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ABSTRACT Vehicular edge computing (VEC) has emerged as a promising paradigm to ensure the real-time
task processing caused by the emerging 5G or high level intelligent assisted driving applications. The
computing tasks can be processed via the edge services deployed as the roadside units (RSUs) or moving
vehicles. However, the high dynamic topology of the vehicular communication system and the time-varying
available computing resources in RSUs make a challenge of the efficient task offloading of vehicles. In this
paper, we consider an efficient task offloading scheme for VEC networks based on trajectory prediction,
we focus on the serving handover between the adjacent RSUs. The moving vehicles can cooperate with
RSUs or the surrounding vehicles for task processing. To reduce the latency of task transmission between
vehicles, we present a cooperative vehicle selection method based on trajectory prediction. Then, we propose
an efficient task offloading scheme based on deep reinforcement learning (DRL), while the dynamically
available computing and communication resources are considered jointly. The simulation results show that
the proposed task offloading scheme has great advantages in improving the utility of vehicles.

INDEX TERMS Internet of vehicles, edge computing, trajectory prediction, task offloading, deep reinforce-
ment learning.

I. INTRODUCTION
With the rapid development of 5G wireless communication
and intelligent transportation technologies, various emerging
applications (such as autonomous driving, augmented reality,
face recognition, etc.) appear in recent years [1]–[3]. How-
ever, the resources of smart devices are extremely limited,
the computing, storage and battery capacity cannot meet
the quality of services (QoS) requirements of users. Gener-
ally, such applications can be transmitted to remote cloud
server [4]. To coper with the service delay caused by the long
transmission distance and disorder task offloading schemes,
mobile edge computing (MEC) has emerged as a promising
approach, the delay and computing sensitive tasks can be pro-
cessed at the proximate wireless access edge nodes [5], [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Yan Huo .

In the intelligent transportation system (ITS), the traf-
fic conditions on road are extremely complex, which
makes the network topology of the internet of vehicles
(IoV) change rapidly. The communication between vehicles
is called vehicle-to-everything (V2X), mainly including
vehicle-to-RSU (V2R) and vehicle-to-vehicle (V2V). The
intelligent connected vehicles in IoV have to process a large
amount of sensor data in real-time for driving. In the VEC
networks, deploying edge servers on both sides of the road
or utilizing the available computing resources of surround-
ing vehicles, the task processing delay can be reduced effi-
ciently [7]. Generally, the moving vehicles on road can obtain
a higher QoS by offloading computing tasks to the MEC
servers deployed at the RSUs. However, due to the con-
struction cost, the deployed servers at RSUs have limited
computing resources. When multiple tasks of multiple vehi-
cles are offloaded to the same server disorderly, the edge
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server cannot process such a large amount of data, which
may cause the overload, the task calculation efficiency will be
affected [8]. Moreover, if the task is switched to the adjacent
edge servers that are idle or have redundant resources, it will
help reduce the task processing delay, but there will cause the
server switching cost of data transmission.

In addition to the task offloading optimization, vehicles
can choose a surrounding vehicle, it will obtain the tasks via
V2V and perform the task processing [9]. Via the help of sur-
rounding vehicles, the server switching cost can be avoided.
However, it is difficult to choose cooperative vehicles under
the dynamically changing traffic conditions. When the vehi-
cles and surrounding vehicles belong to a same company (i.e.,
taxi), or the surrounding vehicles are the public transportation
system, the RSUs can obtain the history moving trajectory of
the surrounding vehicles. With the development of machine
learning (ML) methods, we can use the appropriate ML
methods to predict vehicle trajectories [10], [11], and select a
reliable cooperative vehicle node based on a given criteria.

In the VEC networks, task offloading schemes become
the key role for the users’ QoS improving. However, many
existing MEC offloading schemes only consider a single
transmission scheme, such as: V2R [6], [12] or V2V [13],
[14] communications. When multiple tasks need to be pro-
cessed in VEC networks, the task delay requirements may not
be satisfied. It is a big challenge that how to carry out the task
offloading while the computing resources in both the RSUs
and surrounding vehicles are considered.

In this paper, we propose an optimal task offloading
scheme based on the vehicle trajectory prediction, the highly
dynamic vehicular topology, vehicular tasks offloading tar-
gets and switching judgments ofMEC servers deployed as the
adjacent RSUs are considered jointly. In order to overcome
the server overload in the RSUs and the switching cost,
the vehicles can offload part/all of the tasks to the surrounding
vehicles. We propose an efficient cooperative vehicle selec-
tion method firstly. Specifically, by analyzing the historical
driving data collected by vehicles, an accurate prediction of
vehicular trajectory in a short time can be obtained. The coop-
erative vehicle can be selected based on the prediction results.
Then, we propose an optimal task offloading scheme while
the both the varying V2V and V2R communication links
and the varying available computing resources in RSUs and
surrounding vehicles are considered. The main contributions
of this paper are as follows:
• We propose a comprehensive vehicular task offloading
scheme in VEC networks based on trajectory prediction,
focusing on serving handover between RSUs and selec-
tion of cooperative vehicles.

• Aiming at the dynamical IoV topology, we propose
an efficient cooperative vehicle selection method. The
LightGBM model is used to predict the vehicle moving
trajectory. Then, the most suitable cooperative vehi-
cle is selected by evaluating the set of cooperative
vehicles, to make active task offloading scheduling
effectively.

