the service coverage zone; 3) The RF
prediction-based deep sleeping with the fixed central position
in the service coverage zone; 4) The RF prediction-based
deep sleeping scheme combined with intuitive repositioning;
5) RF prediction-based deep sleeping scheme combined with
K-means repositioning (i.e., the cluster centers are set as
the new positions of DSCs); and 6) The proposed P2DM
framework. Fig. 9 illustrates how the energy efficiency of
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FIGURE 8. Energy saving of each power control scheme.

FIGURE 9. Comparison between the energy efficiency of power control
and repositioning schemes.

the DSC networks versus the ratio of λk/λn. In the figure,
the following may be observed:

1) Compared to the baseline scheme (i.e., all on), the pro-
posed P2DM framework can improve energy efficiency
by 133.9% when the ratio is λk/λn = 1.

2) Compared to the other all schemes, our P2DM frame-
work can significantly improve the energy efficiency
when the high value of λk/λn.

3) Under the RF prediction-based deep sleeping scheme,
the KMC scheme ranks second, which has higher
energy efficiency than the intuitive method (i.e.,
the center of served users). The actual user position
with stand-by sleeping performs worse than all the
schemes except for the baseline scheme.

In addition, we further compare the normalized execu-
tion time and normalized energy efficiency of the proposed
P2DM framework with the optimal solution based on the
genetic algorithm (GA) [51]. GA is a heuristic algorithm
to find the optimum solution based on genetic and random

FIGURE 10. The energy efficiency of the P2DM framework and the genetic
algorithm (GA) against the various number of iterations.

FIGURE 11. The normalized energy efficiency of the P2DM framework
and the genetic algorithm (GA) against the ratio of λk /λn.

selection [51]. The fitness value (i.e., the optimized solution)
takes the value of the better fitted chromosome among all
the chromosomes compared at each iteration. In light of this,
we assume that the fitness value is set to the energy efficiency
(i.e., KPI). Therefore, the energy efficiency of DSC networks
needs to be calculated based on air to ground channelmodel at
each iteration. Normally, GA uses a great number of iterations
to provide a satisfactory solution. Fig. 10 shows the energy
efficiency of the P2DM framework and the GA against differ-
ent the number of iterations |I |. In the GA, we first note that
the number of iterations |I | of 150 and above has approximate
optimal energy efficiency. Therefore, the GA with |I | =
150 can achieve the optimal solution. Table 3 provides the
normalized execution time of the proposed P2DM framework
to compare with the GA under |I | = 50 and 150. The normal-
ized execution time is normalized to the longest execution
time of the GA with |I | = 150. Our proposed P2DM frame-
work only spends 0.4% in terms of the execution time com-
pared to the GA with |I | = 150 when the ratio is λk/λn = 3.
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TABLE 3. The normalized execution time of the P2DM framework and the
genetic algorithm (GA) against the ratio of λk /λn.

We observe that P2DM maintains about the same execution
time as the ratio of λk/λn increases. The execution time of
the GA grows dramatically as the ratio of λk/λn increases
because the KPI needs to be calculated at each iteration.
Fig. 11 shows the normalized energy efficiency of the two
aforementioned algorithms against the ratio of λk/λn. The
normalized energy efficiency is normalized to the maximum
energy efficiency of the GA with |I | = 150. When the ratio is
λk/λn = 1, P2DM can achieve 97.3% of the energy efficiency
over the GA with |I | = 150. In addition, P2DM only drops
9% compared to the GA with |I | = 150 when the ratio is
λk/λn = 3.

VII. CONCLUSION
Deploying flexible DSCs can provide service coverage and
system throughput to respond to the scenario of hot spots
or unforeseen natural disaster areas. In this paper, we estab-
lish a mobility prediction-based framework (i.e., the P2DM
framework) for DSCs management to improve energy effi-
ciency and mitigate interference in the DSC-assisted wire-
less networks. The proposed P2DM framework consists of
offline and online phases. The RF-based mobility predic-
tion model with high accuracy of 93.14% is built from a
small sample data in the offline phase. In the online phase,
the wake/sleeping schemes of the DSCs are proactively deter-
mined according to the predicted user positions. Then the UL
technique is used to update the positions of the DSCs and
to adjust their power consumption levels. We find through
simulations that the proposed P2DM framework can improve
the energy efficiency by 133.9% compared to the base-
line scheme. This study only addresses the interference and
energy consumption problems of DSC-to-user access links.
The edge computing and caching technologies in each DSC
are the other two interesting future directions. The latency
and computer energy efficiency trade-off in DSC networks is
a ciritial issue in the case of limited-capacity backhaul links
(i.e., macro cell-to-DSC links).
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