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ABSTRACT Image fusion operation is beneficial to many applications and is also one of the most common
and critical computer vision challenges. The perfect infrared and visible image fusion results should include
the important infrared targets while preserving visible textural detail information as much as possible.
A novel infrared and visible image fusion framework is proposed for this purpose. In this paper, the proposed
fusion network (MIFFuse) is an end-to-end, multi-level-based fusion network for infrared and visible images.
The presented approach makes effective use of the intermediate convolution layer’s output features to
preserve the primary image fusion information. We also build a cat_block to swap information between
two paths to gain more sufficient information during the convolution steps. To reduce the model’s running
time even further, the proposed method that reduces the number of feature channels while maintaining
the accuracy of the fusion performance. Extensive experiments on the TNO and CVC-14 image fusion
datasets show that our MIFFuse outperforms the other methods in terms of both subjective visual effects
and quantitative metrics. Furthermore, MIFFuse is approximately twice as fast as the most recent state-of-
the-art methods. Our code and models can be found at https://github.com/depeng6/MIFFuse.

INDEX TERMS End-to-end framework, multi-level features, image fusion, concatenation block.

I. INTRODUCTION
More information about a target could not be obtained from a
single sensor. The task of image fusion is to fuse multi-source
information from multiple images into one image, which
is convenient for people to view and post-process [1]. The
uses of image fusion are mainly divided into four categories,
including medical image fusion [2], [3], multi-focus image
fusion [4]–[6], remote sensing image fusion [7], [8], infrared
and visual image fusion [9], [10], which are examples of
image fusion. The far more common image fusion scenario
is infrared and visible image fusion [11]. In terms of target
detection and surveillance camera tracking, infrared and vis-
ible image fusion technology is widely used. Thermal radi-
ation released from surfaces is captured in infrared images,
which can easily illuminate targets but lack texture informa-
tion. Visible image, on the other hand, usually provide a lot of
structural detail but are influenced by the background and lose
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goals. As a result, the fusion method’s key emphasis shifts to
how to efficiently merge complementary information.

Many conventional infrared and visible image fusion
approaches were proposed after several years of develop-
ment, and they can be roughly divided into four classes:
multi-scale decomposition-based (MSD) methods [12],
saliency-based methods [13], [14], sparse repre-sentation-
based methods [15], [16], and hybrid-based methods
[17]–[19]. Many scholars are now studying and using these
approaches. These traditional image fusion approaches usu-
ally have multiple key elements, such as image trans-
form, activity level measurements, fusion rules, and so
on [11], [20]. Multi-scale decomposition, sparse representa-
tion methods, and non-downsampling methods are all exam-
ples of image transformation. The aim of activity level
calculation is to collect quantitative data from various sources
in order to distribute weights [21]. The weight distribution of
each pixel is the core of the fusion rule [22]. Traditional fusion
approaches have achieved strong fusion efficiency but finding
the right activity level measurements and fusion rules to pro-
duce well-fused images remains difficult. In the meantime,
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those modules are all made by hand, and the complexity
of implementation and computing cost have become major
issues.

Deep learning-based approaches [23], [24] have emerged
as the most exciting and appealing path for image fusion
in recent years. In the field of image fusion, convolutional
neural networks [25] mainly fuse infrared and visible images
by obtaining image features and recreating fused images
or constructing different deep learning frameworks. For the
multi-focus image fusion challenge, Liu et al. [24] proposed
a convolutional neural network (CNN) [26]. Densefuse [27]
uses the manually designed fusion strategy in the fusion
of infrared and visible images, which does not have wide
applicability. In addition, using the dense block alone in the
convolution phase also results in a loss of detail. To recreate
the fused image, various fusion techniques have been pro-
posed. The fusion model designs two methods for combining
intermediate features and compensation features, according
to Jian et al. [28]. A general end-to-end image fusion net-
work (IFCNN) was introduced by Zhang et al. [29], which
is a simple but efficient fusion process. Two convolutional
layers combine the fused deep features to create the fused
image. Its framework, on the other hand, is too simple to
extract powerful deep functions. Ma et al. [30] recently pro-
posed a FusionGAN-based infrared and visible image fusion
process. The training process of GAN (Generative Adversar-
ial Networks) is unstable, and it is easy to cause the generation
effect to be relatively poor [31]. Also, the most advanced
approaches, such as FusinGANv2 [32] and DDcGAN [33],
have problems preserving image detail. During the process
of producing the fusion image, the GAN network generator
altered part of the original image detail, resulting in a final
generated image with no sense of truth.

