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ABSTRACT High dynamic range (HDR) image and video technology can provide significant picture quality
improvement over the standard dynamic range (SDR). However, when HDR content is represented on an
SDR display, dynamic range compression may result in image quality deterioration. To address this problem,
we propose an optimized human visual system (HVS) response model-based tone-mapping algorithm to
preserve the perceptual responses between the HDR image and its tone-mapped image. First, we measure
the HVS response differences using a 2D histogram when an HDR image is displayed on an HDR device and
when its tone-mapped image is displayed on an SDR device. Then, we formulate an optimization problem
to minimize the differences. By efficiently solving the optimization problem, we obtain an optimal tone-
mapping curve. Experimental results on actual displays demonstrate that the proposed algorithm provides
superior image quality compared with conventional algorithms in terms of both subjective and objective
evaluations.

INDEX TERMS High dynamic range, HDR10, tone-mapping, human visual system, contrast sensitivity,
optimization.

I. INTRODUCTION
The ultra-high-definition (UHD) television standard, an
advanced form of the high-definition television standard,
can provide users with improved visual quality by offering
increased resolution. Currently, due to the recent expansion
of UHD video content and broadcasting, the market for UHD
television has been rapidly expanding. UHD broadcasting
produces video content with higher quality by improving the
resolution, bit depth, and color gamut [1]. In particular, UHD
broadcasting supports high dynamic range (HDR) image con-
tent, which can represent a wider dynamic range of luminance
levels than standard dynamic range (SDR) content [2]. Due
to the higher dynamic range capability, HDR content can
present a look similar to that experienced by the human eye
through the human visual system (HVS) [2].

The HDR pipeline consists of three main steps: content
generation, storage, and visualization [3]. First, a camera is
used to capture HDR images, either by capturing and then
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synthesizing multiple exposures, e.g., [4], [5], or by capturing
a single exposure using an HDR sensor, e.g., [6], [7]. Because
of its higher dynamic range, HDR content requires consider-
able storage space and transmission bandwidth compared to
SDR content. Therefore, to make HDR content manageable,
various techniques have been developed to store, process, and
distribute HDR images. Finally, an HDR-compatible display
can be used to represent HDR content, bearing in mind that
dynamic range compression should be employed to adapt
HDR content for representation on SDRdisplays. UsingHDR
imaging, it is possible to capture, store, manipulate, transmit,
and display images that more accurately represent real-world
scenes. Extensive effort has been focused on utilizing the
advancements of HDR content, resulting in the adoption of
HDR transport and broadcasting formats.

The most commonHDR transport and broadcasting format
is HDR10 Media Profile (HDR10) [8], which is currently
used in UHD transport and broadcasting services due to the
widespread support by display manufacturers and service
providers. HDR10 is designed to support up to 4,000 cd/m2

(nits) [9], thereby providing higher perceptible contrast
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between the brightest and darkest regions of an image, which
better represents what the HVS can see. The high peak bright-
ness also preserves the details in highlighted and shadows
areas that are lost when using conventional SDR format.
In addition, while the color depth for SDR content is typi-
cally 8-bit, HDR10 content uses 10-bit color depth [9]. This
advancement allows the production of more realistic images,
with smooth transitions from dark to bright regions and less
contour artifacts. However, an SDR display can present con-
tent with a lower dynamic range than that defined in HDR10.
Moreover, because the peak luminance represented by each
device is different, devices that support HDR10 content dis-
play such content differently. Therefore, when HDR10 con-
tent is displayed on an SDR device or when the maximum
luminance values of the HDR content and the display are
different, a process of converting the dynamic range of the
input HDR content, called tone mapping [2], is required.

