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ABSTRACT Non-intrusive and automated detection of pig breeds, particularly from visual standpoint,
is important from a food quality tracking perspective. In this work, colour as well as texture based
visual descriptors from muzzle images have been identified, which, serve as breed-identifiers to separate
four common pig-breeds: Duroc, Ghungroo, Hampshire and Yorkshire. While these handcrafted visual
descriptors by themselves are fairly robust and discriminative, it is recognized that by controlling the decision
space by choosing the feature-type based on colour or texture or both and the order in which particular
breeds are siphoned, classification accuracy can be improved considerably. In that light, a stable, relatively
data-independent, breed-specific, hierarchical tree synthesis and feature selection procedure is proposed
based on a breed-pair cluster separation table. The proposed approach has been compared with the state
of the art Phylogenetic distance based Hierarchical Agglomerative Clustering algorithm (AGNES) and also
with the standard decision tree classification algorithm. On cross-validation, When completely different sets
of pigs were used for training and testing (50-50 split), the proposed algorithm reported relatively high
mean classification accuracies of 86.45% for Duroc, 93.02% for Ghungroo, 86.91% for Hampshire and
98.54% for Yorkshire, respectively.

INDEX TERMS Pig breeds, Gradient Significance Map, morphological top hat operator, colour histogram,
graph synthesis, DGau filter.

I. INTRODUCTION
Animal biometrics, particularly of a visual type [1], [2], play
an important role in tracking down animals, which have sig-
nificant commercial value.While some animals are important
from an individual standpoint, some assume an importance
from a breed perspective. The term ’breed’, is defined as
a specific class of animals exhibiting some similarities in
morphological or physiological traits, which have been prop-
agated over generations, due to inheritance of some common
gene-pool by descent.

For domesticated animals, such as cows, goats and pigs,
whose ‘‘produce’’, in some form or the other is consumed
(i.e. has commercial value and impact), the identity of the cow
or pig in a larger group context, i.e. its breed-type, becomes
crucial. For instance, it has been found and recorded that
the following four specific breeds of cows viz. Gir cow of
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Gujarat; Rathi cow of states Uttar Pradesh, Madhya Pradesh
and Haryana; Red Sindhi cow of states Punjab, Haryana,
Karnataka; Sahiwal cow of states Uttar Pradesh, Haryana
and Madhya Pradesh, produce more than 50 litres of nutri-
tious milk every day [3]. In the same vein, in the con-
text of pigs, most farms prefer pure-breeds as opposed to
cross-breeds from the point of view of reproduction and pork
quality. Aspects connected to their natural health condition
in current local environments, weight and size associated
with specific pig-breeds, play a crucial role in formulat-
ing a preference for certain breed-types over others. The
Large White Yorkshire, Hampshire, Duroc etc., are among
the few imported exotic breeds in India [4]. The Yorkshire
breed for instance is popular because it lends itself to cross-
breeding. Being a prolific breeder, it provides a good amount
of meat for consumption. Hampshire hogs on the other
hand are noted for being well-muscled and rapid growers,
and for exhibiting good carcass quality when used as meat
animals.
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Most biometrics are found concentrated near sensory inter-
faces e.g. muzzle of pig [5] or facial profile in cows [1]
or hoof patterns in horses. Aggregates of these biometric
traces at a macro level, may qualify as what are known as
‘‘breed identifiers’’. For instance, the face, which is a crucial
biometric from a social standpoint of human beings, can be
analyzed at a coarser level involving colour, texture, facial
feature skewness/bias, to segregate people hailing from dif-
ferent types of ethnic communities. These facial parameters
are transmitted from generation to generation, as long as the
ethnic group stays insular. In a similar fashion in the case
of pigs, for a particular set of morphological parameters to
qualify as a breed indicator the following conditions must be
satisfied:
• There must be a biometric connection, i.e. these mor-
phological parameters must be linked to their ancestors.

• Furthermore, these parameters should be concentrated
near sensory interfaces, at places where there is a con-
tinuous interaction with the surrounding environment.
Over generations some of these macro-morphological
parameters will be ironed out and shall stabilize to be
eventually passed down to future generations.

However, when it comes to the practical deployment of a
breed profiling procedure, it is important to first identify the
domain (visual, acoustic, chemical etc.), and then the nature
of the measurements taken in that domain, which may qualify
as breed-relevant features or statistics.

There are procedures for individual identification of ani-
mals, some intrusive and some non-intrusive. Intrusive meth-
ods such as ear notching and tagging, use of RFID tags etc,
are often painful for the animals. Non-intrusive methods,
however, based on images of certain parts of the body, such
as auricular vein patterns in goats and pigs [6], have gained
considerable attention from researchers. However, very few
methods exist for breed identification of animals purely based
on images. Some exemplar work related to dog-breed classi-
fication linked to biometrics of the visual type, can be found
in Raduly et al. [7] and Kumar et al. [8], using deep neural
networks.

Biometrics of the visual type can therefore be adapted and
modified to generate breed descriptors in the visual domain
for isolating and detecting breeds of a particular type. In this
work, still images of faces of pigs or parts of the face, such
as the tip of the snout (termed as the muzzle), have been
found to be stable, yet discriminative visual identifiers, across
breeds [5]. Themain aim of this work is to check and establish
whether the image of the muzzle of a pig qualifies as a
robust breed identifier for four popular breeds viz. Duroc,
Ghungroo, Hampshire and Yorkshire. The main contributions
in this paper encompass the following fields:
• Segmentation of muzzle region from background:
Design of a spatial filter for contour detection and con-
tour interior cleaning. This is built on the principles
of the dual-mode Gabor filter [9] with a conjoined
operation of three Gabor variants along three different
directions: 00, 1200 and 2400 each of which performs

low pass filtering along one direction and differentiation
along the other orthogonal direction.

• Selection of unique and customized secondary statistics
for color descriptors such as the Sarle’s index [10] for
picking up dual colouration, on the muzzle particularly
in the case of Hampshire and in some cases, even Duroc.
On another front, eigen-decomposition performed in the
Cb − Cr space was used for characterizing the footprint
of the 2D histogram.

• Graph synthesis for generating breed siphoning order:
Feature selection was merged in a unique way with the
tree construction procedure. Based on a baseline table
containing pairwise distances across breed features and
feature-specific cumulative distance analysis, a stable
tree was created for each training set with ’selective’
feature types being deployed at different decision points
(or nodes in the tree).

A. BREED IDENTIFICATION AND IDENTIFIERS
It was surmised in an earlier work [5], that biometric identi-
fiers tend to be concentrated near sensory interfaces. These
sensory interfaces could be the eye (ocular type with the
biometric in question being the iris), the ear (aural type
dealing with vein patterns in the inner surface), the nose or
snout (nasal and tactile type especially for pigs, involving
the muzzle) and many others. While a single biometric iden-
tifier imparts a distinct identity to a particular pig, it does
not directly qualify the pig in a larger group (analogous
to ‘‘race’’ based classification for humans based on their
origin and life-style over generations). When several biomet-
ric micro-identifiers are aggregated, at a coarser level they
constitute what can be called a ‘‘breed-identifier’’, which
qualifies the pig in a larger setting based on some similarities
in traits.

The nasal disc on the snout of the pig, while being rigid
enough to be used for digging, has numerous sensory recep-
tors. Pigs tend to use their snout while exploring and search-
ing for food items, to push objects, to flatten them, for
scooping and for leveraging out thick roots. Furthermore,
under natural conditions, pigs may spend 75% of their daily
activity engaged in rooting and foraging [11]. Apart from this,
the snout also houses the nasal interface carrying two nostrils
as shown in Fig. 1, which plays a crucial role on several
fronts such as: (i) Breathing, (ii) Discriminating between
odors and tracking down food, (iii) Using the odors stemming
from chemical discharges to locate one’s mate [11], etc. This
frontal portion or disk is termed as the ‘‘muzzle’’. Thus,
the muzzle segment serves as both a tactile as well as a
nasal interface for interacting with the environment. Owing
to the presence of many sensory features in virtually the same
location, it was concluded in an earlier work [5], that the
frontal image of the muzzle covering the heart shaped nasal
disc which houses two nostrils could be used as a ‘‘breed
identifier’’. The pigs selected for analysis and profiling in
this paper have crossed what is known as the weaning period
(more than six weeks from the date of birth). This implies
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TABLE 1. Distinguishing visual parameters from the original cropped muzzle colour images (taken from male pigs) and their corresponding GSMs.

FIGURE 1. Description of the muzzle of a Duroc pig.

that their biometrics and breed-identities have crystallized
morphologically in time. Beyond this weaning period vir-
tually no change is observed in the biometric and breed-
parameters [12].