To address the above issues, we propose a MIFFuse net-
work for the fusion of infrared and visible images. This net-
workwithout the need formanually design fusion rules. Then,
to preserve more texture information during the convolution
process, we use skip connections to migrate the feature map
from the front convolutional layer to the back convolutional
layer. Finally, as shown in Figure 1, we use cat_block in the
two paths to exchange image information, making the image
details output by the entire network clearer. The specific com-
parative experiment is in III-B5. Infrared and visible image
characteristics are combined in the exchanged information.

Our paper makes three key contributions:
1) A new end-to-end network for infrared and visible

image fusion is proposed, which does not include
complex fusion rules or post-processing. Our pro-
posed framework will quickly fuse infrared and visible
images.

2) A cat_block is placed between two paths to efficiently
collect and exchange infrared and visible image infor-
mation, allowing for more infrared and visible image
features to be preserved for fusion effects.

3) The number of parameters in our network is relatively
small in our proposed framework, because we use the

1 × 1 convolution kernel to adjust the number of con-
volution output feature maps for each layer. Hence,
the proposed MIFFuse can quickly finish the image
fusion job.

The rest of this paper is organized as follows. In Section II,
we explain the proposed method in depth. In Section III,
we describe the datasets used and present quantitative
and qualitative experimental findings. Then, in Section IV,
we have discussion and followed by a conclusion in
Section V.

II. METHODS
A. MULTI-LEVEL FEATURE FUSION NETWORK
By combining multi-source images from different sensors
during the image fusion process, the aim is to obtain a
more detailed and informative image [38]. Infrared(Iir ) and
visible(Ivi) image fusion’s aim is to acquire a fusion image(Y )
and quantify the fusion image using the following function.

Y = F(Iir , Ivi) (1)

where F(., .) is a function that extracts more valuable infor-
mation from visible and infrared images. For deep learning
technology, the relevant parameters of this function can be
obtained by training a deep learning network.

Specifically, the trained model extracts a sequence of
attributes from two source images independently. The Multi-
level Features Fusion Network is composed of conv−block ,
res−block and cat−block parts. These intermediate features
generated by the first conv−block are referred to as f conv1m−i (i =
1, . . . , 32). m ∈ {ir, vi} represents the input source image.
m = ir or m = vi represents infrared image or visible image,
respectively. i represents the intermediate feature in the con-
volution process. conv1 represents the first conv−block layer
feature map. Furthermore, the first res−block and cat−block
layer feature map is defined as f res−1m−i (i = 1, . . . , 32) and

f cat−1i (i = 1, . . . , 32). We call these features multi-level
features.

In addition, to integrate the characteristics of different
levels, f cat−ni and f res−nm−i can be represented as follows:

f cat−ni = Fcat−block (f
res−n
ir−i , f res−nvi−i ) (2)

f res−n+1m−i = Fres−block [Concat(f
cat−n
i , f res−nm−i )] (3)

where Fcat−block and Fres−block represent the transfer func-
tions for cat−block and res−block . n denotes the nth block.

B. NETWORK ARCHITECTURE
Our framework is modular and can incorporate features infor-
mation at different levels. We divide the fusion network into
two paths because it can extract the feature information of
both infrared and visible images at the same time, and the
MIFFuse network’s design also refers to the pseudo-Siamese
network [34]. This two branch network is very suitable for
image fusion, because infrared and visible image pairs have
separate features at the corresponding pixel positions. In both
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FIGURE 1. The proposed fusion framework (MIFFuse).

path, there are two conv_block and five res_block to extract
the features. They all use the 3 × 3 convolution kernel.
Figure 1 shows the MIFFuse fusion framework.