• For the task offloading process, we propose an opti-
mization problem to maximize the total utility of the
VEC system. We establish a Markov decision process,
and an optimal deep Q-network-based task offloading
(DQN-based TO) scheme in handover area is proposed.

The rest of the paper is organized as follows. In Section II,
we review the related work. In Section III, we propose a
VEC systemmodel. AML based vehicle trajectory prediction
scheme is described in Section IV. In Section V, we estab-
lish a target function to minimize the energy consump-
tion. The DQN-based task offloading scheme is described
in Section VI. we provide numerical experiments about the
study in Section VII. Finally, we conclude our work in
Section VIII.

II. RELATED WORK
In recent years, MEC has attracted widespread attention,
the DRL [15], [16], DDPG [17], convex optimization [18],
[19] algorithms are introduced to determine when/where/how
to perform task offloading. DRL can be used to find the
online offloading schemes. To maximize the weighted sum
calculation rates in the wireless charging MEC system,
the authors in [15] designed an online offloading algorithm
called DROO based on DRL. In [16], the authors pro-
posed a blockchain-empowered MEC model, and designed a
model-free DRL algorithm for online computing offloading
to maximize the long-term system utility. When the variables
constitute a continuous state space, DDPG or A3C algorithms
can be used. Reference [17] proposed a DDPG-based hybrid
MEC offloading algorithm to balance each users power con-
sumption in data transmission and task computing. In [19],
the authors designed an offloading mechanism of MEC
system based on content prediction, including a content pre-
diction model based on Long Short Term Memory (LSTM)
and a task offloading strategy based on cross-entropy (CE)
method, to maximize the total system throughput. In [18],
a partial computation offloading model with a joint commu-
nication and computation resource allocation problem was
proposed, the convex optimization theory is leveraged to
minimize the weighted-sum delay of the offloading model.
In [20], the authors proposed an software defined network
architecture for spectrum sharing in hybrid satellite-terrestrial
networks and an auction-basedmechanism to assist the traffic
offloading negotiation. Ref. [21] proposed a contract-based
traffic offloading and resource allocation mechanism to
motivate SBS to choose good contracts in the SDWNs of
HetUDNs. However, for the highly dynamic network topol-
ogy and the extremely unstable vehicular communications,
the existing MEC technologies cannot be applied to the IoV
directly.

Particularly, there are many applications of MEC-based
IoV. To improve the QoS of users in IoV, the authors in [22]
designed a DQN model to learn the scheduling of task
offloading. In [23], the authors proposed a VEC task schedul-
ing model, in which RSUs can dynamically switch between
sleep and working states to save energy consumption. In [24],
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FIGURE 1. Multi-task offloading scheme between two adjacent RSUs
in VEC.

a two-level VEC architecture was designed to coordinate
content sharing between vehicles. In IoV, the trajectory pre-
diction can improve the system performance. In [25], [26],
the authors proposed an active load balancing scheme based
on the traffic prediction, the balance between the computing
loading and the long-term system energy consumption mini-
mization is considered mainly. In [27], the author proposed
a non-cooperative game task offloading strategy. However,
there existing schemes hadn’t considered V2R and V2V
offloading jointly and the problem of server switching.

In the highly dynamic network topology and the extremely
unstable vehicular communications, if the vehicle selects a
target for task offloading, it may cause the task to fail for
the reason that the vehicle travels out of the communication
range. For example, there is a situation that when the task
vehicle offload the task to the RSU or the cooperative vehicle,
the task vehicle has already traveled out of the commu-
nication range before the task is finished. Especially, with
the development of 5G technology, the reduced coverage of
RSU and the rapid movement of vehicles will cause frequent
RSU handover [28]. Selecting an optimal cooperative vehicle
from the surrounding vehicles, the efficiency of V2V task
offloading and the task computing completion rate can be
guaranteed.

III. SYSTEM MODEL
Firstly, we present an overview of our proposed task offload-
ing scheme. The vehicles on the road can offload tasks to RSU
via V2R communication, or to the surrounding cooperative
vehicle via V2V communication links. When the vehicle
travels to the overlapped boundary between the two adjacent
RSUs, the vehicle has three selections: 1) processing tasks
locally, 2) offloading tasks to RSU, and a server switching
cost may exist, 3) offloading tasks to the cooperative vehicle.
How to select the cooperative vehicle and how to choose the
task offloading scheme in VEC are the main problems in this
work.

Fig. 1 shows the multi-task offloading scheme between
two adjacent RSUs in an urban area. As shown in Fig. 1,
the vehicles are divided to mission vehicles and cooperative
vehicles. The radius of the two RSUs passing by are R1 and
R2. The V2R transmission rate between the vehicle and the
RSUs are rR1 and rR2 respectively. Both V2V and V2R com-

munication transmissions use LTE-V technology, which are
independent of each other. The sets of mission areM and the
cooperative vehicles are J . The mission vehicle has multiple
tasks, the task m can be expressed as (Lm,Cm, xm,Tmaxm ),
m ∈ M , where Lm is the size of the task, Cm is the number of
CPU cycles required to process the task, xm is the location
of vehicle when the task m is generated, and Tmaxm is the
maximum processing delay. The vehicle generates multiple
tasks randomly. When multiple tasks exist simultaneously,
these tasks are sorted according to Tmaxm , and urgent tasks will
be processed first.