The manually cropped muzzle segment of a Duroc pig is
shown in Fig. 1 in which the key parts of a muzzle are marked.
Apart from having two large nostrils and hair at the periphery
of the muzzle contour, the muzzle region also shows large
sweat pores and some stunted hair. This stunted hair was
restricted to the darker region leaving the pinkish-white patch
barren with respect to the hair. Sweat pores, however, were
present uniformly in both the dark and pinkish white patches.
Shown in Fig. 2(a-d) are the muzzle images corresponding
to four different breeds: Duroc, Ghungroo, Hampshire and
Yorkshire. By using a suitable texture processing mechanism
based on gradients such as the Gradient Significance Map
(GSM) [2] certain elements linked to the pores, hair and
pinkish white patch (if present) on the muzzle surface can
be emphasized or enhanced and brought out in the form of a
binary map. The white portions in this GSM binary map, cor-
respond to parts of themuzzle, which have some significance,
as far as their connection with positions of the sweat-pores,
hair and stunted hair are concerned. The following patterns
can be discerned from the colouration profile seen in the orig-
inal muzzle images in Fig. 2(a-d) and the texture profile from
the GSMs computed in Fig. 2(e-h), covered in Table. 1. It is
clear from Table. 1 that while examining breed-differences
in a pairwise fashion, Ghungroo and Yorkshire turn out to be
antipodes both with respect to colour and texture. However,
because of the dual-colouration which prevails in the case
of both Duroc and Hampshire pigs, the breed classification
problem becomes tricky.

FIGURE 2. Pig muzzle imprints and the corresponding GSMs [2].

The rest of the paper is organized as follows: The muz-
zle segmentation procedure is discussed in Section. II.
The customized visual descriptor selection procedure,
signal-conditioning and abstraction in Section. III. The pro-
posed tree based classification algorithm and decision mak-
ing process is covered in Section. IV. Classification literature
associated with some existing tree based algorithms are in
Section. V and finally experimental results in Section. VI.

II. MUZZLE SEGMENTATION
Given a cropped muzzle image, the first step, is to extract
or estimate the muzzle contour from a noisy background
which is both rich in colour as well as texture. Feature
extraction can be done once this region of interest is detected
and is confined to the interior of the muzzle. The role
of a segmentation process is to ideally extract out the
muzzle region from the background for further process-
ing and feature extraction. Active contours using level sets
are one of the most extensively used methods in image
segmentation [13], [14]. This is due to their inherent ability to
adapt to complex contours after a certain number of iterations,
thus defining the boundary between regions in an image. The
level set methods in literature are broadly categorized as edge
based or region based.

In edge based level set methods, minimizing the energy
functional for curve evolution is equivalent to locking the
contour onto edges in an image. These methods are suit-
able when the object to be segmented is separated from the
background by sharp edges. The distance regularization term
in [15] plays a crucial role in locking the contour to complex
boundaries with high edge strength. While in region based
level set methods, the minimization of energy functional
is equivalent to segmenting the image into homogeneous
regions. The measure of homogeneity could be based on
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FIGURE 3. Segmented region obtained using (a)Our proposed algorithm (b)edge based DRLSE model (c)Combined region and
edge based SDREL model and (d)Region based Chan-Vese model.

gray level intensity or colour or some texture-profile. In an
early work by Chan et al. [16] involving region based level
sets, a degradation in performance was observed when there
was an intensity in-homogeneity either in the foreground or
the background. Wang et al. [17], [18] later covered this
issue, so long as this intensity in-homegeneity was found
to be within certain bounds. Cai et al. [19] on the other
hand used colour information guided by visual saliency for
segmentation. Zhi et al. [20] used a combination of edge and
region based methods.

However, these methods were not suitable for pig muz-
zle segmentation, due to the following practical on-field
constraints:
• Colour-profiling issues: When the muzzle is snapped
from the front, the region immediately around the frontal
projection is usually either the face of the pig and/or
partially a glove (belonging to the individual holding the
pig to stabilize the head movement). Since, the colour
of the face is similar to that of the muzzle surface,
the background will influence the precision with which
the muzzle portion can be extracted.

• Texture-profiling issues: From a texture viewpoint,
the presence of lines, edges, corners, curves, sweat cir-
cles and hair spikes over a particular patch, impart a
certain unique structure to the interior of the muzzle.
Given a broad definition such as this, it becomes difficult
to segregate the background containing the face of the
pig (which has a rich texture due to furry and spiky hair)
from the patterns on the muzzle surface.

Since standard segmentation algorithms fail, feature mixing
is virtually unavoidable if one attempts an over-precise detec-
tion of the muzzle contour and its interior. Hence, instead of

attempting a precise contour extraction, an attempt is made
to fit in a ball inside the muzzle (with the largest possible
radius), so that no part of the background is picked up. The
initial goal is therefore to pre-filter the muzzle portion so that
the interior gets cleaned up as much as possible and becomes
largely homogeneous in appearance. While this interior is
being cleaned up, the signal enhancement algorithm also
enhances the contour linings without over emphasizing other
parts. The segmentation algorithm must therefore achieve the
following dual objective:
Selection and tuning of a suitable pre-filtering operator

in a way that the muzzle contour is brought out clearly
(or enhanced), while at the same time suppressing the details
in the interior, making it appear partially homogeneous with
respect to texture and/or colour.

Once this selective enhancement is done, a circular mask
that gets nicely inscribed in the interior of the muzzle. The
circular mask must be large enough to trap sufficient details
both with respect to colour and texture during the feature
extraction procedure. If the radius of this mask is too small
(i.e. a conservative strategy to ensure the mask covers only
the interior), the number of data-points available for muzzle
and eventually breed characterization may become too less.
On the other hand if the radius is too large this may pick
up unnecessary noise associated with the background and
boundary variations. Hence, the search for the optimal radius
(keeping this trade-off in mind) is done over a certain band
RMIN and RMAX . It may be noted that a part of the data in the
interior of the muzzle is also lost (rather of less use), owing
to the presence of two large nostrils in the muzzle interior.
Hence, the minimum radius RMIN must be at least large
enough to go beyond the nostrils. Fig. 3 shows the muzzle
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region segmented out from the background using a variety of
methods such as, our proposed method; an edge based active
contour model DRLSE [15]; a region based active contour
model [16]; and a combination of region and edge based
active contour model SDREL [20]. Active contour models
which try to maintain region homogeneity by minimizing the
energy functional fail miserably for cases where the muzzle
region contains the pinkish white patch embedded within the
grey region. These methods also fail to differentiate the facial
region from the muzzle, when their colour is almost the same.
The edge based methods suffer from the problem of boundary
leakage, where the edges are very weak.

A. GENERATING THE CIRCULAR MASK FOR ANALYSIS
Orientation-specific Gabor filters have been used extensively
to detect texture patterns in literature [9], [21], [22]. The
motive for modifying and adapting these directional Gabor
filters, with differentiation along one direction and smoothing
along the orthogonal direction, was to enhance the step edges,
trapping parts of the main contour. The smooth regions are
expected to register a lower detection-score as compared to
the edges. In this case to enhance the relatively sharp muz-
zle contour as compared to the smooth interior a quantized
Derivative of a Gaussian (DGau) function is presented in its
discretized form as: D(x) = −xe−x

2/(2σ 2f ). Here, σf is the
standard deviation associated with this Gaussian and x ∈
{−L, .., 0, . . . ,L}, with L = b3σf c (with bc representing the
floor function). The base kernel is created by rotating the dis-
cretized version in the X-Y plane. The kernel has two degrees
of freedom: (i) Standard deviation σf associated with the
differentiation process along a certain line and (ii) thickness t
associated with a smoothing along a direction orthogonal to
the orientation of the DGau function. If δ1D(m) represents
the 1D Kronecker delta function and δ2D(m, n) represents the
2D Kronecker delta function defined as follows:

δ1D(m) = 1 IF m = 0 and ’0’ if m 6= 0 (1)

δ2D(m, n) = 1 IF (m = 0, n = 0)

and ’0’ if (m 6= 0 or n 6= 0) (2)

Both (m, n) ∈ Z , the set of integers. The 2D linear con-
volution denoted by the operator ′∗′ between two functions
g1(x, y) and g2(x, y) is defined as:

f (x, y) = g1(x, y) ∗ g2(x, y)

=

∞∑
u=−∞

∞∑
v=−∞

g1(u, v)g2(x − u, y− v) (3)

Each arm of the ′∗′ operator has two wings: one a deriva-
tive filter and the other a smoothing filter in the orthogonal
direction. The Gaussian derivative filter function is given by,

h1(x, y) = D(x); for y = 0 (4)

Written compactly as,

h1(x, y) =
∞∑

u=−∞

D(u)δ2D(x − u, y) (5)

The smoothing wing is given by:

h2(x, y) =

(t−1)
2∑

u=− (t−1)
2

δ2D(x, y− u) (6)

hc,0F (x, y, θ = 00) = hBASE (x, y) = h1(x, y) ? h2(x, y) (7)