1) Conv_block. One convolutional layer and an activation
function (ReLU) make up our conv_block. The size of
the input training data will be anything you want. Con-
volution operations serve as a feature extractor, keeping
all of the edge and texture detail from the infrared
and visible images. In order to balance the calculation
time of the model and the memory size of the GPU,
the number of feature maps output by conv_block is
32, and the size of the feature maps is consistent with
the original image.

2) Res_block. As shown in Figure 1, there are two
main modifications to the res_block. Firstly, discard
the BatchNorm layer in the traditional residual_block.
Because image fusion is an image-to-image task,
the absolute difference of images is very important,
especially in image fusion and super-resolution. Sec-
ondly, use the Sigmoid as the activation function. The
choice of the activation function will be determined
by the experimental performance. Finally, we add five
res_block for each path, with the aim to ensure the
optimal training convergence in the deep network and
extract more representative intermediate features.

3) Cat_block. We swap information between the two
paths to acquire more sufficient information during the
convolution step. To be more precise, the exchanged
information is generated using the concatenating and
convolution methods. The convolution layer’s kernel
size is 1 × 1. Then concatenated the exchanged infor-
mation with the output of the previous convolutional
layer as the input of the next convolutional layer.

4) Skip connections. In an investigation into skip con-
nections [35], we discovered that the deep convolution
operation keeps the high-level features of the origi-
nal image but loses the texture information. There-
fore, we use skip connections to transfer the feature
information output by the previous convolutional layer
to the back. More training details will be discussed
in III-B1.

Finally, we merge the outputs of two paths and use a con-
volutional layer to create the fused image. The convolution
layer’s kernel size is 3 × 3 and it does not use the activation
function.

C. LOSS FUNCTION
As we all know, the design of loss function is particularly
important in image processing tasks based on deep learning.
The goal of the image fusion task is to calculate an infor-
mation fusion image from two images. Most image fusion
algorithms will use L2 as a part of the loss function, but we
have found through experiments that adding L2 to the loss
function will reduce noise, but it produces visible splotchy
artifacts.The specific experimental comparison is in III-B2.
The loss function L1 is effective in eliminating artifacts and
enhancing image brightness. In the training process, it is
found that the loss function SSIM (Structural Similarity) is
not sensitive to uniform errors, which will cause the image
to darken, and the L1 loss function can just make up for this
defect. The loss function L1 and L2 are calculated as

L1 =
1
MN

∑
i∈M ,j∈N

|ygt(i,j) − yout(i,j)| (4)

L2 =
1
MN

∑
i∈M ,j∈N

(ygt(i,j) − yout(i,j))2 (5)
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FIGURE 2. Shows the sample images in the Flickr2K datasets. (a) is the input1 image, (b) is the input2 image, (c) is the ground
truth image.

whereM and N represent the length and height of the image,
(i, j) represents the pixel location. ygt and yout refer to the
ground truth image and MIFFuse network output image.

As the total loss function, we used the L1 and SSIM . The
Ltotal is written as follows:

Ltotal = λL1 + (1− λ)Lssim (6)

where Ltotal , L1 and Lssim represent the total loss, L1 and
SSIM , respectively. Two images measure the structural sim-
ilarity through the SSIM. The λ represents the weight. Fur-
thermore, the loss terms’ parameters are set to λ = 0.16 [36].
The SSIM is obtained by

Lssim = 1− SSIM (ygt , yout ) (7)

where SSIM (·) represents the structural similarity func-
tion [37], the function can be formulated as

SSIM (x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (8)

where l(x, y) represents brightness contrast function, c(x, y)
represents the contrast comparison function, s(x, y) repre-
sents structure comparison function. The α, β, and γ was set
as 1. The l(x, y), c(x, y) and s(x, y) are calculated as

l(x, y) =
2µxiµyi + C1

µ2
xi + µ

2
yi + C1

(9)

c(x, y) =
2σxiσyi + C2

σ 2
xi + σ

2
yi + C2

(10)

s(x, y) =
σxiyi + C3

σxiσyi + C3
(11)

where µ denotes the mean value, σ represents the standard
deviation/covariance, and C1, C2, and C3 are the parameters
to make the metric stable.