Many tone-mapping algorithms have been proposed, and
they can be classified as global or local algorithms according
to their methods of deriving transformation functions [2]. In a
global tone-mapping algorithm, a single monotonic function
is employed to convert all pixels in an entire image. For
example, Drago et al. [10] employed a logarithmic function
to reduce the dynamic range by imitating the visual response
of the HVS. Gommelet et al. [11] formulated an optimiza-
tion problem to minimize the spatial gradient-based distor-
tion between an HDR image and its tone-mapped image.
Mantiuk et al. [12] developed another global tone-mapping
algorithm that minimizes the perceivable contrast distortion,
given the display characteristics. Recently, Ok and Lee [13]
proposed a tone-mapping algorithm to reproduce the details
in dark and bright regions by maximizing the tone-mapping
quality metric of a tone-mapped image. Yang et al. [14]
used two gamma functions to adjust the luminance of the
dark and bright regions and then combined the two adjusted
luminance maps to improve the details and structural fidelity
of the tone-mapped image. Song and Cosman [15] considered
the display contrast and human visual adaptation to construct
the tone-mapping function, thereby enhancing the luminance
and visibility of details. Nguyen et al. [16] proposed an HVS
response model-based tone-mapping algorithm to minimize
the visual response difference between an HDR image and
its tone-mapped image. Although these global tone-mapping
algorithms are computationally efficient in general, they may
fail to preserve the local details in an input HDR image,
especially in regions of high contrast.

By comparison, local tone-mapping algorithms derive the
mapping for each pixel to take into account neighboring
pixel intensities [2]. For example, Reinhard et al. [17]
proposed a local tone-mapping algorithm by adopting the
Zone System that was used to predict the mapping method
between the actual luminance and a set of print zones.
Meylan and Süsstrunk [18] employed a center-surround
retinex model to preserve high-contrast edges and reduce
artifacts. In [19], a gradient domain guided image filter
was employed by incorporating an edge-aware constraint

to preserve local details more effectively. Ma et al. [20]
developed a tone-mapping algorithm based on a tone-mapped
image quality index to improve the structural fidelity and
naturalness of the tone-mapped image. Recently, Mezeni and
Saranovac [21] employed detail and base layer decompo-
sition to preserve and enhance the details while preserv-
ing global contrast in the tone-mapped images. Shu and
Wu [22] employed locally adaptive rank-constrained optimal
tone mapping to reduce artifacts such as halos and double
edges. Local tone-mapping algorithms provide tone-mapped
results with fine details but often show high computational
complexity.

Recently, inspired by the success of deep learn-
ing in various image processing tasks, several deep
learning-based tone mapping techniques that use convo-
lutional neural networks (CNNs) or generative adversar-
ial networks (GANs) have been developed [23]–[27]. For
example, Zhang et al. [23] developed a tone-mapping net-
work by employing the improved Wasserstein GAN and
constructed a dataset of HDR images and the corresponding
tone-mapped images, manually adjusted by photographers.
Montulet and Briassouli [24] proposed an end-to-end tone-
mapping algorithm based on deep convolutional GANs using
a dataset of HDR images and their tone-mapped images
obtained by experts. Rana et al. [25] improved the qual-
ity of a tone-mapped image by employing a multiscale
conditional GAN to alleviate the problems of the con-
ventional GAN-based tone-mapping algorithms [23], [24],
such as blurring, tiling patterns, and saturation artifacts.
Panetta et al. [26] further improved the performance of
the GAN-based tone-mapping algorithm by developing an
attention-guided generator architecture. Kim et al. [27] pro-
posed a detail-preserving tone-mapping algorithm that con-
sists of two CNNs; one restores the details in the input HDR
image, and the other compresses the dynamic range. How-
ever, the main disadvantage of the learning-based approaches
is that their performance is highly dependent on the training
datasets.