This is equivalent to running the first filter h1 over the
entire image and following it up with h2 (or vice-versa). The
first filter which is the DGau filter, eliminates zones where
the intensity profile is largely homogeneous and converts
step edges to thick lines. The second filter, depending on the
thickness parameter t , serves as a brush (whose thickness
is decided by t) in extending the impact of the directional
gradient over a small neighborhood. Due to this all homoge-
neous patches of size t × 2L are nullified. Here, this texture
homogeneity refers to a set of horizontal stripes.

hc,120(x, y, θ = 1200) = Rotation of base function

by 1200 counter − clockwise (8)

Let (X ,Y ) be the new coordinates when the reference
system is rotated in the counter-clockwise direction by an
angle θ and let (x, y) the coordinates with respect to the
original reference system.

x = X cos(θ)− Y sin(θ)

y = −X sin(θ )+ Y cos(θ) (9)

And in this new reference frame,

hc,120(x = X cos(θ )− Y sin(θ ), y

= −X sin(θ )+ Y cos(θ))

= hBASE (X ,Y ) with θ = 1200 (10)

A similar pattern is followed for the other function posi-
tioned at 240 degrees. The generated plots are shown in Fig. 4.
There are in fact three primary, directional Gabor-type filters
in operation, whose results are fused for different parameter
values: σf ∈ 1, 3, 5, 9 and t ∈ 1, 3, 5, 11 using the square
energy linked relation [9]. The final texture profile is,

IF (x, y, θ) = IM (x, y) ? hc[θ ]F (x, y)

T (x, y) = IF (x, y, 00)2 + IF (x, y, 1200)2

+IF (x, y, 2400)2 (11)

When the orientation of this kernel is changed along the
X-Y plane to 1200 and 2400 (Fig. 4), this definition of homo-
geneity extends to include elimination of lines at other orien-
tations. Curves can also be eliminated provided the curvatures
at points where there is a change in direction is not significant.
Pores are also eliminated.

The global mean is computed as

µGL =
1
N 2

N∑
x=1

N∑
y=1

T (x, y) (12)

and the final quantized binary representation is given by,

BINTEX (x, y) = 1 IF T (x, y) > µGLand ’0’ otherwise (13)
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FIGURE 4. Structure of the directional (orientation specific) DGau filters corresponding to three different angles: 00,1200 and 2400, all with respect to
the X-axis.

for x, y ∈ 1, 2, ..N (N = 512). An increase in σf tends
to thicken the contour profiles as the DGau function tends
to operate along the normal to the contours. To apply
this design, it is recognized that the muzzle pre-filtering
procedure has two degrees of freedom: (i) Standard
deviation, σf The strength of the orientation specific
DGau-differentiator can be adjusted by increasing or
decreasing σf . Because of the circular symmetry of
triad-arrangement (00, 1200, 2400), most line artifacts owing
to the presence of hair in the muzzle interior can be elim-
inated. This triad-arrangement is fixed. The interior of the
muzzle has many sweat pores (in some cases covered by
stunted hair), which emerge as spikes. These spikes can be
suppressed if the value of σf is sufficiently large (illustrated
in Fig. 6 with respect to the muzzle of the Ghungroo pig
in Fig. 5). When this DGau is aligned with a line artefact,
the line can be removed completely. But since the hair on
the muzzle may have arbitrary orientations, this line elim-
ination is indirectly facilitated through a projection mecha-
nism involving three DGau along three different directions
(indicated by the filters in Fig. 4); (ii) Thickness, t The
effectiveness of the brush work involved in cleaning up
the interior increases with t . This also increases the tol-
erance of the triad-DGau structure to multiple line thick-
nesses, sweat pores of different sizes and arbitrary short
curves. But too large a thickness t has a tendency to enhance
step edges particularly in the case of breeds which have
pink-patches in the interior, such as Hampshire and Duroc.
Furthermore, this increase in t may lead to an overemphasis
of the contours associated with the pig’s nostrils (which is
unnecessary).

To crystallize the parameters calibration is done with
respect the most noisy breed, which happens to be Ghun-
groo and then test the final set on all. To identify the right
choice of parameters, σf is varied over the set {1, 3, 5, 9}
and the thickness is varied from 1, 3, 5, 7. The original
cropped Ghungroo muzzle image is shown in Fig. 5 in
which the impact of the Gabor filtering followed by the
binarization procedure is witnessed. High texture homo-
geneity within the Ghungroo-muzzle contour is obtained for
σf = 4; t ≥ 3, as indicated in the sub-figures inside the
red-rectangle in Fig. 6.

FIGURE 5. Muzzle of Ghungroo pig for DGau pre-filtering and texture
quantization.

FIGURE 6. Impact of DGau pre-filtering and texture quantization on the
muzzle of a Ghungroo pig (Fig. 5).

Once the binary segmentation map BINTEX (σf , t) is cre-
ated for the best choice of parameters σf = 4 and t = 3,
two thresholds RMIN and RMAX are to be set and for all (x, y),
such that, BINTEX (x, y) = 1 AND

√
(x − xc)2 + (y− yc)2 >

RMIN (whose distance is larger than RMIN ), the distance
from the center of the map (xc, yc) is computed as, Ds =

DSEL(xs, ys) =
√
(xs − xc)2 + (ys − yc)2. Here, (xs, ys), s ∈

1, 2, ..,Ns are the significant points indicated by the binary
map which have a distance larger than RMIN and lesser than
RMAX . From this set, the mask radius is estimated as the
median over the entire set.

RMASK = MEDIAN (Ds), s ∈ {1, 2, 3, . . .Ns} (14)
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TABLE 2. Table showing the mean classification accuracies along with the standard deviation across 100 iterations with different train and test data for
the four breeds viz. DUROC(D), GHUNGROO(G), HAMPSHIRE(H) and YORKSHIRE(Y) as a function of RMIN and RMAX .

FIGURE 7. Results of adaptive circular mask generation process for pigs from different breeds.

Thus RMASK is obtained in an adaptive manner and it is
not fixed for all the muzzle images. It is dependent upon the
nature of the contour which is picked up by the DGau oper-
ator, the noise inside the muzzle contour picked up and also
the region of computation as defined by RMIN and RMAX . The
choice of RMIN should be such that the nostrils on the muzzle
surface can be avoided from the computation of RMASK . This
is because these nostrils act as a deterrent in the computation
of RMASK as their edges tend to produce a false response
to the DGau operator. RMAX should be chosen in such a
way so as to avoid the background region from affecting
the computation of RMASK on an image adaptive basis (i.e.
for every new muzzle image this parameter is re-computed).
The impact of RMIN and RMAX on the classification accu-
racies are tabulated in Table 2, when this image-adaptive
ball of radius, RMASK , with RMAX < RMASK < RMAX is
placed inside muzzle with the help of the Gabor-triad filter
arrangement. From this table it can be easily observed that
the best classification accuracies are obtained for RMIN =
0.6 × (N/2) and RMAX = 0.95 × (N/2). The necessity of
this adaptive mask generation algorithm can also be easily
understood from the classification accuracies in Table 3,
where a fixed value of RMASK has been used for all the
muzzle images. The accuracies drop significantly in this

TABLE 3. Table showing the mean classification accuracies along with
the standard deviation across 100 iterations with different train and test
data for the four breeds viz. DUROC(D), GHUNGROO(G), HAMPSHIRE(H)
and YORKSHIRE(Y) with fixed value of RMASK .

case, for all the values of RMASK = RFIXED, mentioned
in Table 3.

Results of this adaptive circular mask generation process
are shown in Fig. 7.

III. SELECTING AND GENERATING VISUAL DESCRIPTORS
FOR THE MUZZLE REGION
Once the segmented region is extracted from the interior of
the muzzle, this region of interest can now be analyzed on
two fronts: Colour and Texture. Depending on the position-
ing of the light source and the manner in which the pig’s
snout is being held, there will be significant illumination
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FIGURE 8. Scatter plots and 2D histograms in the Cb-Cr domain (four pig breeds).

variations across pigs from the same breed. This results
in considerable intra-class variability. To ensure a robust
colourimetric analysis, the luminance segment must be seg-
regated from the chrominance part and thus the image must
be first be converted from RGB space to another apprpriate
colour space. The luminance component gets decoupled from
the chromatic part when the image is analyzed in the YCbCr
space, making the Chromatic components (Cb and Cr ) inde-
pendent of the local illumination profile and variations as
shown in [23]. Some muzzle samples from the four breeds
(corresponding to 4 × 2 = 8 different pigs: two per breed),
are shown in Fig.7, with the photographs taken under natural
lighting conditions (viz. in a shed in broad daylight). Here
initially, the procedure for qualifying the proposed colour
descriptor based on a 2-dimensional histogram over the
chrominance space (or Cb-Cr-space), is discussed. In the next
part, the procedure for arriving at the right choice of parame-
ters based on two texture descriptors (one theGSM [2] and the
other the top-hat morphological operator [24], which can be
used for extracting bright spots from dark background [25]),
is presented.