Our proposed framework uses skip connections, and the
loss function is designed to be differentiable. Therefore,
we can use the backpropagation algorithm to update the
model parameters. In the end, the model parameters are opti-
mized, and the fusion result is the best.

III. EXPERIMENTAL RESULTS
We evaluate MIFFuse on a publicly accessible dataset
(TNO [38] and CVC-14 [39]) and compare it to other
deep learning-based methods in this section. Those meth-
ods including CSR [40], DenseFuse [27], FusionGAN [30],
IFCNN [29], SEDRFuse [28]. First, we briefly introduce
the experimental setup and implementation details. Then
we do an ablation study to see how the connections, loss
functions and blocks affect image fusion. Following that,
we show quantitative and qualitative results for the two differ-
ent datasets. In addition, the performance analysis of running
speed shows that the proposed method is faster than other
methods.

A. EXPERIMENTS
1) TRAINING DETAIL
To successfully repeat the results of the entire paper, we will
describe the training details as follows.

First, we need to prepare training dataset. The Flickr2K [41]
dataset was used for training in this study. The Flickr2K
dataset consist of 2650 high-definition color images
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FIGURE 3. The framework of training process.

(2K resolution). To be more precise, we convert the images
from RGB to YCbCr color space first. Since structural
detail and brightness variance can be represented in the
Y channel (luminance channel). Second, we cropped each
original image to size 512 × 512, and finally obtained a
total of 16335 training images. We add random size and
position Gaussian noise and gamma transformation to the
cropped image. Because the Gaussian blur of random size
and position can simulate the loss of confidence in the camera
system’s signal acquisition process. The maximum Gaussian
blur area is 300× 300. The value range of gamma in the
gamma transformation is γ ∈ [0.3, 1.3]. Third, we adopted
a supervised method to train the MIFFuse network. The
original images are used as the ground truth, we make a group
of each original image and the corresponding two processed
images. The MIFFuse network is trained using a supervised
method. The sample images are seen in Figure 2.

The detailed framework throughout the training process is
shown in the Figure 3. This supervised training strategy is an
innovation in the field of fusion, and the experimental results
prove that the method does have certain advantages.

All the experiments in this study were carried out on a
desktop with two NVIDIA GTX Titan XP GPUs and an Intel
i7-7820X CPU. Pytorch was used to program the network
framework.

A total of 60 epochs were used in the training. The learning
rate was set to 1× 10−4. AdamOptimizer updates the param-
eters in our MIFFuse.

Figure 4 depicts the training total loss curve. A cumula-
tive loss value is calculated after 100 iterations. 7041 iter-
ations are needed for each epoch. The parameters of
the entire network begin to stabilize when the network
is trained to the 40th epochs, as shown in the curve.

FIGURE 4. The total loss value curve in training stage.

It indicates that the learned model has found its optimum
configuration.

2) TESTING DETAILS
In our experiments, the TNO and CVC-14 datasets was used
to assess the MIFFuse performance. Twenty-five pairs of
images were selected in the two datasets for testing. Figure 5
shows some of the dataset’s examples.

3) EVALUATING METRICS
The quantitative and qualitative evaluations are performed
on five approaches chosen to understand their perfor-
mance objectively. More details will be discussed in III-C
and III-D. The subjective sensory experience of humans is
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FIGURE 5. The examples of infrared and visible images in the TNO and CVC-14 datasets. All images have been registered.
(a) and (b) is the infrared and visible images examples of TNO dataset; (c) and (d) is the infrared and visible images examples of
CVC-14 dataset.

used in qualitative assessment. A successful fused outcome
keeps the source images’ sharpness while preserving the
data. Quantitative assessment refers to the use of common
quality metrics to assess the value of fused images. To cal-
culate the fusion results, eight common statistics are chosed
as objective metrics, such as standard deviation(SD) [42],
entropy(EN) [43], spatial frequency(SF) [44], edge inten-
sity(EI) [45], contrast(CON) [46], average gradient(AG) [47],
structural similarity fusion metric(SSIMf ) [37], QAB/F [48].