Although conventional tone-mapping algorithms have
attempted to obtain high-quality results [10]–[27], little effort
has been made to consider the characteristics of the display
devices on which the tone-mapped images are presented.
The display-adaptive tone-mapping algorithm [12] is com-
putationally inefficient, because the computation of the HVS
response to the input HDR image requires high computational
complexity. Meanwhile, the luminance enhancement tone-
mapping algorithm [15] considers only the image character-
istics based on the pixel value distribution, without the textual
details. The HVS response model-based tone-mapping algo-
rithm [16] uses a guided tone-mapping curve (TMC) to
preserve the absolute luminance that may cause detail
loss in the bright regions. We also note that, although
recent deep learning-based algorithms have shown signif-
icant tone-mapping performance improvements [23]–[27],
they too have been developed without considering the char-
acteristics of the display devices.
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To address the aforementioned limitations, we develop an
efficient HVS responsemodel-based tone-mapping algorithm
that preserves the perceptual quality of tone-mapped images
in this work. Specifically, we first formulate an optimiza-
tion problem that minimizes the perceptual response dif-
ferences between an input HDR image in HDR10 format
and its tone-mapped image using a 2D histogram. Then,
we obtain an optimal TMC by efficiently solving the opti-
mization problem. Experimental results demonstrate that the
proposed tone-mapping algorithm provides higher quality
tone-mapped images than other state-of-the-art algorithms,
by preserving the perceptual similarities between the input
HDR images and the corresponding tone-mapped images on
actual displays.1

The remainder of this paper is organized as follows.
Section II briefly reviews the relevant background. Section III
describes the proposed tone-mapping algorithm. Section IV
presents the experimental results. Finally, Section V con-
cludes the paper.

II. BACKGROUND
In this section, we provide the background, on which the
proposed algorithm is based, including 2D histogram equal-
ization, the HDR10 standards, the HVS response model, and
relative contrast measurement.

A. 2D HISTOGRAM EQUALIZATION
We employ 2D histogram equalization [28]–[30] to consider
the local details in an HDR image. A 2D histogram Hx is
constructed using a mutual relationship between each pixel
and its neighboring pixels in the image. Assume that an input
image X = {x(i, j)|1 ≤ i ≤ H , 1 ≤ j ≤ W } of size H × W
is given, where x(i, j) ∈ [1,K ]. In this work, we consider
a 10-bit image, thus K = 1, 024. Let Hx(m, n) denote the
number of pairs of neighboring pixels with value m and n in
image X. Then, the 2D histogram of X is defined as

Hx = {Hx(m, n)|1 ≤ m ≤ K , 1 ≤ n ≤ K }. (1)

The contrast of an image is enhanced via the histogram
equalization technique. Specifically, an optimization prob-
lem can be formulated to minimize the distance between
the 2D histogram H of the output image and the uniformly
distributed 2D histogram Hu, which is given by

Ht = argmin
H
‖H−Hu‖

2
F (2)

where ‖Y‖F =
(∑

ij |Yij|
2
)1/2 denotes the Frobenius norm

of a matrix. Then, from the optimal 2D histogram Ht in (2),
the transformation function that maps the input pixel inten-
sities to the output intensities can be derived using the his-
togram matching scheme [28].

1Preliminary results of this work have been presented in part in [16]. In this
paper, we develop a new algorithm to preserve the HVS model-based global
contrast and provide rigorous solutions to the optimization. Furthermore,
more comprehensive experiments are included, which show the effective-
ness of the proposed algorithm, including objective quality assessment and
computational complexity evaluation.

B. HDR10 STANDARDS
Significant video quality improvement is primarily achieved
via the use of HDR. HDR10 has recently been adopted to
facilitate transport and broadcasting of HDR videos [8]. The
HDR10 standard supports a luminance of up to 4,000 units
with a nonlinear transfer function for perceptually unnotice-
able quantization to generate an efficient mapping from the
pixel values to the absolute luminance values [31], [32],
which is called an electro-optical transfer function (EOTF).
However, to improve the display quality of the HDR10 con-
tent further, content mastering by the experts from the stu-
dio is required. Specifically, the content mastering process
involves selecting a viewing environment and examining the
quality of the HDR content after performing adjustments. The
purpose of mastering is to improve the color reproduction
to reproduce the creators’ intent more exactly [33]. In addi-
tion, HDR10 uses the wide-gamut BT.2020 color space [9]
with 10-bit color depth, which covers 75.8% of the CIE
1931 color space [34]. While an 8-bit RGB image only
has 256 levels per channel, corresponding to 16.7 million
colors, a 10-bit image supports 1,024 levels per channel
and can display up to 1.07 billion colors. Because of the
wide color gamut capability, HDR10 provides better color
shades and smoother transitions between light and dark areas.
HDR10 also uses static metadata to transport the color cal-
ibration data of the mastering display, which are encoded
as supplemental enhancement information (SEI) messages
within the video stream [33]. Moreover, the high-efficiency
video coding (HEVC) Main 10 profile [35] also supports
HDR10 encoding, which improves the compression ratio,
bandwidth usage, and image quality.