A. SELECTION OF THE COLOUR DESCRIPTOR
It was summarized in Table. 1, that the colour composition of
the muzzle surface was distinct for these four breeds: Duroc,
Ghungroo, Hampshire and Yorkshire. Examples indicating
both intra-class variability as well as breed separability with
respect to colour (Fig. 2(a-d) and Fig. 7(a-h)). In some cases,
the muzzle of Duroc carries a pinkish-white patch (whose
size and position is un-predictable). Hampshire male pigs
on the other hand show a strong and consistent pink-patch
presence (again the size and position of the patch is vari-
able, but generally found much larger than the ones found
in the odd Duroc pig). Yorkshire pig-muzzles are completely
pink in colour, which makes them easily identifiable and
separable from pure-greyish black Ghungroo pigs. The main

confusion thus arises between Duroc and Hampshire both
with respect to colour and texture. In the colourimetric part
of the Y −Cb−Cr space, this separation can be tapped statis-
tically via 2-dimensional histograms (Fig. 8 (third and fourth
rows)). It is evident from row-4 (top-view of the Cb−Cr his-
tograms), that the chromatic-centroids of Duroc, Ghungroo,
Hampshire and Yorkshire are all distinct (Fig. 8, fourth row).
The footprints of the histograms in the (a-b) space are much
larger for Duroc, Hampshire and Yorkshire as compared to
Ghungroo. The colour diversity is much less in the case of
Ghungroo andmaximum forDuroc (Fig. 8, fourth row). Thus,
the histogram features are distinct for all the four breeds,
which qualifies this primary feature as a robust yet distinctive
colour descriptor for breed-segregation.

Colour measurements were taken over the muzzle sur-
face for a particular pig (only confined to the mask
region), through a random sampling procedure. After
picking random samples of the pixels within the mask
region, the following dataset was generated, associated with
chroma measurements (Cb − Cr space):CDATAPIG,BR =
{(u1, v1), (u2, v2), . . . .(un, vn)}, with n being the number of
data-points picked randomly inside the muzzle. The muzzle
images were resized to 512 × 512 and all points within the
circular mask were considered for the 2D histogram gener-
ation and colourimetric analysis. Robust statistics from this
histogram such as, marginal and joint moments, secondary
statistics such as Sarle’s bimodality coefficient [10], both
at a 1-D level and also at a 2-D level with the assump-
tion of independence were computed. All the moments were
normalized with respect to the standard deviations in
both the dimensions (Cb,Cr ). Let fH (ũ, ṽ) denote the
2-dimensional normalized histogram associated with the
chromatic-components (Cb,Cr ) linked to the muzzle-colour
profile of a particular pig belonging to a certain breed BR ∈
1, 2, 3, 4. This in essence is a 4-class classification prob-
lem where class-1 corresponds to the Duroc breed of pigs,
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class-2 to Ghungroo, class-3 to Hampshire and class-4 to
Yorkshire. here the variables ũ and ṽ takes the Cb and Cr
values respectively of a particular pixel. The ordered pair
(ũ, ṽ) ∈ Z × ZS , where ZS = [−128,−127, . . . , 128].
If (ui, vi), i = 1, 2, . . . ., n denote the (Cb,Cr ) values of
the n randomly selected pixels in the region defined by the
circular mask, then fH (ũ, ṽ) is defined as

fH (ũ, ṽ) =
n∑
i=1

δ2D(ũ− ui, ṽ− vi) (15)

Since fH (ũ, ṽ) is a 2-dimensional histogram, hence it has
the following properties:

0 ≤
(
1
n

)
fH (ũ, ṽ) ≤ 1(

1
n

) 128∑
ũ=−128

128∑
ṽ=−128

fH (ũ, ṽ) = 1 (16)

The statistics computed on this sub-sampled dataset tend
to characterize the histograms seen in Fig. 8. Of interest
are the following parameters: (P1) Bi-modality Index [10]:
In breeds like Hampshire and Duroc, muzzles tend to show a
pink patch and the rest of the muzzle is either greyish-black
or powdery-black. Thus the histograms in these two cases
(if a pink patch is indeed present in the Duroc pig), tend
to be of a bi-modal nature. This bi-modality, reflects as a
heavy-tailed distribution and hence as per the literature [10]
can be trapped using a combination of the Skewness and
Kurtosis. Extension to 2-dimensional data is done here based
on certain assumptions; (P2) Centroid: Mean vector associ-
ated with the pair Chroma-pair (Cb,Cr ) (black for Ghun-
groo, weighted combination of black and pink for Hampshire,
pink for Yorkshire and selective weighting (black,pink) for
Duroc; The centroids are definitely expected to be distinct for
Ghungroo, Yorkshire and Hampshire; (P3) Footprint of the
distribution: This is obtained through a principal component
analysis (PCA), over the chroma-space, by first overlooking
the bi-modal possibility and assuming it to be of a unimodal
2-dimensional Gaussian type. The square-root of the product
of the eigenvalues is expected to provide and estimate of the
footprint of the distribution; (P4) Skewness and Kurtosis of
both the Cb and Cr data (to be used for computing the com-
posite bi-modal index assuming independence of the colour-
channels). The corresponding equations for parameters P1,
P2, P3 and P4 are constructed in the following way: First the
means of the respective chromatic components Cb and Cr are
computed to generated the centroid: µCb =

1
n

∑n
i=1 ui and

µCr =
1
n

∑n
i=1 vi. Then the Kurtosis and Skewness measures

for the respective chromatic components Cb and Cr were
computed as,

SKEWCb =

1
n

∑n
i=1(ui − µCb )

3

(
√

1
n

∑n
i=1(ui − µCb )2)3

KURTCb =
1
n

∑n
i=1(ui − µCb )

4

( 1n
∑n

i=1(ui − µCb )2)2
(17)

In a similar fashion SKEWCr and KURTCr are computed.
Based on Sarle’s proposition [26], bi-modality can be pre-
dicted using the heavy tailed nature of the respective chroma
marginal probability distributions, which in turn reflects in
the higher order moments: Skewness and Kurtosis. This
Bi-modality index can be computed for the respective chro-
matic components Cb and Cr as,

BIMCb =
1+ SKEW 2

Cb

KURTCb
(18)

with a similar form for the Cr -component, BIMCr . Assum-
ing independence of the chromatic components Cb and Cr ,
a 2D bi-modality coefficient approximation can be generated
as a geometric mean of the bi-modality coefficients of Cb
and Cr ,

BIMAPP(2D) =
√
BIMCb × BIMCr (19)

To establish the size of the footprint of the joint Cb − Cr
probability distribution, a PCA analysis is done to compute
the eigenvalues λ1 and λ2. The eigenvectors are discarded as
they are expected to be data-sensitive but the eigenvalues are
retained. Let the data-vector be v̄i = [ui, vi]T and the centroid
v̄CEN = [µCb , µCr ]

T . First the colour covariance matrix over
the Cb − Cr space is computed as:

SCbCr =
1
n

n∑
i=1

(v̄i − v̄CEN )(v̄i − v̄CEN )T (20)

Let the eigen-decomposition of this matrix be,

SCbCr = VDVH (21)

where, D is a diagonal eigenvalue matrix comprising of two
eigenvalues: λ1 and λ2. The footprint of the joint probability
distribution can be approximated as,

FOOTCbCr =
√
λ1 × λ2 (22)

The skew associated with this footprint, about the
eigen-directions can be quantified as,

FOOTSKEW =
MIN (λ1, λ2)
MAX (λ1, λ2)

(23)

The final colour descriptor or feature vector is given by this
seven-dimensional vector (collection of selective statistics/
descriptors computed over theCb−Cr muzzle-data within the
mask region): f̄COLOR = [cd1, cd2, cd3, cd4, cd5, cd6, cd7]T .
Here, cd1 = µCb , cd2 = µCr , cd3 = BIMCb , cd4 =
BIMCr , cd5 = BIMAPP(2D), cd6 = FOOTCbCr , and cd7 =
FOOTSKEW . The t-SNE map [27], which is indication of
the extent of feature separability across these four breeds is
shown in Fig. 9.

B. TEXTURE DESCRIPTORS
The muzzle of each pig shows significant structural details
which can be detected by suitable operators or filters. The
following are some observations regarding this structural
arrangement:
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FIGURE 9. 2-dimensional t-SNE map for colour.

• Sweat pores are present all over the muzzle surface both
on the pinkish-white regions (present in breeds such
as Hampshire, Duroc and all-pink Yorkshire), as well
as the greyish-black patches (present in breeds such
as blackish-Ghungroo, dual-coloured Hampshire and
selectively dual-coloured Duroc).