When the taskm is generated under the coverage of RSU1,
the tasks can be handled by transferring to RSU1 or cooper-
ative vehicles, and local processing. The result of the tasks
offloaded to RSU or vehicles will be returned. Consider the
system is operating with a slot-by-slot fashion, we divide the
time into multiple time slots, t ∈ {1, 2, · · · ,T }. Since the size
of calculation result is relatively small, the time and energy
loss of the calculation result return are ignored. The channel
gains of V2R and V2V, as well as the available computing
resources in RSU and cooperative vehicles are time-varying
in the considered period, which change with the time slot.
Cooperative task offloading is effective in the special time
slot, and the offloaded tasks can be completed in the current
time slot. the formulation of interference from the nearby
vehicles [29]: IV2R =

∑
i∈I ,i 6=m P

R
i G

R1
i,t , where i specially

refers to the vehicle exclude the current mission vehicle at
time slot t . The V2R task transmission rate between the
mission vehicle and RSU1 at time slot t is denoted as

rR1m,t = bRlog2

(
1+

PRGR1m,t
σ 2 + IV2R

)
, (1)

where IV2R denotes the interference between multiple V2R
transmissions, σ 2 is Gaussian white noise, bR represents the
bandwidth of the task m transmitted to RSU1, GR1m,t denotes
the channel gain for task transmission to RSU1 at time slot
t , PR is transmit power of mission vehicle. Next, we consider
three different task offloading schemes.

A. OFFLOADING TO RSU
When the vehicle chooses offloading tasks to RSU, it may not
be completed in the coverage area of the previous RSU (i.e.,
RSU1). Then, as shown in Fig. 1, it is necessary to transfer
part of the transmitted data Lb from RSU1 to RSU2 by
the backhaul links. The overhead of backhaul links between
RSU1 and RSU2 is expressed as

hb =
cbLbpb
rb

, (2)

where rb denotes the transmission rate of the backhaul link
between RSU1 and RSU2, and cb represents the transmission
cost. pb is the transmit power of the backhaul links.
When the vehicle crosses or is about to cross the han-

dover boundary between RSU1 and RSU2, the handover will
appear. There are mainly three situations: handover during
uplink transmission, computing serving and downlink trans-
mission [30]. Moreover, we believe that handover is mainly
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in the overlapped communication area of the adjacent RSUs,
rather than the communication boundary. At the beginning
of each time slot, the vehicle determines the generated tasks
whether to switch, the goal is to speed up the task processing.
In our work, we focus on the service handover.

Generally, the vehicle generates a series of tasks randomly
which can be processed discretely, and the task can decom-
pose intomultiple subtasks in the processing stage. Before the
vehicle reaches the handover boundary, we set that the task is
transmitted to RSU1. The transmission time at time slot t is
expressed as

T R,commm,t =
Lm
r
R1
m,t

, (3)

where Lm denotes the input size of the task m, rR1m,t represents
the transmission rate of task m from mission vehicle to the
RSU1 at time slot t , as Eq. (1).
If there is no handover during computing serving, task m

can be processed in RSU1. Otherwise, it can be processed
by RSU2. We set the handover of task m within a certain
range before the RSU handover boundary. At the beginning
of time slot t , the total processed delay of task m transmitted
to RSU1 is greater than the total delay of task transmitted to
RSU1 and switched to RSU2 for calculation. As

T1 ≥ T2,

where T1 =
Lm
r
R1
m,t

+
Cm
f
R1
m,t

, and T2 =
Lm
r
R1
m,t

+
Lm
rb
+

Cm
f
R2
m,t

. Then,

the server switching exists. The processing frequency of task
m at time slot t is shown as

f Rm,t =

{
f R1m,t , T1 < T2
f R2m,t , T1 ≥ T2,

(4)

where f R1m,t , f
R2
m,t are the allocable CPU frequencies when

RSU1 and RSU2 process task m at time slot t . The RSU
internal calculation time for task m at time slot t can be
expressed as

T R,compm,t =
Cm
f Rm,t
, (5)

To sum up, the total delay of selecting offloading to the
RSU scheme for task m at time slot t is

T R,totalm,t = min{T1,T2}. (6)

B. COMPUTING LOCALLY
To avoid the high cost caused by handover or communication
congestion, vehicles can choose to handle the task via itself.
In the local task processing scheme of the vehicle, the total
delay of task processing is expressed as

T l,totalm,t =
Cm
f lm,t

, (7)

where f lm,t is the CPU frequency when the vehicle processes
task m on its own at time slot t .

FIGURE 2. Procedure of trajectory prediction.

C. OFFLOADING TO COOPERATIVE VEHICLES
The mission vehicle can offload tasks to the nearby sur-
rounding vehicles. The cooperative vehicles can be selected
based on the predicted trajectory. When the available com-
puting resources of RSUs are insufficient, offloading tasks
to cooperative vehicles can improve task processing effi-
ciency. Moreover, the server switching cost can be reduced
via offloading part/all of the tasks to the cooperative vehicles.