In this work, as we consider HDR images in the
HDR10 format, we use the standard EOTF to accurately
compute the actual luminance of each pixel when an
HDR10 image is presented on a specific display. According
to standards [31], [32], the EOTF is defined with a high
luminance range from 0 to 10,000 nits. Specifically, the linear
luminance value L, which corresponds to the optical output of
a display device, can be obtained from the normalized pixel
intensity N as

L =
(
max[(N 1/m2 − R1), 0]

R2 − R3N 1/m2

)1/m1

(3)

where the model parameters are m1 = 0.1593, m2 =

78.8437, R1 = 0.8359, R2 = 18.8515, and R3 = 18.6875.
Then, the absolute output luminance value of the display, Ld ,
in nits is defined as

Ld = 10, 000L. (4)

C. HVS RESPONSE MODEL
We measure the perceptual response of the HVS to an image
using the contrast sensitivity, which is related to the ability
to distinguish an object from its background [36]. According
to the Weber-Fechner law, the minimum detectable contrast
is constant regardless of luminance [37]. However, many
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FIGURE 1. Relative contrast of pixel pair (m,m + l ) for l = 1, l = 5, and
l = 10.

psychophysical experiments have shown that the contrast
sensitivity varies based on other factors such as the viewing
angle, screen size, and spatial frequency of the image [36].
Thus, contrast sensitivity functions (CSFs) were proposed to
accurately measure the sensitivity of the human vision at a
variety of spatial frequencies. In this work, we consider the
contrast sensitivity of an image using the CSF from [38],
since all aforementioned conditions that affect the contrast
sensitivity are taken into account. Specifically, the CSF is
defined as a function of luminance L and spatial frequency
u as

S(L, u) =
e−2π

2σ 2u2/k√
2
T

(
1
X2
0
+

1
X2
max
+

u2
N 2
max

)(
1
ηpE +

80

1−e−(u/u0)
2

) (5)

where σ =
√
σ 2
0 + (Rabd)2, d = 5 − 3 tanh

(
0.4 log

(LX2
0

402
))
,

and E = πd2
4 L(1 − (d/9.7)2 + (d/12.4)4) [38]. The values

of the constants used in the model are k = 3.0, σ0 = 0.5 arc
min, Rab = 0.08 arc min/mm, T = 0.1 sec, Xmax = 12◦,
Nmax = 15 cycles, η = 0.03, 80 = 3 × 10−8 sec deg2,
u0 = 7 cycles/deg, p = 1.2 × 106 photons/sec/deg2/Td,
and X0 = 40◦ [38]. For each value of L, the peak sensitivity
is obtained by

Smax(L) = max
u

S(L, u). (6)

Then, the minimum detectable contrast for each luminance
level is formulated using the peak sensitivity [39]

M (L) =
1

Smax(L)
× 2×

1
1.27

(7)

where the values 2 and 1
1.27 are for the conversions from

modulation to contrast and sinusoidal to rectangular waves,
respectively [39].

D. RELATIVE CONTRAST
We quantify the HVS responses of two luminance values
in an HDR image by employing the relative contrast [15].
Specifically, the relative contrast is measured in just notice-
able difference (JND) units and used to quantify the HVS
response between two luminance values. Specifically, given

two pixel values m and m + l, we first measure the contrast
between their luminance values as

C(m,m+ l) = 2×
L(m+ l)− L(m)
L(m+ l)+ L(m)

(8)

where L(.) denotes the EOTF of the display. Then, the relative
contrast is defined as the ratio between the contrast in (8) and
the minimum detectable contrast in (7) as

R(m,m+ l) =
C(m,m+ l)
M (L(m))

. (9)

Figure 1 shows examples of the relative contrast for pixel
value pairs (m,m + l) with different values of l. As illus-
trated, the relative contrast increases in proportion to the
value of l, since the contrast in (8) gets larger when the
luminance differences between the two pixel values increase.
In this work, we consider the relative contrast between two
consecutive pixel values using l = 1. With increasing l,
the relative contrast between pixel pairs with larger luminance
differences is taken into account.