• Hair or cilia (both prominent as well as stunted) are
different for different breeds. Firstly these are confined
to the greyish-black regions and do not exist over the
pink patches. Over the greyish-black patches this density
is more or less uniform and high. Hence, Ghungroo,
which is all black, exhibits a high density of pores and
hair (both stunted and long) all around the dial, while in
the case of Yorkshire, there are no hair/stunted hair on
the muzzle surface.

The objective of any texture filter should be to produce dis-
tinct and different results/outputs for different breeds, while
swallowing the variability within the same class. The texture
details present on the muzzle surface need to be highlighted
out at their corresponding location on the muzzle surface for
this purpose. There are several texture descriptors available
in literature [28]. Two texture filters/descriptors have been
used for trapping the significant portions in the muzzle region
where there are structured artifacts related to sweat-pores,
hair, stunted hair, patch transition regions (or contours) and
in some cases wrinkles in the skin. The Gradient Signifi-
canceMap(GSM) [2] and the Top-hat (THAT)morphological
transformation [24] are used to generate significance maps
which can then be quantized to produce what are known
as patch density maps(PDMs) [2]. If BM (x, y) : x, y ∈
{1, 2, . . . ,N } is a binary significance map (either of GSM
or THAT type), this map is split into four quadrants and the
fraction of white/significant pixels are counted and recorded
in each quadrant. Fig. 10(a) shows the muzzle of a Hamp-
shire pig and Fig. 10(b,c) shows the differential information
obtained from the significance maps with respect to GSM
and THAT along with the quadrant PDM scores. The con-
tour present in the interior, because of the pink patch in
the Hampshire pig, is picked up by the GSM but not by
the THAT-operator. This distinction becomes useful while
segregating Hampshire and Yorkshire with respect to texture.

FIGURE 10. Patch related texture variations seen in a Hampshire pig.

The significance map associated with GSM is a function of
the Gaussian gradient parameter, i.e. the standard deviation
parameter (σTEX ), while the top-hatmorphological operator is
primarily a function of the radius of the structuring element r .
It has been observed [2] that a small value of σTEX tends to
enhance the noise leaking into the feature calculation, while
a large value suppresses key internal details on the muzzle’s
surface. For themorphological THAToperator, the dimension
of the structuring element must be carefully selected [24].
The main objective of using this operator is to enhance fine
details like the hair follicles and pores on the muzzle surface,
while filtering out the coarse details. Hence, a structuring ele-
ment with a small dimension is desirable. The corresponding
quadrant-wise density feature vectors, related to the GSM and
TOP-HAT maps are given by,

DGSM (σTEX ) = [p1, p2, p3, p4]T

DTHAT (r) = [q1, q2, q3, q4]T (24)

where, pi, qi ∈ [0, 1] and i ∈ {1, 2, 3, 4}. In the case
of the Hampshire pig, owing to the presence of the pink-
patch, there is a prominent internal contour which is picked
up by the GSM but slightly suppressed in the TOP-HAT
map. Thus the texture filter outputs (GSM vs TOP-HAT) are
different for Hampshire (Fig. 11). The lack of details within
the pinkish-white patch in the Hampshire pig is demon-
strated in Fig. 10(d,e,f). Much of the details (dot, blob, line
and curve artifacts) are concentrated over the greyish-black
zone, Fig. 10(g,h,i). To account for the overall density scores
over the four quadrants for Ghungroo (most cases found
to be high) and lowest for Yorkshire, two mean parameters
have been derived from the GSM and TOP-HAT quadrant

FIGURE 11. Texture profile and patch density scores for a Hampshire pig.
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density scores.

µGSM =
p1 + p2 + p3 + p4

4

µTHAT =
q1 + q2 + q3 + q4

4
(25)

The final texture feature vector is a 10-dimensional vector,
a function of two primary parameters: σTEX from the GSM
and structural elemental radius r for the top-hat operator.

f̄TEX (σTEX , r)

= [p1, p2, p3, p4, q1, q2, q3, q4, µGSM , µTHAT ]T (26)

To verify the robustness and distinctiveness characteristic
of this feature vector, muzzle images of 20 pigs (five per
breed), were chosen for the experiment. The four breeds
were Duroc, Ghungroo, Hampshire and Yorkshire. The Gaus-
sian gradient parameter σTEX was varied over the range of
σTEX ∈ {2, 4, 6, 8, 10} and the radius of the top-hat structur-
ing element was varied as r ∈ {2, 3, 5, 7, 9}.
In order to assess the performance of the texture feature as

a function of the smoothing parameter from the GSM (σTEX )
and radius (r) of the structuring element from the
THAT-operator, the overall separability across breeds for
different parameter settings was computed. This was done
using a metric based on the Mahalanobis distance [29] for
measuring cluster/class separability. Five muzzle images
selected from five different pigs per breed were chosen for
this purpose; leading to four different sets of feature vectors.
Let BR1,BR2, BR3 and BR4 represent the four breeds/clusters.
Then dMD(i)(j) is chosen to be the Mahalanobis distance
from the centroid of the cluster BRi to cluster BRj. First,
the distance of breed BR1 from each of BR2, BR3 and BR4 is
measured individually. The overall distance of BR1 (denoted
by d̄MD(1)) from the other three classes is the mean of the
individual distances of BR1 from the other three classes, i.e.,

d̄MD(1) = (dMD(1)(2)+ dMD(1)(3)+ dMD(1)(4))/3 (27)

In a similar manner, distances d̄MD(2), d̄MD(3) and d̄MD(4)
are measured. The overall separation between the four breed
datasets is the mean over those four scores.

SM (σTEX , r) =
d̄MD(1) + d̄MD(2) + d̄MD(3) + d̄MD(4)

4
(28)

From the separation scores produced in Table. 4, σTEX = 4
and r = 3 are obtained as the best parameter set for extraction
of robust texture features. The corresponding t-SNE [27] map
which brings out the feature separability across breeds for the
optimal parameter set σTEX = 4 and r = 3 from Table. 4 is
shown in Fig. 12.

IV. TREE SYNTHESIS PROCEDURE
As observed from the t-SNE maps in Section III, feature
vectors obtained from the colour or texture information alone
are not self-sufficient for breed discrimination. Simply com-
bining the texture and colour features into one single com-
posite vector may help, but may prove to be sub-optimal in

TABLE 4. Separation scores for the composite texture feature for
different values of σTEX (GSM-operator) and different
radii r (THAT [24] morphological operator).

FIGURE 12. t-SNE map of the texture feature set.

cases where on a breed-specific basis, there is a correlation
between the colour and texture features/maps in some breeds,
while there is a disassociation in others. This inconsistency,
renders classification based on a singular mixed feature,
fixed decision space less effective. This calls for a hierarchi-
cal selection procedure. This is the motivation for taking a
graph-theoretic approach mainly for identifying the order and
manner in which the breeds are siphoned out in the proposed
classification procedure. A decision tree is constructed whose
leaves form the breed-nodes but the difference here is that
unlike a conventional decision tree algorithm which does
random attribute sampling andmodel building and adaptation
to arrive at the optimal decision space at each node, the feature
selection in our proposed tree building algorithm is done at
the MACRO level and NOT at the attribute level.

A. CLUSTER/CLASS SEPARATION INDICATORS
The distance metric between any two classes should properly
portray the separability between these two classes assuming
that this frame is modeled using a binary linear classifier
(two class separation problem). First a linear discriminant
classifier is learnt from the data taken from the two classes
which attempts to separate the two classes with minimum
error. There are two independent indicators for this cluster
separation:

1) FRACTIONAL CROSSOVERS
Here,the number of crossovers on either side of the hyper-
plane is used as a measure of separability. More the fractional
number of crossovers, lower is the separability between the
two classes (and greater is the class mixing). Let ni and
nj denote the number of members in class i and class j
respectively and nij the number actually belonging to class i
but falling on the other side of the hyperplane. This distance
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TABLE 5. Histogram type for colour and conditional distribution for texture density along with the correlation between (C) and (T ) feature sets for
various breeds.

indicator is,

SEPCO(i, j) = 0.5×
(
2−

nij
ni
−
nji
nj

)
(29)

A value of SEPCO(i, j) ≈ 1 indicates that the classes are
clearly separable (via a linear classifier).