SSIMf = (SSIM (F, Iir )+ SSIM (F, Ivi))/2 (12)

QAB/F = (QAB/F (F, Iir )+ QAB/F (F, Ivi))/2 (13)

where SSIM (·) and QAB/F denote the SSIM function, QAB/F

function, respectively. Iir and Ivi are infrared and visible
images. F is the fused image, which serves as reference
image.
QAB/F : this metric measures the amount of edge informa-

tion that is transferred from source images to the fused image.
QAB/F is defined as:

QAB/F =

∑M
i=1

∑N
j=1Q

AF (i, j)wA(i, j)+ QBF (i, j)wB(i, j)∑M
i=1

∑N
j=1

(
wA(i, j)+ wB(i, j)

)
(14)

where QXF (i, j) = QXFg (i, j)QXFa (i, j),QXFg (i, j) and QXFa (i, j)
indicate the edge strength and orientation values at location
(i, j), respectively. wX is the weight that expresses the impor-
tance of each source image to the fused image. A largeQAB/F

means that considerable edge information is transferred to the
fused image.

B. ABLATION STUDY
1) EFFECT OF SKIP CONNECTIONS
The impact of with and without skip connections is dis-
cussed in this section. In Figure 6, We randomly selected
two sets of experimental results. The clarity of the fused
effects is insufficient where there are no skip connec-
tions, as in the case of window and soldier (red box)
in Figure 6. With skip connections, the infrared image’s
contour detail of windows and humans will be clearly pre-
served, and the show effect will be enhanced. Without skip
connections, this effect cannot be achieved. In table 1,
We show the results of quantitative experiments with or
without skip connections, and the results show that fusion
with skip connections has a general superiority. In the pro-
posed framework, skip connection can fuse shallow features
with deep features to obtain a result with more detailed
information.
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FIGURE 6. Ablation experiment of skip connections. The overall sharpness and defogging ability of images with skip connections
are the best. (a) infrared image; (b) visible image; (c) without skip connections; (d) with skip connections.

TABLE 1. Average evaluation metric values of with and without skip connections. The best values in each metric are denoted in bold.

2) USAGE OF LOSS FUNCTIONS
In our method, the fusion results of SSIM+L1 and SSIM+L2
were investigated as loss functions. Fusion results of two
scenes are shown in Figure 7. The observations of the texture
of the ground and window areas (red box) show that the
SSIM + L1 loss function preserved more texture information
than SSIM + L2. At the same time, in Table 2, the EI and
CON of SSIM+L1 are much higher than those of SSIM+L2,
which also proves the superiority of SSIM + L1. As a result,
the SSIM + L1 is better for image fusion.

3) ACTIVATION FUNCTION FOR RESIDUAL BLOCK
For residual block, the ReLU (Rectified Linear Unit) and
Sigmoid activation functions were investigated. Figure 8
shows the effects of fusing two image pairs with two differ-
ent activation functions. According to the visual assessment,
the Sigmoid activation function does not cause halos and
lose details than the ReLU. Particularly, the roof and human
clothes (red box) fused with Sigmoid activation function are
clearer than ReLU. Then, we use the TNO dataset and the
chosen fusionmetrics to evaluate the two activation functions.
Table 3 shows that most of the fusion metrics have reached
the best amount when using the Sigmoid activation function.