When the tasks offloading to cooperative vehicles
via one-hop V2V communication, the offloading scheme
includes tasks transmission and calculation. The transmission
rate of the vehicle task m from the mission vehicle to the
cooperative vehicle j is shown as

r jm,t = bjlog2

(
1+

PjGjm,t
IV2V + σ 2

)
, (8)

where IV2V denotes interference, σ 2 represents Gaussian
white noise, bj is the bandwidth occupied by V2V transmis-
sion, Gjm,t is the channel gain when the vehicle j transmits
the task m to vehicle j at time slot t , Pj denotes the transmit
power. Therefore, the task transmission delay is expressed as

T j,commm,t =
Lm

r jm,t
. (9)

To sum up, if the task m be offloaded to the cooperative
vehicle, the total delay of task processing is expressed as

T j,totalm,t = T j,commm,t + T j,compm,t , (10)

where T j,compm,t denotes the task m calculation delay, and
T j,compm,t =

Cm
f jm,t

, f jm,t denotes the CPU cycle frequency of

cooperative vehicle j at time slot t .

IV. OPTIMAL SELECTION OF COOPERATIVE VEHICLE
In this section, we perform the vehicle trajectory prediction,
mainly including data processing and model training. Mean-
while, the optimal cooperative vehicle selection of V2V task
offloading is proposed based on the trajectory prediction.

A. DATA PROCESSING
Fig. 2 shows the procedure of trajectory prediction. First,
we merge all of the collected data including taxi ID, latitude
and longitude, traveling speed, driving direction and recorded
time into a dataform, which is sorted by vehicle and time for
calculating travel distance and travel speed of each vehicle.
Then, the time series analysis problem is transformed into
a supervised learning problem. The latitude and longitude
of vehicles in the latter moment are combined with the
data in the previous moment. Meanwhile, features such as
time stamps, travel distance and travel speed at last slot are
extracted andmerged into the data set. Divide the data set into
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FIGURE 3. Problems in cooperative vehicle selection.

training set and testing set, the LightGBM model for training
is proposed [31]. The goal of data training is obtain the
latitude and longitude of vehicles at the next slot. Moreover,
the evaluationmetric is the RootMean Squared Error(RMSE)
between the predicted values and the true values, as

RMSE =

√
1
n

∑
(dpred − dactual)2, (11)

where n represents the number of measurements, dpred
denotes the coordinate prediction of vehicles, and dactual is
the actual coordinate of vehicles.

B. COOPERATIVE VEHICLE SELECTION METHOD
In this section, we analyze the selection of cooperative
vehicles and set a decision function to select the optimal
cooperative vehicle.

Normally, the dynamic vehicle network topology affects
the efficiency of the vehicle communication, which
affects the QoS of the mission vehicles. For example,
as shown in the Fig. 3, the sudden steering of the cooperative
vehicle causes the communication interruption with the mis-
sion vehicle. In addition, the allocatable computing capacity
and the channel gain of the cooperative vehicle will also affect
the QoS. In Fig. 3, the communication distances between
the mission vehicle and the cooperative vehicles A, B and
C are different, the corresponding channel gains are also
different. Meanwhile, the allocatable computing resources of
different vehicles are usually different. We summarize these
into three factors: allocable computing capacity, average
distance traveled, and travel time within the communication
range, which we can obtain via the trajectory prediction and
data processing.

For we consider the surrounding vehicles belong to the
public transportation system, or they belong to the same com-
pany of the mission vehicle, we believe that the selected vehi-
cle will help the mission vehicle and obtain the corresponding
rewards. According to the trajectory prediction results, the
RSU can obtain the average distance between the mission
vehicle and the surrounding vehiclesDj, and the time duration
spent near the mission vehicle Tj. We set Dj =| xj − xm |,
where xj represents the position of cooperative vehicle from
dataset. Then, we select the optimal cooperative vehicle
based on the following equation, as

Evj = argmax
j∈J

(α1Cj − β1Dj + ω1Tj), (12)

where α1, β1, ω1 represents three discount parameters, α1 +
β1 + ω1 = 1 and α1, β1, ω1 ∈ (0, 1), Cj denotes the
allocatable computing capacity of the surrounding vehicle j.
It is easy to know that the larger computing capacity of the
cooperative vehicle, the closer driving distance and the more
staying time duration near to the mission vehicle, the better
cooperative vehicle we can choose. After the optimal vehicle
is selected, the mission vehicle and the cooperative vehicle j
will form a vehicle combination for V2V task offloading.

After data processing and trajectory prediction, the pre-
dicted position of vehicles can be obtained, which can be
calculated for the communication range Dmax . The mission
vehicle searches for cooperative vehicles in communication
rangeDmax as the set of the candidate cooperative vehicles J .
Then, it confirms whether the candidate vehicles will leave
the communication range in current time slot. If it does, it will
be excluded from the candidate vehicle J . Lastly, cooperative
vehicle selection is carried out according to Eq.(12). In fact,
the selection is based on the quality of communication and
calculation. We summarized these into Algorithm 1.

Algorithm 1 Cooperative Vehicle Selection
Require: the time duration traveled near mission vehicle Tj;

the average distance between vehicles Dj;
the allocatable computing capacity Cj.