2) NORMALIZED CLUSTER DISTANCE
Here the separation between the clusters is of greater concern
as compared to the overlap between them. Non-overlapping
closely positioned clusters are penalized as compared to more
separated ones. A hyperplane is first learnt for separating the
two classes using a linear discriminant classifier. A certain
fraction of data is chosen from each of the two classes, which
are nearest to the learnt hyperplane. Note that all of these
chosen data points from either of the classes are the ones
which fall on the respective side of the hyperplane to which
they actually belong to. Let µD(i)(α) and µD(j)(α) denote the
mean distance of these α-fraction of the nearest data-points
of class i and class j respectively from the hyperplane. Then,
distance metric along the second dimension is defined as

SEPD(i, j) =
(

S(α)
1+ S(α)

)
S(α) =

µD(i)(α)
σD(i)(α)

+
µD(j)(α)
σD(j)(α)

(30)

The role of standard deviation based normalization as far as
the Euclidean distances are concerned is to penalize clusters
which are non-compact (same centroidal separation, but show
greater variability). The separation indicator is,

SEPOVERALL(i, j) = SEPCO(i, j)+ SEPD(i, j) (31)

over range [0,2]. Table 6 gives the mean separation between
two different breeds as a function of the feature/composite
feature used over 100 different random selections of training
data as will be explained later in Section. VI. It can be
observed from Table 6 that out of the six breed-pairs, there
are instances when either the color (C) or texture feature (T )
alone gives better class separability as compared to the union
of colour and texture features (C ∪ T ). Thus in the union
of colour and texture features, the union may take place

TABLE 6. Distance metric for all possible binary splits when two breeds
are present: D:Duroc, G:Ghungroo, H:Hampshire, Y:Yorkshire; C: Colour
features, T: Texture features, T ∪ C : Composite features; Largest
distances in each column are indicated in BOLD font.

constructively or destructively, so that the class separation
either increases or decreases respectively. Upon examining
a combination of feature sets such as (C) and (T ), the cor-
relation profiles between these two feature sets in different
breeds are expected to be different. Thus there is expected
to be a mismatch between the correlation trends which
affects the cluster separation in this common decision space
(C ∪ T ). There is therefore a need to exercise a judgement
as to whether both features have to be included and if not,
which one is the preferred choice to form the decision space.
The correlation profiles between the feature sets (C) and (T )
in different breeds are expected to be different which is listed
in Table 5.
Since the correlation between the feature sets (C) and (T ) is

strong both for Hampshire and Yorkshire, hence the distance
metric is observed to be maximum for the feature set (C ∪T )
as expected. Also, in all distance comparison between pairs of
breeds involving Duroc or Ghungroo, because of the lack of
correlation between the feature sets (C) and (T ); it has been
observed that the feature set (C ∪ T ) does not provide the
maximum distance between clusters with the exception of the
Duroc-Yorkshire pair.

B. GUIDED TREE SELECTION
At a macro level, since a hierarchical classification strategy is
to be adopted, based on the manner in which the training data
is split and/or fused, for four breeds BRi,BRj,BRk and BRl ,
there are four distinct decision tree possibilities as shown
in Fig. 13. The structure of the tree, which gives best classifi-
cation results through a particular siphoning order at different
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FIGURE 13. Classification routes or tree-types possible in a four class
setting.

levels and with a proper feature choice (or choices) at those
decision points, needs to be identified without going through
the computational rigor. Given four breeds, Duroc (D),
Ghungroo (G), Hampshire (H) and Yorkshire (Y) (which
will eventually become four leaf nodes in the final deci-
sion tree), there are six pairwise breed-cluster distances
that can be computed: (D-G), (D-H), (D-Y), (G-H), (G-Y)
and (H-Y). There are three macro feature possibilities:
(i) Colour feature alone (C); (ii) Texture feature alone (includ-
ing GSM as well as Top-hat) (T); (iii) Union of Colour and
Texture (Composite) (T ∪ C). A sufficient set of distances
which can be used to derive a strategy for breed-siphoning is
the 6× 3 = 18-cell table of breed-cluster pairwise-distances
shown in Table. 6. From this Table. 6, secondary distances
can be derived. To find out roughly how far each breed is
cumulatively far away from the rest (with the same consistent
rule), by pivoting around a specific breed, its distance from
the other breeds are added up. This is in turn a function of the
feature-type: Colour (C) or Texture (T) or Composite: Colour
and Texture C ∪ T .

The cumulative distance table (Table. 7) provides a distinct
angular perspective from the point of view of the individual
breeds. The separation of Duroc (D) from the remaining
breeds is a function of the feature combination used: Turns
out to be SDUROC (C) = 1.90 + 1.71 + 1.74 = 5.35 with
respect to colour; SDUROC (T ) = 1.67+ 1.83+ 1.81 = 5.31,
with respect to texture and SDUROC (C,T ) = 1.71 + 1.74 +
1.93 = 5.38, with respect to the composite feature involving
colour and texture. Similarly such statistics can be computed
for the other three breeds leading to Table. 7. For a specific
feature type (color or texture or UNION), if the deviation

TABLE 7. Cumulative distances with respect to a particular breed across
various feature combinations.

TABLE 8. Leaving out Ghungroo, pairwise distances for various feature
combinations, reproduced.

between themaximum cumulative distance andmedian is sig-
nificant, this indicates a certain skew in the breed arrangement
and also provides indirect information, that the optimal tree
structure, may not be a flat tree (i.e. Fig. 13(a)). Here, from
the scores, Table. 7, appears to indicate that Ghungroo should
be siphoned out first, in terms of color and then the cumula-
tive distance table should be recomputed without Ghungroo.
If one compares the differential (MAX, MEDIAN) scores for
color (0.49), texture (0.16) and UNION (0.24) from Table. 7,
there is a hint that the color feature could be dominant over
texture, for this specific 4-breed arrangement.

It is clear from the cumulative scores from Table. 7 that
best results can be obtained from asymmetric binary split-tree
types T3 (Fig. 13(c)) or T4 (Fig. 13(d)), where the solitary
leaf node on the left happens to be Ghungroo (highest score)
and the decision space is defined with respect the colour
feature alone. Thus, the first level simplification results in a
subtree (one versus three split), shown in Fig. 14. When the
cumulative distances are recomputed (minus Ghungroo), one
arrives at Table. 9 and from the deviation statistics, there is an
indication that the tree structure is of type T3 (Fig. 13(c)) with
the leaf being Yorkshire and the feature type being UNION
of color and texture. Finally the tree structure converges to
type T3 and the final tree is shown in Fig. 14. Note in the
last leg since it is Duroc vs Hampshire, the feature is Texture
(T), Table. 10, as the highest score is registered for T ). As per
the siphoning order in Fig. 14, Ghungroo is separated from
the rest with respect to colour, Yorkshire versus the rest with
respect to colour/texture and finally Hampshire is separated
from Yorkshire with respect to texture alone.

V. CLASSIFICATION METHODS IN LITERATURE
A. PHYLOGENETIC ANALYSIS AND TREE CONSTRUCTION
The concept of constructing a Phylogenetic tree [30] based
on the similarity and differences in the physical or genetic
characteristics between different species to describe the evo-
lutionary process, can also be used for arriving at the optimal
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TABLE 9. Leaving out Ghungroo, cumulative distances with respect to a
particular breed across various feature combinations.

FIGURE 14. Final decision tree and siphoning policy.

TABLE 10. Leaving out Ghungroo and Yorkshire, pairwise distances for
various feature combinations reproduced.

classification hierarchy. Given required information regard-
ing breeds, the methods for the construction of this optimal
phylogenetic tree can be classified mainly into three cate-
gories: (i) Distance based methods [31]: These methods are
used when pairwise distances between the different entities
are available for the construction of the phylogenetic tree.
Each leaf node on the phylogenetic tree represents one entity.
A hierarchical clustering algorithm is used for preserving
the relative distance between different entities on the tree;
(ii) Maximum parsimony [32]: This method searches for the
phylogenetic tree with the minimum number of evolution-
ary steps which can explain a given set of data assigned
on the leaves. Here, the topology of the tree is randomly
changed till there is no more improvement in the parsimony;
(iii) Likelihood-based methods [33]: This method involves
computing the likelihood of the given data sequence with
standard evolution models and the tree corresponding to the
best likelihood model is generated.

The requirement in all cases is to identify a tree which
can maximize the separation between the child nodes at each
step of evolution, so that the best classification accuracy
is possible with the given set of features. Distance based
methods using hierarchical clustering algorithms [34] are
the best choice since they try to separate out the maximally
distant classes at each step of evolution starting from the

root node. Thus in the first stage the class which is farthest
from all the other classes is separated out; in the second stage,
out of the remaining classes, the onewhich is farthest from the
remaining others is separated out and so on. The Bioinformat-
ics Toolbox in MATLAB [35] provides functions related to
Phylogenetic analysis using Distance based methods.
The function takes the matrix of pairwise distances and
uses a Hierarchical Agglomerative Nesting algorithm
(AGNES) [34] to cluster objects based on their similarity. The
algorithm starts by treating each object (breed) as a singleton
cluster. Next, pairs of clusters are successively merged until
all clusters have been merged into one big cluster containing
all objects. The result is a tree-based representation of the
objects, named Dendrogram, where the leaf-nodes corre-
spond to the breed-types. At each step of the algorithm,
the two clusters that are the most similar are combined into
a new bigger cluster (nodes). This procedure is iterated until
all points are member of just one single big cluster (root).