III. PROPOSED ALGORITHM
The reduced dynamic range caused by tone mapping results
in perceptual image quality deterioration. Our objective is to
develop a tone-mapping algorithm that preserves the percep-
tual responses between the input HDR image in HDR10 for-
mat and its tone-mapped image presented on an SDR display.
To this end, we first measure the contextual information of
an input HDR image and the perceptual quality when it is
represented on an HDR display using a 2D histogram and the
HVS response model. Then, we formulate an optimization
problem to minimize the perceptual differences between the
input and tone-mapped images in terms of local and global
relative contrast. Finally, the optimal TMC is obtained by
solving the optimization problem. We describe these proce-
dures in the following sections.

A. LOCAL CONTRAST-PRESERVING OPTIMIZATION
Because the HVS is more sensitive to the luminance differ-
ence between neighboring pixels than the absolute luminance
values [40], [41], we consider the local contrast between pix-
els and their neighbors in this work. Specifically, let Rref(x, y)
and Rtgt(x, y) be the relative contrast in (9) between two
luminance values at locations x and y ∈ N (x), where N (x)
denotes a set of neighboring pixels of x, in the reference HDR
display and the target SDR display, respectively. Then, to pre-
serve the local contrast of the tone-mapped image on the SDR
display, weminimize the total relative contrast differences for
all pixels in the image, defined as∑

x,y∈N (x)

(Rref(x, y)− Rtgt(x, y))2. (10)

To minimize the cost in (10), we first take into account the
HVS responses of neighboring pixels. Specifically, the HVS
response of an image is quantified by the relative contrast
using the EOTF [31], [32] and the HVS response model [38].
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FIGURE 2. Examples of (a) local contrast matrix Rl and (b) global contrast matrix Rg.

Let T (.) be the tone-mapping function that converts an input
pixel value into an output pixel value. We then define the
relative contrast Rl(m, n) and Rl,T (m, n) between the actual
luminance of two pixel values m and n on the reference
display and the corresponding pixel values T (m) and T (n) on
the target displays, respectively, i.e.,

Rl(m, n) = R(m, n), (11)

Rl,T (m, n) = R(T (m),T (n)). (12)

In this work, we obtain the optimal TMC T using 2D his-
togram equalization. LetH andHT denote the 2D histograms
of the input HDR image, in the HDR10 format, and its tone-
mapped image, obtained using T . We note that, although a
2D histogram can efficiently consider the textual information
of an image, the local details in a high-resolution image may
not be taken into account faithfully using a small neighbor-
hood size. Furthermore, constructing a 2D histogram using a
larger neighborhood window is time-consuming. To address
this issue, we adopt a multiscale 2D histogram approach
to consider the contextual information of the input image
more effectively. More specifically, a Gaussian pyramid,
I0, I1, . . . , IN , is constructed from the HDR input image I,
where I0 is the full resolution image and IN is the coarsest
image. Then, we define the input 2D histogram as the combi-
nation of the corresponding 2D histograms H0,H1, . . . ,HN
of these scaled images with their weights as

H = ω0H0 + ω1H1 + · · · + ωNHN (13)

whereωi is the ith weight for the 2D histogram of correspond-
ing scaled image.

Next, we quantify the HVS response between every two
pixel values by exploiting display characteristics and then
formulate an optimization problem using a 2D histogram.
Specifically, two local contrast matrices Rl and Rl,T are
constructed for the reference and target displays, where
the (m, n)th elements are the relative contrast Rl(m, n) and
Rl,T (m, n) in (11) and (12), respectively. An example of the
local contrast matrix Rl for the reference display is illus-
trated in Figure 2(a). Then, the optimal 2D histogram HT

FIGURE 3. (a) Reference images on the HDR display and (b) tone-mapped
images obtained using the local contrast-preserving optimization.

and TMC T , whichminimize the cost in (10), can be obtained
by

minimize
HT ,T

‖H ◦ Rl −HT ◦ Rl,T ‖
2
F (14)

where ◦ denotes the element-wise product of two matrices.