Ensure: the best cooperative vehicle Evj
search for cooperative vehicles in communication range
Dmax as candidate cooperative vehicles J
for each episode do
for each vehicle j in candidate cooperative vehicles J do

if it leaves the communication range with the mission
vehicles then
Exclude j from the candidate set J

end if
end for
select the cooperative vehicle Evj according to Eq.(12)

end for

V. OPTIMAL TASK OFFLOADING SCHEME
A. PROBLEM FORMULATION
In this section, we determine the objective function of the task
offloading first firstly, which includes two parts: the utility of
task transmission and calculation. Meanwhile, to maximize
the relative QoS of vehicles with less cost, we define the
utility of task offloading as actual offloading income. In other
words, the utility of task offloading is defined as the differ-
ence between offloading revenue and offloading cost [32].

First, we design the utility of data transmission. Except for
the local processing without transmission cost, the transmis-
sion cost exists when the task data be transmitted to RSU
or the cooperative vehicles. For a certain task m of vehicle,
data transmission utility is equal to the difference between
network access income expressed asU comm

revenue = a( λRm,tr
R1
m,t+

λVm,tr
j
m,t ) and the rental cost of spectrum resources expressed
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as U comm
cost = λRm,tδ

R
mb

R
+ λVm,tδ

j
mbj, Therefore, the utility at

time slot t is

U comm
m,t = U comm

revenue − U
comm
cost , (13)

where a denotes unit price per Mbps of network access rev-
enue; δRm, δ

j
m are the bandwidth leasing cost per Hz when the

task is transmitted to the RSU and the cooperative vehicle j;
λRm,t , λ

L
m,t , λ

V
m,t ∈ (0, 1) represents the choice of three task

offloading options; bR, bj represents the bandwidth occupied
by the task transmitted to RSU and cooperative vehicle j
respectively; rR1m,t , r

j
m,t are the transmission rates from task m

to RSU and vehicle j at time slot t .
In addition to the task transmission utility, the task calcu-

lation utility also exists, which is inevitable for the offloading
selection scheme. For a certain task m of mission vehicle,
the task calculation utility is equal to the difference between
the revenue of task execution expressed as U comp

revenue =

b(λRm,tr
R,comp
m,t + λLm,tr

local,comp
m,t + λVm,tr

j,comp
m,t ) and the cost of

calculation resources expressed as U comp
cost = λ

R
m,tη

R
i βRf

R
m,t +

λLm,tη
local
m βl f lm,t + λ

V
m,tη

j
mβjf

j
m,t + λ

R
m,thbjug(T1,T2), so the

utility at time slot t is

U comp
m,t = U comp

revenue − U
comp
cost , (14)

where the last item is handover cost and we have

jug(T1,T2) =

{
1, T1 ≥ T2
0, T1 < T2,

(15)

and b denotes the unit revenue of task execution;
ηRi , η

local
m , η

j
m denote the task computing resource costs of

the proposed three task transmission schemes. βR, βj, βl
represent the energy consumption generated by each CPU
cycle of RSU, the cooperative vehicle and the local vehicle.
λRm,t , λ

L
m,t , λ

V
m,t ∈ (0, 1) represents the selection of three

task offloading options. rR,compm,t , r l,compm,t , r j,compm,t denote the
task calculation rates of the three task offloading schemes at
time slot t respectively. f Rm,t , f

l
m,t , f

j
m,t represent the CPU cycle

frequency of RSU, task vehicle and cooperative vehicle j.
Then, the total utility of all tasks can be expressed as

R =
∑
m∈M

T∑
t=0

U total
m,t , (16)

where

U total
m,t = U comm

m,t + U
comp
m,t . (17)

In this paper,we aim to maximize the long-term utility of
vehicular task offloading in the handover coverage area. The
joint optimal problem is shown as

max{
λRm,t ,λ

L
m,t ,λ

V
m,t

f Rm,t ,f
l
m,t ,f

j
m,t ,b

R,bj

} R
(18)

subject to:

λRm,t , λ
L
m,t , λ

V
m,t = {0, 1}, (19)

λRm,t + λ
L
m,t + λ

V
m,t = 1, (20)

T R,totalm,t ,T l,totalm,t ,T j,totalm,t ≤ Tmax
m , (21)

f R1m,t ≤ f
R1,max
m , f R2m,t ≤ f

R2,max
m , f jm,t ≤ f j,maxm , (22)

where constraint (19) and constraint (20) guarantee that each
computing task only chooses one offloading scheme such as
offloading to RSU, local computing or offloading to coopera-
tive vehicle to execute the computation task at time slot t . (21)
is the task computation delay constraint, ensuring the total
task computation delay of each task processing within the
maximum delay limit. (22) is the allocable CPU frequencies
constraint, to ensure the allocable CPU frequencies within the
maximum CPU frequencies limit.

Obviously, when the task offloading decision vari-
ables {λRm,t , λ

L
m,t , λ

V
m,t } and the communication computing

resource variables {f Rm,t , f
l
m,t , f

j
m,t , b

R, bj} are determined, the
long-term utility of the vehicular task offloading can be
obtained. However, {λRm,t , λ

L
m,t , λ

V
m,t } are the binary variables,

which makes this problem not convex and it difficult to
be solved directly. In addition, when the vehicle performs
task offloading, the communication environment of VEC,
the moving trajectory of the cooperative vehicles and the
available computing resources of RSU and cooperative vehi-
cles are all time-varying. In the dynamical environment, when
the task offloading decision is set as the action selection,
it conforms to the background of reinforcement learning.
Thus, DRL method is used to solve this problem.