4) FUSION STRATEGY FOR SKIP CONNECTION
For skip connection feature fusion, addition, choose-max, and
concatenation were investigated. Figure 9 shows the effects
of fusing two image pairs using three different strategies.
The observation of streetlamp and display window (red box)
showed that the concatenation fusion strategy makes the
target clearer than those with other two strategies. Besides,

to evaluate concatenation fusion strategy more comprehen-
sively, we also provided comparative experiments about three
fusion strategies, as show in Table 4. In terms of fusion
metrics, the concatenation fusion approach yields the best
performance. As a result, the proposed framework employs
the concatenation fusion strategy.

5) EFFECT OF CAT_CLOCK
The impact of with and without cat_block is discussed in the
section. In Figure 10, we have compared the area in the two
sets of images. In the first group of comparisons, it is clear
that the branches at the eaves are clearer (with cat_block)
than another set of images (without cat_block). In the second
set of comparison images, with cat_block, the texture of the
infrared and visible images is preserved in the fusion result,
and the clarity of the image is improved, especially in the
red box area. Without cat_block, the whole image is blurry,
and the details of the house in the distance are seriously lost.
In table 5, we show the results of quantitative experiments
with or without cat_block, and the results show that fusion
with cat_block has a general superiority. In the proposed
framework, cat_block can fuse shallow features with deep
features to obtain a result withmore detailed information. The
cat_block can fully integrate the characteristic information in
the infrared and visible light images, and the final fused image
has rich details and sharp contours.

C. RESULTS ON THE TNO DATASET
1) QUALITATIVE EXPERIMENTS
On the fusion results of each method, qualitative and quan-
titative analysis were performed to validate the proposed
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FIGURE 7. Ablation experiment of loss functions. The ability of the SSIM + L1loss function to maintain texture and dark light
details is the best. (a) infrared image; (b) visible image; (c) the result of SSIM + L2 loss function; (d) the result of SSIM + L1 loss
function.

FIGURE 8. Ablation experiment of activation functions. The Sigmoid activation function will not cause a large area of halo and
cause loss of image information. (a) infrared image; (b) visible image; (c) the result of ReLu activation function; (d) the result of
Sigmoid activation function.

TABLE 2. Average evaluation metric values of with different loss functions. The best values in each metric are denoted in bold.

TABLE 3. Average evaluation metric values of with different activation functions. The best values in each metric are denoted in bold.

MIFfuse’s good efficiency. In Figure 11, shows the fusion
results of several different methods. Figure 11 (a1) and (a2)
are the infrared images, Figure 11 (b1) and (b2) are the
visible image. The effects of the six fusion methods (CSR,
DenseFuse, Fusion-GAN, IFCNN, SEDRFuse, and the pro-
posed method) are seen in subfigures (c) to (j).

As a consequence, we can see that our MIFFuse has
distinct benefits over other approaches. First and foremost,
our approach is capable of properly preserving the details
of source images, including brightness information and con-
trast information (see Figure 11 (h1) and 11 (h2)). How-
ever, fusion results by the Fusion_GAN cannot reflect the
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FIGURE 9. Ablation experiment of different fusion strategies for skip connection features. The fusion effect using the
concatenation strategy has higher contrast and clarity. (a) infrared image; (b) visible image; (c) the result of add strategy; (d) the
result of choose-max strategy;(e) the result of concatenation strategy.

TABLE 4. Average evaluation metric values of with different fusion strategies. The best values in each metric are denoted in bold.

FIGURE 10. Ablation experiment of cat_block. The overall sharpness and defogging ability of images with cat_block is the best.
(a) infrared image; (b) visible image; (c) without cat_block; (d) with cat_block.

TABLE 5. Average evaluation metric values of with and without cat_block. The best values in each metric are denoted in bold.

detail of source images clearly. In Figure 11 (e1), the struc-
ture of the house and the car edge, for example, are dif-
ficult to discern. Figure 11 (e2) depicts a similar result,
which loses a lot of edge information of leaf. In addition,
the CSR, DenseFuse and IFCNN methods have low contrast
(see Figure 11 (c1), (d1) and (f1)) and the traffic sign is not
obvious (see Figure 11 (c2), (d2) and (f2)). The fused results
obtained by SEDRFuse method can achieve good perfor-
mance to some extent. But it still shorts on the target clarity.