B. GLOBAL CONTRAST-PRESERVING OPTIMIZATION
The optimization problem in (14) considers only the rela-
tive contrast between the luminance of neighboring pixels.
However, the solution may cause visual differences between
the input HDR image and the tone-mapped image, since the
global contrast is not considered. Figure 3 compares reference
images with tone-mapped images obtained using the local
contrast-preserving optimization. The output tone-mapped
images contain over-enhanced artifacts, e.g., the details of
the liquid regions in the Paint image in the first row and the
mountain regions in the Temples image in the second row.We
address this issue by maintaining the global contrast of every
pixel in the tone-mapped image. Specifically, given a pixel
value pair (m(x),m(x) + l) in the reference display, where
m(x) denotes the pixel value at location x, by applying T ,
we obtain the corresponding pair (T (m(x)),T (m(x) + l)) in
the target display. We attempt to preserve the global relative
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FIGURE 4. Comparison of the TMCs on the (a) Motor image and
(b) Flower image obtained using different values of α.

contrast in the tone-mapped image by minimizing∑
x

(R(m(x),m(x)+ l)− R(T (m(x)),T (m(x)+ l)))2. (15)

To minimize the cost in (15), we first define two global
contrast matrices Rg and Rg,T , where the (m,m + l)th ele-
ments are the relative contrast R(m,m + l) and R(T (m),
T (m + l)) in the reference and target displays, respectively,
as

Rg(m,m+ l) = R(m,m+ l), (16)

Rg,T (m,m+ l) = R(T (m),T (m+ l)). (17)

Figure 2(b) shows an example of the global contrast matrix
Rg for l = 1. The target 2D histogramHT of the tone-mapped
image and the optimal T , whichminimize the cost in (15), can
be obtained using the 2D histogram technique as

minimize
HT ,T

‖H ◦ Rg −HT ◦ Rg,T ‖
2
F . (18)

There are now two objectives: that the output 2D histogram
HT should minimize the local contrast differences between
neighboring pixels in (14) and that it should minimize the
global contrast differences between pixel value pairs in (18).
To achieve both objectives simultaneously, we formulate the
optimization

minimize
HT ,T

α‖H ◦ Rl −HT ◦ Rl,T ‖
2
F

+ (1− α)‖H ◦ Rg −HT ◦ Rg,T ‖
2
F (19)

where the parameter α controls the relative importance
between local and global contrast preservation. When α =
0, T is obtained using only the global contrast-preserving
term. As α increases, T , which minimizes the cost in (19),
gets closer to the TMC obtained using the local contrast-
preserving optimization. Examples of TMCs generated using

different values of α are shown in Figure 4, which exem-
plifies how α in (19) controls the relative importance of
local and global contrast preservation. We will discuss the
impacts of different values of α on the tone-mapped images
in Section IV.

C. SMOOTHNESS CONSTRAINT
Peak values in the 2D histogram may cause steep slopes in
the final TMC. Consequently, quality degradation in the tone-
mapped images, e.g., contour artifacts, may occur. To address
such problems, we add a smoothness constraint to the opti-
mization problem as in [28], given by

minimize
HT ,T

‖HTD‖2F (20)

where D is the bidiagonal difference matrix

D =


1 −1 0 · · · 0
0 1 −1 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 . (21)

D. FINAL OPTIMIZATION
The final optimization problem, consisting of the local
contrast-preserving term in (14), global contrast-preserving
term in (18), and smoothness term in (20), can be formulated
as

minimize
HT ,T

α‖H ◦ Rl −HT ◦ Rl,T ‖
2
F

+ (1− α)‖H ◦ Rg −HT ◦ Rg,T ‖
2
F + β‖HTD‖2F (22)

where the parameter β controls the level of smoothness. As β
increases, the algorithm attempts to further reduce the high
peak in the output 2D histogram byminimizing the deviations
between its components.