B. DRL-BASED TASK OFFLOADING SCHEME
At the handover area, the vehicle has multiple tasks to be
processed, and the maximum completion time limits Tmaxm .
According to Tmaxm , we sort the tasks from low to high and
process the lower one firstly. In this section, we use DQN
to solve the task offloading problem in the handover area
in IoV. DQN is a very common use of DRL to simulate the
decision-making process [32], [33]. We define the task pro-
cessing as a Markov decision process. Meanwhile, we define
the system state space, decision action space and reward func-
tion based on the task offloading long-term utility function
proposed previously.

1) STATE SPACE
The task offloading utility is closely related to the task com-
munication and calculation processes. the channel gainsGjm,t ,
GRm,t are related to the task transmission, the CPU frequency
of the RSU f Rm,t , and the cooperative vehicle j, f

j
m,t are related

to the task calculation, t ∈ [0, 1, · · · ,T−1]. The system state
is expressed as

st = [Gjm,t ,G
R
m,t , f

R
m,t , f

l
m,t , f

j
m,t ]. (23)

2) ACTION SPACE
In the DQN model, the decision agent needs to determine
the offloading strategy of the computing tasks, which can be
offloaded to the RSU, be processed locally or be offloaded to
the cooperative vehicle. Therefore, we define the offloading
strategy as a binary variable corresponding to the offloading
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scheme,where λRm,t , λ
L
m,t , λ

V
m,t represent the selection of the

three offloading schemes. Hence, the action space of task m
is expressed as

at = [λRm,t , λ
L
m,t , λ

V
m,t ]. (24)

3) REWARD FUNCTION
We have determined the objective function for vehicular
computing task offloading in the previous system model to
represent the long-term utility of the system. Then, the objec-
tive function is used as the reward function in DQN model.
We assume although the mission vehicle have multiple com-
puting tasks, all of the tasks in a time slot can be transmitted
and processed. The reward of task m at time slot t is given as

rt = U total
m,t = U comm

m,t + U
comp
m,t

= a( λRm,tr
R1
m,t + λ

V
m,tr

j
m,t )− λ

R
m,tδ

R
mb

R
− λVm,tδ

j
mb

j

+b(λRm,tr
R,comp
m,t + λLm,tr

local,comp
m,t + λVm,tr

j,comp
m,t )

−λRm,tη
R
i βRf

R
m,t − λ

L
m,tη

local
m βl f lm,t − λ

V
m,t
ηjmβjf

j
m,t

−λRm,thbjug(T1,T2). (25)

The optimal action can be obtained when the reward is
maximum, as

a∗t = argmax
at

rt (st , at ). (26)

We can obtain immediate reward rt via selecting the action
a∗t in time slot t . The objective of our DQN model is to
maximize the cumulative reward, as

R = max
∑
m∈M

T∑
t=0

rt . (27)

When the agent is in the state st , take action at , it will get
reward r , the next state st+1 can be expressed as

st
at
−→ rt , st+1. (28)

In this case, we define a Q function Q(st , at ) to evaluate
the reward at time slot t , is shown as

Qnew(st , at ) = Qnow(st , at ) +α[rt + γ max
a′

Q′(s′, a′)

−Qnow(st , at )], (29)

where Qnew(st , at ) denotes the new Q function value,
Qnow(st , at ) is the current one, α represents the learning rate,
rt denotes reward at time slot t , γ represents discount factor
and Q′(s′, a′) is the Q value under a given new state and
action.

In the iteration of each time slot, the Q function is updated
as

Q(st , at )← Q(st , at ) +α[rt + γ max
at+1

Q(st+1, at+1)

−Q(st , at )]. (30)

Due to the large state and action space, employing Q learn-
ing directly to solve the optimization problem of this article
is not effective. Via using a neural network to simulate the Q

FIGURE 4. DQN model of data offloading problem.

function, which is approximated as: Q(st , at ) ≈ Q(st , at ; θ ),
where θ represents the parameters of the predictive neural
network, DQN can be used to solve the complex prob-
lem. In order to minimize the difference between Q(st , at )
and Q(st , at ; θ ) for training, we formulate the mean square
error (MSE) loss function as

Loss(θt ) =
1
m

m∑
j=1

(yt − Q(st , at ; θt ))2, (31)

where yt represents the Q values of target network, which is
given as

yt = rt + γ max
at+1

Q(st+1, at+1; θ−t ). (32)

Then we use the gradient update method to minimize the
loss function for updating the evaluated Q network parame-
ters. Specially, the parameter θ is updated in the direction of
the minimized loss function, as

θt+1 = θt + α[yt − Q(st , at ; θt )]∇θ tQ(st , at ; θt ). (33)

The proposed DQNmodel includes a behaviour Q network
and a target Q network, where the set of parameters of the
them are θ and θ−, respectively. Employing the experience
replay mechanism to update network parameters, we replace
a certain size of experience replay memory C , in which
multiple experience samples containing actions, states and
rewards can be stored [34]. The specific structure of DQN
model is shown as Fig. 4.
In order to avoid reaching the local optimal point, we adopt

the ε-greedy policy, which is to choose random actions
with probability ε, otherwise, the optimal action are selected
from the experience playback pool. After performing the
selection action, the execution reward and the state of the
next moment can be obtained. Therefore, the state transi-
tion (st , at , rt , st+1) is obtained for storing in the experience
replay memory. In the neural network learning phase of
each time slot, the decision agent in DQN model randomly
selects a small sample of the experience replay memory to
update network parameters θ , which can suppress the time
correlation of the data. Then gradient descent is performed
to minimize the square error to update the estimated Q net-
work parameters. In summary, the DQN-based TO scheme in
handover area in VEC algorithm is shown as Algorithm 2.
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Algorithm 2 DQN-Based to Scheme in Handover Area

Require: random state space st , action space at ;
parameters θ of behavior Q network and
the parameters θ− of target network;
the capacity of the experience replay memory C .