The process does not however prescribe a procedure for
arriving at the right choice of features/statistics at each deci-
sion point (i.e. is feature agnostic) and also handling mul-
tiple features. If the matrix of pairwise distances is created
by selecting the branch weight between any two breeds as
the maximum distance over all the feature combinations for
that breed-pair, then a tree can be constructed (even this
feature is not available with the AGNES). The final phylo-
genetic tree which is built on this collection of maximal dis-
tances, remains therefore completely feature type agnostic.
The AGNES therefore demands some form of a higher level
protocol, first, to generate a distance table based on some
fusion measure and then to identify the best feature at various
levels in the tree.

B. DECISION TREES
Decision trees [36] though being very simple machine learn-
ing techniques have the powerful property of being able to
automatically select the attributes from the feature vector
which can impart maximum separation between two or more
classes of data given the training samples. Starting from the
root node, each parent node is split into multiple child nodes
in a way that the purity of each child node is maximized.
The most widely used splitting criterion are based on Gini’s
Diversity Index [37] and entropy reduction methods [38];
although more recent methods are available in literature for
binary [39] and non-binary splits [40] which ensure the con-
structed tree is more compact with smaller number of nodes
without compromising on the classification accuracy. The
major steps involved in the construction of a decision tree
include: (i) Selecting one of the attributes(ai) from the feature
vector; (ii) Choosing a threshold(ti) for that attribute, that
divides the training data into child nodes; (iii) Measuring
purity of the child nodes, when the parent node is split based
on the attribute ai using the threshold ti (iv) Repeating this
process for all the attributes and feasible ti till maximum
purity is obtained, for all the child nodes (v) On obtaining the
maximum purity split, the process is repeated for a second
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split, and so on. The following are some issues which can be
anticipated with this decision tree approach:
• Attribute selection is not the same as feature-type selec-
tion, as the selection is done by randomly sampling the
parent composite feature set. Since this random attribute
selection design is not in tune with the on-field anal-
ysis and customization, results are definitely expected
to be poorer as compared to the optimal hierarchical
tree generation algorithm (which includes feature-type
identification).

• While decision trees are expected to work well with raw
data vectors and simple primary statistics, performance
will degrade when the feature vectors include secondary
and robust statistics, which are compact in nature.
Decimation of such secondary statistics is expected
to result in an information loss both with respect
to within-class similarity (which brings breed-specific
variants together) with respect to that parameter (which
has been dropped), as well as precious information
which imparts segregation across breeds. For instance
dropping the bi-modality indexwill make Hamshire pigs
look like Yorkshire (with respect to colour).

VI. EXPERIMENTAL RESULTS AND COMPARISONS
A. DATABASE AND TRAINING/TESTING PROCEDURE
The dataset used for the experiments consists of a total
of 673 images for 55 animals taken from all the 4 breeds.
Out of these 55 animals, 11 belonged to Duroc, 13 belonged
to Ghungroo, 12 to Hampshire and 19 to Yorkshire. Thus on
an average there were 12 images for each animal and these
different images of the same pig shows the variation caused
due to camera pan, skew effects and blur. 50% of the data
was used for training and the remaining 50% for testing.
This is a form of cross-testing, as the pigs used for testing
are completely different from the pigs used for learning and
generating the tree-classifier model (coupled with the optimal
choice of features). For image acquisition, a high resolution
digital camera was used. The images were cropped manually
to suppress extreme background interference. But despite this
we had to put these images through a level of automated seg-
mentation, via a circular mask BALL-generation procedure
to highlight portions only on the muzzle surface.

B. PERFORMANCE EVALUATION FOR THE FLAT TREE
The formation of a decision policy to establish the optimal
hierarchical scheme for classification is of paramount impor-
tance. The results for a 4-class linear classifier, are tabulated
in Table 11. The mean and the standard deviation of the
classification accuracies for 100 iterations are given for each
of the three feature types.

Table. 11, shows that Yorkshire and Ghungroo have reg-
istered the highest numbers 98.22% and 92.38%, respec-
tively with respect to the composite (both colour and tex-
ture features), since, they are both distinct in terms of
colour (Yorkshire all pinkish-white muzzle and Ghungroo
is all greyish-black). This can be corroborated by the

TABLE 11. Table showing the mean percentage accuracy for
100 iterations for the proposed colour, texture and combined
features. A Flat Tree structure was deployed (i.e. linear
classifier for a 4-class SVM).

corresponding ‘‘Colour only’’ feature scores of 95.44% and
89.80% respectively (same Table. 11). The drop takes place
with respect to ‘‘Texture only’’, for Ghungroo as it shares
similar patch density profiles with Duroc and Hampshire
(Ghungroo’s classification accuracy drops to 65.97% for tex-
ture alone, while for Yorkshire it remains high at 96.49%).
Since the pigs used for training and testing were completely
different, the testing process was tough as the pigs exhibited
considerable variability on the following fronts:

(i) Hair and pore density profiles: type, location and con-
centration of patterns was completely different for different
pigs within the same breed; (ii) Breeds like Duroc and Hamp-
shire which were expected to have pinkish-white patches on
their muzzle, exhibited considerable unpredictability in the
size, position and structure of the patch on the muzzle surface
for the pigs being tested for the first time; (iii) These pigs
being tested also exhibited differential variability with respect
to local illumination and environmental settings.

C. PERFORMANCE EVALUATION: PROPOSED TREE
STRUCTURE
The training and testing image subsets were randomly
selected and the process was iterated 10 or more times to
investigate the impact of training data variability on the final
classification accuracies. At the beginning of each iteration,
the training process involved computation of the features for
those images and determining the optimal hierarchical struc-
ture (based on the algorithm in Section. IV) from the clus-
ter/breed distances. Using the labeled features from the same
training-arrangement, SVM classifiers were learnt for all the
three stages of classification, identified by the feature type
selection procedure. This random train-test splitting process
was repeated multiple times. The hierarchy/TREE, obtained
from the training data in all the 10 iterations, wherein the
training and test sets were split randomly (to check tree
stability), turned out nearly the same as shown in Table. 12,
which indicated two things: (i) Tree structure was relatively
insensitive to changes in the cross-validation arrangements
during the train-test iterations, wherein 50% of the pigs were
randomly picked for training and the other 50% were short-
listed for testing. Table. 12, shows the hierarchies obtained
using the proposed algorithm for all the ten iterations. For
seven out of ten (7/10) cases, the tree had the same structure:
G−Y−(D,H ) (i.e. the breeds as leaf nodes were picked out in
the order: Ghungroo, Yorkshire, and then finally Hampshire
versus Duroc). (ii) The secondary features covering both
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TABLE 12. Hierarchy obtained along with accuracies using the proposed algorithm for the same 10 random selections of training data as used in Table 15
along with the feature choice at each node.

TABLE 13. Classification accuracy (100 iterations), following the TREE
hierarchy obtained, using our method.

texture and colour were robust for trapping breed-specific
traits while dissolving individual variability within the same
breed.

Table 13, shows classification accuracies with respect to
the stable hierarchical scheme described in Section. IV and
shown in Fig. 14. In relation to the flat-tree (four-class)
arrangement, the proposed TREE registered a higher score
of 86.45% versus 84.00% for Duroc; 93.02% versus 92.38%
for Ghungroo; 86.91% versus 81.62% for Hampshire and
98.54% versus 98.22% for Yorkshire; Themain improvement
was in the score for Hampshire (one of the toughest breeds for
classification which exhibited a similarity in texture profile
with respect to bothDuroc andGhungroo and also a similarity
in colour with respect to Duroc). The improvement for Hamp-
shire, stemmed from the fact that Ghungroo taken out earlier
in the TREE arrangement, comparison could now be done
exclusively on the texture front (ignoring the color profile).

The corresponding confusion matrix is shown in Table 14.
The first row of the confusion matrix tabulates the number
of actual Duroc muzzle images being classified as one of
the four breeds. The second row gives the same numbers for
the actual Ghungroo muzzle images. In the same way the
third row corresponds to Hampshire and the fourth row to
Yorkshire. Ideally the confusion matrix should have been a
diagonal matrix with all the non-diagonal elements equal to
zero. However, because of some mis-classification between
the breeds, the matrix is not a diagonal one. From the first
row of this confusion matrix, it can be observed that Duroc
has the maximum confusion with Ghungroo on account of
its moderate to high density of hair follicles and pores on
the muzzle surface. This same reason applies to some of
Ghungroo muzzle images being confused with Duroc muzzle
images as observed from the first entry in second row. Also,
it can be observed from Table 14 that there is some confusion

TABLE 14. Confusion matrix for proposed tree algorithm.

between Duroc and Hampshire as well. This is because there
is some similarity in the density profile of hair follicles and
pores present on the muzzle surface of both the breeds. Also
some of the Duroc breeds have a significant pinkish white
patch on their muzzle which is mainly a characteristic of
Hampshire breed and this becomes a source of confusion
between the two breeds.