For example, there is a lack of clarity in the position of
windows and vehicles (see Figure 11 (g1) and (g2)).

2) QUANTITATIVE EXPERIMENTS
We conduct fusion on twenty-five pairs of source images
of various scenes to quantitatively assess the performance
of different fusion methods, and we list the average scores
belonging to the eight metrics in Table 6. Values in boldface
represent the best results. We can observe from Table 6,
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FIGURE 11. Fused results on the TNO dataset. (a) infrared image; (b) visible image; (c) CSR; (d) DenseFuse;
(e) Fusion-GAN; (e) Fusion-GAN; (e) Fusion-GAN; (f) IFCNN; (g) SEDRFuse; (h) Our MIFFuse.

TABLE 6. The average values of eight metrics for 25 fused images. The best values in each metric are denoted in bold.

it is obvious that the MIFFuse has four best average values
(SF, EI, CON, AG), while the EN and SD measures are
top two overall. The fused results have the highest SF and
AG, indicating that they have a lot of structural details and
a clear edge. The results of our method have clear textures
and rich detail information, as evidenced by the largest EI
and CON.

Nevertheless, the SSIM and QAB/F need the source image
as the reference image for calculation. Hence, the closer the
fused image is compared to the infrared and visible image,
the greater their value of SSIM and QAB/F . The image fused
results need to retain the detail information and enhance the
clarity of the target. This will lead to a large deviation between

the fused result and the source image, so the above fourmetric
values will be relatively low.

Our method has the best SF, EI, CON, and AG values,
indicating that it has obvious advantages in terms of edge
preservation of image content and infrared target clarity. The
MIFFuse approach is better suited to target detection in foggy
or snowy conditions.

D. RESULTS ON THE CVC-14 DATASET
1) QUALITATIVE EXPERIMENTS
Figure 12 is the fusion results of two couples of the
CVC-14 dataset. Our method can clearly retain contour and
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FIGURE 12. Fused results on the CVC-14 dataset. (a) infrared image; (b) visible image; (c) CSR; (d) DenseFuse; (e) Fusion-GAN;
(e) Fusion-GAN; (e) Fusion-GAN; (f) IFCNN; (g) SEDRFuse; (h) Our MIFFuse.

TABLE 7. The average values of eight metrics for 25 fused images. The best values in each metric are denoted in bold.

TABLE 8. Comparison results for different fusion framework in running time. The best values in each metric are denoted in bold.

detail information, as shown in Figure 12, while DenseFuse,
Fusion_GAN and SEDRFuse cannot. Figure 12 (h1) shows
partial enlargements of fusion results, and it is obvious that
in contrast methods, ‘‘the car edge’’ is blurred, while the
proposed fusion method has a relatively clear marginal struc-
ture. Furthermore, the results obtained using the six methods
vary marginally in contrast and details. Our method yields
an image Figure 12 (h2) with more texture details in the

‘‘person’’ area than the others. it can be found that the
silhouette of a person is relatively fuzzy.

Additionally, the proposed method has advantages in
enhancing the detail texture. while CSR, Fusion_GAN and
SEDRFuse cannot. For example, in the experimental results
of other methods, Figure 12 (c2)-(g2), it can be found that the
outline of a person is relatively fuzzy, while is sharpened in
the MIFFuse result. As a result, we may conclude that our
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FIGURE 13. Fused results for infrared and visible (RGB) images. (a) Infrared image; (b) Visible image; (c) Our MIFFuse.

proposed approach outperforms the other five comparative
algorithms in terms of fusion performance.