Ensure: maximum long-term utility of offloading system R.

1: for each episode do
2: Obtain the initial state s0;
3: for t = [0, 1, 2, · · · ,T − 1] do
4: Randomly select action at with probability ε;
5: Otherwise choose action according to

at = argmax
at

rt (st , at ; θt );

6: Execute action at , derive the next state st+1 and
obtain offloading utility rt ;

7: Store (st , at , rt , st+1) in the experience replay mem-
ory;

8: Sample random mini-batch of transitions from
experience replay memory and calculate the loss
function Eq. (31)

9: Update the weight of the DQN θ by calculating the
gradient of loss function by Eq. (33);

10: Update θ− according to θ lately;
11: end for
12: end for

VI. EXPERIMENTAL SIMULATION
In this part, we conduct simulation to verify the impact of
DQN-based TO scheme on the performance of our proposed
task offloading system. Firstly, we introduce the simulation
scenarios and parameter settings. Then, we analyze the sim-
ulation results.

A. SIMULATION SETTING
We collect traveling data from the Internet. The trajec-
tory data comes from the traffic line access time prediction
of the DC competition on websites: https://js.dclab.run/v2/
cmptDetail.html?id=318. It is a public data set about col-
lected data of taxi history trajectory. The taxi data file
includes the recorded data such as taxi ID, latitude and lon-
gitude, traveling speed, driving direction and recorded time.
We consider that vehicles traveling at a real traveling speed
passes through the two adjacent RSUs’ handover area, and
there are some surrounding vehicles traveling nearby. The
communication range of the RSU is 800 m, and the inter-
section between the two RSUs is 300 m, which is assumed
to be handover area. The vehicle has multiple tasks to be
processed, which can be sorted according to the delay limit
and processed in order. In each iteration, the vehicle travels
from the start point to the end point crosses the handover area.
At the beginning, we set xm = 0 represents the initial task
generation position of the vehicle, and set the traveling speed
according to the processing data. We present small part of
data processing result in Table 1. At each time slot, the state

TABLE 1. Trajectory data after processing.

space is different, the mission vehicle processes the generated
task by selected the optimal offloading scheme according to
the state space, which is regarded as a training step. Until the
vehicle exits the handover area, the iteration ends and enters
the next iteration.

In the communication environment, the channel gains of
V2R and V2V are generated according to the data set after
data processing. For task m, the size Lm is generated in
[1, 2]MB and each 1Mb correspond toCm = 500.Meanwhile,
all the CPU frequency related to the task load.When the coop-
erative vehicles or RSUs perform task executing, they assigns
all of their computing capacity. The simulation parameters are
summarized in Table 2.
We are using the environment of tensorflow 1.13.1 version.

The behavior Q network and target Q network of our DRL
model both set up a two-layer network. The size of the expe-
rience pool in RL is 2000 and each time take out 32 samples.
The reward decay factor set to be 0.9, the greedy probability
is 0.9.

B. SIMULATION RESULTS
1) TRAJECTORY PREDICTION
We bring the dataset into the model for training. Since the
dataset brought into GBM must be a 1-D numpy array, we
bring the two coordinates of longitude and latitude as a 1-D
numpy array into the GBMmodel for training separately. The
training process of the two GBM models is shown as the
Fig. 5. The valid0 represents the RMSE value of the validation
set and the training shows the RMSE value of the training set.

It can be seen that there is no significant difference in the
training error for the longitude and latitude as the input data
of the LightGBM model. The reason is that both of them use
the same extracted features for the model training, the square
root of RMSE of current longitude and latitude can replace
the current position, which is given as

RMSEpos =
√
RMSE2

lat + RMSE
2
lng. (34)

Fig. 6 is the training process of LightGBM model, which
shows the comparison of RMSE between the training set
and the validation set. It is easy to find that the RMSE of
validation set is larger than the training one, but they are sim-
ilar. We can generally assume that the trajectory prediction is
accurate.
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TABLE 2. Default parameter setup.

Fig. 7 shows the rewards of DQN-based TO scheme
with different V2V cooperative vehicles of trajectory predic-
tion. Selecting different V2V cooperative vehicles for tasks
offloading which have different average distance between
mission vehicle and computing capabilities. Similar as Fig. 3,
we ensure that the best vehicle is vehicle A via the trajectory
prediction. Besides, we choose other three vehicles from data
set for simulation to make a contrast. The vehicle B has
shorter average distance betweenmission vehicle, while vehi-
cle C has less computing capabilities. And we choose vehicle
D which will drive away from the mission vehicle. From the
Fig. 7, we can find that the DQN-based TO Scheme with
trajectory prediction get the best reward. Obviously, when the
cooperative vehicle choose vehicle B, vehicle C or vehicle D,
it will not reach the maximum profit. The trajectory predic-
tion is related to the cooperative vehicle selection for V2V
communication.