D. COMPARISON WITH THE PHYLOGENETIC TREE
ALGORITHM (AGNES)
Table. 15, shows the hierarchies obtained from the Phyloge-
netic tree algorithm [34] used by the Phylogenetic MATLAB
Toolbox [35] for 10 different random splits of training-testing
data (50%-50%). The training-testing data used in the 10 iter-
ations are the same as those used for evaluating the results
in Table 12. While the Phylogenetic algorithm processes the
breed-pair distance Table. 6, it is feature agnostic. It does not
provide a mechanism for arriving at or selecting the optimal
combination of features for forming the decision space at
every intermediate node. Hence, for comparison purposes
each of the node in the linked list has been supplied with the
feature set (C ∪T ). Fig. 15, shows a typical tree produced by
the AGNESMATLAB toolbox corresponding to the first row
of Table. 15. The Phylogenetic tree structure (unlike the pro-
posed algorithm) exhibits a high variability or data-sensitivity
(four instances of TREE: Y − G − (D,H ); two instances
of G − Y − (D,H ); two instances of Y − H − (D,G) and
two instances of Y − D − (G,H )) (Table. 15). In contrast,
the proposed algorithm showed a strong base tree G − Y −
(D,H ), which remained virtually the same (8 out of 10 times)
for the same database-splits, identical to the proposed optimal
tree in Fig. 12. Mean accuracies for AGNES toolbox are
in Table. 16 based on the tree structure Y − G − (D,H )
(Yorkshire first and then Ghungroo, the main difference; last
stage same, for both proposed and AGNES). Accuracies for
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TABLE 15. Table showing the hierarchies obtained from the AGNES algorithm used by the Phylogenetic Toolbox for the same 10 different random splits of
training-testing data (50%-50%) as used in Table 12. Feature used at each node of hierarchy is C ∪ T .

FIGURE 15. AGNES TREE-1.

TABLE 16. Accuracies obtained using the feature agnostic, Phylogenetic
toolbox (features selected using the procedure from sub-section IV-B)
and the mean tree Y − G− (D,H) (Table. 15).

Duroc, Hampshire and Yorkshire were on the lower side
for AGNES, registering 83.58%,81.78% and 96.19% respec-
tively. In contrast, the proposed TREE registered higher
scores, 86.45%,and 86.91% for the critical/difficult breeds,
Duroc and Hampshire respectively.

E. COMPARISON WITH DECISION TREES
Decision trees are useful when one is operating on raw
measurements, as opposed to handcrafted statistics and work
via random attribute sampling, to identify the decision space
where the separation between sub-groups of data is maxi-
mized. While the tree search is extensive, there are several
reasons why this route turns out to be sub-optimal: (i) When
features are handcrafted, they cannot be selectively dropped
on a random basis, as every single statistic plays a crucial
role towards breed separation. Deleting some of them from
the decision making procedure or de-registering the feature

TABLE 17. Breed accuracies obtained using the decision tree architecture.

vectors through random sampling, will only degrade the over-
all performance; (ii) Attributes when mixed as a union of
colour and texture assume a ‘‘colourless’’ flavor, wherein
no attribute is pre-labeled. No knowledge gained from the
colour or texture feature analysis is used in the attribute search
and sub-sampling procedure. In compact feature vectors,
when tailor-made statistics such as the Sarle’s bi-modality
index [10] and the chromatic eigen value ratio, are randomly
dropped from the (colour, texture) feature mixture, perfor-
mance degradation is expected (as can be seen in Table. 17).
Not surprisingly, the accuracies for Duroc, Ghungroo and
Hampshire have dropped below 80%.

F. ABSENCE OF SEGMENTATION AND OVERALL PICTURE
The proposed BALL-based muzzle segmentation process,
described in Section. II, ensures that colour and texture
features are not affected by the portion outside the muzzle
region. Comparisons between the proposed and classification
algorithms from literature, in terms of accuracies, are now
re-evaluated both with and without the mask. Table. 18 shows
a reduction in the accuracies for the tree-based algorithms
(including both proposed and the ones from literature), in the
absence of segmentation. Note that interestingly the back-
ground profiles for different breeds are heavily pig-specific,
as the background interference usually arises from two sides:
(i) Face of the pig and (ii) In some cases, glove of the indi-
vidual clutching the pig’s snout. The fractional background
portion outside the muzzle region constitutes roughly 25% of
the total cropped square area. This background composition
(25%) varies from pig to pig (even within the same breed),
and creates an inconsistency in the breed-linked feature mod-
eling procedure. The impact of our BALL-based segmen-
tation algorithm on the classification accuracy, is checked
and compared with the accuracies obtained by applying
masks using the Chan-Vese [16], DRLSE [15], SDREL [20],
active contour models (in Table 19). Clear evidence of the
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TABLE 18. Accuracies for proposed tree, AGNES and decision trees (NO
segmentation).

TABLE 19. Accuracies, with segmentation, using a variety of methods and
comparison with proposed BALL-based approach (Difficulty level
maximum for Hampshire breed).

superiority of the proposed BALL based segmentation con-
jecture, can be seen from the classification results, particu-
larly for Hampshire, where the muzzle profile exhibits color
diversity in a dual mode (i.e. pink and grey).

VII. CONCLUSION AND DISCUSSIONS
In this paper, the focus was on qualifying the muzzle of a
pig as a robust breed descriptor. Since the available methods
in literature related to breed classification in animals based
on visual biometrics uses Deep Neural Networks [7], [8],
a direct technology transfer is not possible in this case due
to the availability of very limited data. Apart from devel-
oping a segmentation procedure for picking out the internal
details of the muzzle, visual descriptors for computing the
feature vectors were identified. Based on the observations
in Table 1, customized descriptors had to be designed on
two fronts: Colour and Texture descriptors. (i) Color descrip-
tors are based on statistics from the 2D-colour histogram
in the Cb − Cr space, such as eigenvalue ratios, means,
moments andmost importantly the Sarle’s Bi-modality index;
(ii) On the texture front, two gradient operators: GSM and
Top-hat, were used to filter the muzzle profiles separately
and the results were later quantized to obtain two binary
maps. Subsequently the feature vectors were extracted from
these quantized binary maps. Since the four breeds could
not be separated well enough using a single classifier and a
single feature type as can be observed from the classification
accuracies in Table 11; hence a hierarchical classification
scheme had to be adopted.

To decide the classification tree structure and breed siphon-
ing order along with the feature type: (C),(T ) or C ∪ T ,
a tree synthesis algorithm was designed to feed on a pair-
wise breed/cluster distance table generated from the training
set. Training and testing was done on completely different
pigs and these train-test splits were randomized to check
stability of the final siphoning order (or the mean TREE).
The proposed tree algorithm out-performed both the feature

agnostic AGNES-architecture (phylogenetic toolbox) as well
as the attribute sampling driven decision tree algorithm as
can be inferred from the accuracies reported in Table 16
and Table 17. AGNES demonstrated a tree-instability and
being feature agnostic, had to be fed with feature-types by
analysing the breed-distance table. The importance of muzzle
segmentation prior to feature extraction, can be well under-
stood from the results in Table 18. Performance improvement
of the proposed segmentation technique, i.e. adaptive ball
fitting procedure, with the help of the directional Gabor-triad
filter, with respect to the other state of the art segmentation
techniques is presented in Table 19. The proposed algo-
rithm reported relatively high mean accuracies of 86.45% for
Duroc, 93.02% for Ghungroo, 86.91% for Hampshire and
98.54% for Yorkshire.

This work provides fairly strong evidence regarding the
utility of the muzzle image of a pig as a potential pig breed
identifier and can be extended further in the future with
more number of breeds to further strengthen this hypothe-
sis. Although the proposed segmentation algorithm is cus-
tomized, it can still be used in segmentation tasks where the
location of the contour defining the boundary of the object is
approximately known; but is complex and partially diffused.

The proposed tree synthesis procedure searches for a bias
with respect to a specific breed (some breeds such as Ghun-
groo and Yorkshire are easier to pick out of the mixture) and
chalks out, not just the selection order, but also the best choice
of feature, at each intermediate decision point. Hence, this
tree synthesis process, with many more secondary statistics
and guidelines, can be extended to attack a larger frame com-
prising of n classes, m basic feature types (m small), purely
based on the pairwise distance table which will now have
O(2m× n2) entries. The main weakness is that the current set
of guidelines for tree-synthesis (based on cumulative, feature
specific distance statistics) are fairly simplistic and effective
for both small n (classes/breeds) and small m (basic feature
types). For a larger arrangement, say large scale dog breed
classification problem, based on facial images (large n and
moderate m), one will require more sophisticated protocols
and guidelines for intermediate decision making and feature
selection.
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