2) QUANTITATIVE EXPERIMENTS
Twenty-five pairs of images were selected in the
CVC-14 dataset to verify the robustness of our method, and
the results are shown in Table 7. The best results are indicated
in bold. Our proposed MIFFuse method also earns the best
score in five fusion metrics, including EI, CON, EN, SD, and
AG, according to objective evaluation. For the metrics EI and
CON, our method reaches the maximum value, and the image

obtained by fusion contains rich information and contrast.
The MIFFuse result has the highest value for EN and AG,
indicating that the suggested method’s results contain a lot of
detail information and sharp edges. As a result, the proposed
MIFFuse method outperforms all other approaches in terms
of quantitative assessment.

E. RGB AND INFRARED IMAGE FUSION
We use the proposed method to test the fusion effect of RGB
and infrared images. The images for the input are provided
from [49]. The dataset includes 221 RGB visible and infrared
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image pairs, which has been entirely registered. Figure 13
shows the fused results for RGB visible and infrared images.
First, we convert the RGB image to YCbCr format and extract
the Y channel separately. Then, we input the Y channel and
the infrared image into the MIFFuse network to obtain the
fusion result. Finally, we merge the fusion result with the Cb
and Cr channels and get the fused color image.

F. RUNTIME COMPARSION
The averaged running time of various fusion methods is com-
pared in Table 7. As can be shown, our method has the highest
running performance, running almost twice as quickly as
the other methods. In summary, our proposed fusion method
can make faster and more effective with infrared and visible
image fusion.

IV. DISCUSSION
Consider both the quantitative and the qualitative results,
we can make some overall comments for the investigated
methods. Firstly, when it comes to deep learning-based image
fusion approaches, most methods are unsupervised because
there is no ground truth. Secondly, there is no unified dataset
in infrared and visible image fusion scopes to compare the
performance of various algorithms. As a result, different
images are utilized in research, making it difficult to compare
the advantages and disadvantages of various algorithms and
determine the future research direction. Third, there are many
evaluation metrics for images, but none of them are specif-
ically designed for the field of image fusion. This makes
quantitative performances comparisons difficult. However,
it is difficult to align the two band images, because the
focal length and resolution of the visible light camera and
the infrared camera are different. Therefore, the registration
algorithm [50] of infrared and visible images hinders the
development of this field to some extent.

In comparison to previous state-of-the-art methods, our
proposed method incorporates several innovative features
that could help to improve the quality of infrared and vis-
ible image fusion. To begin with, our approach is an end-
to-end framework that speeds up the fusion. In contrast,
reference [27], [28] proposed a two-stage deep learning
method for fusing infrared and visible images. Further-
more, our proposed method can complete the fusion of
RGB and infrared images compared with other fusion
algorithms [28], [30], [40].

When it comes to image fusion, it is worth noting that
the evaluation metrics aren’t all the same. As a result, it is
difficult for researchers to uniformly evaluate the advantages
and disadvantages of the existing state-of-the-art methods.
As we have already mentioned, MIFFuse has achieved four
firsts (SF, EI, CON, AG) among the six non-reference metrics
(SF, EI, CON, EN, SD, AG), which also shows the superi-
ority of our method. Of course, another important research
direction of image fusion is to accelerate the speed of image
fusion while ensuring the quality of fusion, this will reserve
more operating space for target detection and recognition.

Although our method runs more than twice as fast as the
other methods, it has not yet reached the level of real-time
processing.

V. CONCLUSION
In this study we tackle the challenging problem of image
fusion by employing a multi-level feature fusion framework
based on CNN and residual block. The MIFFuse framework
is an end-to-end framework while it does not require any
preprocessing steps. This means that the user can omit the
process of designing fusion strategies, something which usu-
ally requires much time and attention. The experiments on
two datasets revealed the potentials of our method, these
experiments indicated that the proposed fusion method could
achieve high quality, preserve a large amount of comple-
mentary information, and sharp edge features while avoiding
artifacts and ambiguities. Additionally, the proposed method
provided fast inference times, two times faster than existing
state-of-the-art methods. In the future, we plan to reduce
the running time of our method and eventually achieve real-
time computing performance. Finally, we intend to deploy
the optimized model to an embedded computing platform,
e.g., the NVIDIA Jetson AGX Xavier.1
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