2) DQN-BASED TO SCHEME
In order to conduct the performance of the proposed
DQN-based TO scheme, we simulate five baselines schemes
as follows:

• Q-learning TO Scheme: Q-learing is used for the
offloading scheme.

• Sarsa TO Scheme: Sarsa is used for the offloading
scheme.

• Offloading to RSU (OtRSU): the tasks only be
offloaded to RSU;

• Computing locally (CLocal): the tasks only be pro-
cessed locally;

• Offloading to cooperative vehicles (OtCVs): the tasks
only be offloaded to cooperative vehicles.

Fig. 8 shows the relationship between the rewards of
different offloading schemes and the number of iterations.
We set the learning rate of all offloading schemes as 0.01,
the total number of running iterations is 1000, and all pro-
grams start learning once in each iteration after 25 iterations.
The DQN-based TO scheme reaches its optimal value around

FIGURE 5. Longitude and latitude target for model training.

FIGURE 6. The multi-task offloading scheme model.

220 iterations. Besides, Q-learning TO Scheme and Sarsa
TO Scheme reaches their optimal values around 100 iter-
ations. We can find that the rewards obtained by the
DQN-based TO scheme are much higher than other bench-
mark schemes. Besides, Q-learning TO Scheme and Sarsa
TO Scheme achieve similar optimal value. This is because
DQN-based TO scheme uses the most effective offloading
scheme in each time slot. Meanwhile, DQN uses neural
network to replace Q table and update the weights of the
network by training a small batch data from memory replay.
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FIGURE 7. DQN-based TO scheme rewards with different V2V cooperative
vehicles of trajectory prediction.

FIGURE 8. Rewards of different offloading schemes.

Obviously, other three schemes: OtRSU, CLocal and OtCVs
cannot achieve the best system performance for the current
time slot.

Fig. 9 shows the execution time of different offloading
schemes. The simulation parameters are the same as Fig. 8.
From the Fig. 9, we can observe that the DQN-based TO
Scheme has a similar execution time with Sarsa offloading
scheme, Q-learning offloading scheme has a slightly larger
execution time. Besides, OtRSU, CLocal and OtCVs do not
need to train the action network which have lower execution
time.

Fig. 10 shows the rewards of different offloading schemes
and transmit power. We set transmit power P = PR = Pj.
From the Fig. 10, we can find that most baseline schemes all
increase with the increase of the transmission powerP. This is
because the DQN-based TO scheme, Q-learning TO Scheme,
Sarsa TO Scheme, OtRSU and OtCVs are all related to the
transmission power P, which affects the task transmission
rate directly. Since the local processing task does not require
task transmission, it does not affect the CLocal scheme.
Meanwhile, as the transmission power increasing, the reward
of Q-learning TO Scheme and Sarsa TO Scheme begin
to be lower than OtRSU and CLocal. In addition, after a
certain number of iterations of training, the reward of the
DQN-based TO scheme after convergence is higher than that

FIGURE 9. Execution time of different offloading schemes.

FIGURE 10. Rewards of different offloading schemes under the transmit
powers.

FIGURE 11. Rewards of DQN-based TO scheme with different learning
rates.

of the baseline schemes. The performance of DQN-based TO
scheme is the best among the proposed schemes.

Fig. 11 shows the relationship between the rewards of
DQN-based TO Scheme with different learning rates and the
number of iterations. In Fig. 11, the learning rates α of
DQN are set as 0.01, 0.002, 0.001 and 0.0005. It can be seen
that the higher the learning rate, the faster the convergence
speed, and in the end it can converge to the same optimal
value, which is in line with expectations. Properly adjusting
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FIGURE 12. DQN-based TO scheme rewards with different handover area.

the learning rate can improve the convergence speed of DQN
directly.

Fig. 12 shows the rewards for different task offloading
schemes with different handover area. We set the length
of the switching zone be [0, 150, 300]m. The total number
of running iterations is 1000. It can be seen that as the
length of the handover area becomes longer, the reward of
OtRSU, Q-learning TO Scheme, Sarsa TO Scheme and the
DQN-based TO Scheme increase. This is because we mainly
consider the service switching cost of the RSU which leads
to an increasing in reward of the above schemes. Besides,
DQN-based TO Scheme, Q-learning TO Scheme, Sarsa TO
Scheme selects the optimal scheme at each time slot, and
update their action values in their own way at each iteration.
Therefore, we can find that the timely handover can help the
system obtain greater utility.

VII. CONCLUSION
In this paper, we propose a DQN-based TO scheme in han-
dover area of VEC based on trajectory prediction, which
focuses on the serving handover between RSUs and the
selecting of cooperative vehicles. For time-varying environ-
ment of IoV, we present a cooperative vehicle selection
method based on trajectory prediction and then propose an
optimal task offloading scheme based on DRL, which vehi-
cles can cooperate with RSUs or moving vehicles for task
processing. In order to maximize the long-term offloading
utility, we use DQN to simulate the comprehensive offloading
scheme. The simulation results show that, considering the
selection of cooperative vehicles in V2V communication and
the servers switching of RSUs, our proposed task offloading
scheme has great advantages in improving the utility of vehi-
cle computing task offloading.
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