E. SOLUTION TO THE OPTIMIZATION
The final optimization problem in (22) is a joint optimization
of HT and T . However, since HT is a function of T , joint
optimization over both HT and T is intractable in practice.
In this work, we employ the alternating direction method of
multipliers (ADMM) [42], in which each variable is opti-
mized separately, while fixing the other one. Specifically,
we iteratively update HT and T individually. These subprob-
lems are described below.
Updating HT : In the first step, given the estimate of T (k),

we update HT as

H(k+1)
T = argmin

HT

α‖H ◦ Rl −HT ◦ Rl,T (k)‖
2
F

+ (1− α)‖H ◦ Rg −HT ◦ Rg,T (k)‖
2
F

+β‖HTD‖2F . (23)

Because this subproblem is an unconstrained quadratic
problem of a single variable HT , we can obtain a
closed-form solution efficiently. In the Appendix, we derive
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the closed-form solution to the subproblem in (23), which is
given by

H(k+1)
T = vec−1

((
diag(vec(A))+ (BT ⊗ I)

)−1vec(C))
(24)

where A = 2(αRl,T (k) ◦ Rl,T (k) + (1 − α)Rg,T (k) ◦ Rg,T (k) ),
B = 2βDDT , C = αRl,T (k) ◦ (H ◦ Rl + HT

◦ RT
l ) + (1 −

α)Rg,T (k) ◦ (H ◦Rg +HT
◦RT

g ), and I is the identity matrix.
Also, vec(·) is the vectorization operator, ⊗ is the Kronecker
product, and vec−1 is the inverse of the vectorization operator
defined as

vec−1(vec(Y)) = Y, for Y ∈ RK×K . (25)

Updating T : Next, givenH(k+1)
T , we estimate T (k+1) using

the histogram matching technique [29]. Specifically, we first
normalize a 2D histogram Hx as

Hx(m, n) =
Hx(m, n)∑K

i=1
∑K

i=1Hx(i, j)
(26)

where K = 1024 for a 10-bit image. Then, the cumulative
density function (CDF) of Hx is given by

Px =
{
Px(m) =

m∑
i=1

m∑
j=1

Hx(i, j)|m = 1, 2, . . . ,K
}
. (27)

We compute the CDFs P and P(k+1)T for H and H(k+1)
T ,

respectively, using (26) and (27). Finally, we obtain the TMC
T (k+1)(m) for the input pixel value m by

T (k+1)(m) = argmin
i∈{1,2,...,K }

|P(m)− P(k+1)T (i)|. (28)

The optimization variables HT and T are iteratively
updated until convergence. Specifically, we define the con-
vergence rate at the kth iteration as

ξ (k) =
‖T (k+1)

− T (k)
‖

‖T (k)‖
, (29)

and run the iteration until ξ (k) < 10−3 or themaximal number
of iterations is reached. The complete algorithm to solve the
final optimization in (22) is summarized in Algorithm 1.

IV. EXPERIMENTAL RESULTS
We evaluate the performance of the proposed tone-mapping
algorithm in comparison with those of Mantiuk et al.’s dis-
play adaptive tone-mapping algorithm [12], Song and Cos-
man’s content-dependence tone-mapping algorithm [15], and
Nguyen et al.’s HVS response model-based tone-mapping
algorithm [16]. Note that these algorithms were developed by
exploiting the display characteristics.

A. EXPERIMENTAL SETTINGS
We selected test images with resolutions of 3840× 2160

that were extracted from HDR10 video sequences. As lumi-
nance, contrast, colorfulness, and naturalness are impor-
tant factors that influence the display quality of an

Algorithm 1 Optimization for Solving (22)
Input: H, α, β
1: Initialization: T = identity mapping, k = 1
2: while not converged do
3: Construct Rl,T (k) and Rg,T (k) via (12) and (17)
4: Update H(k+1)

T via (24)

5: Update T (k+1) via (28)
6: k = k + 1
7: end while

Output: Optimal TMC T (k)

image [43], [44], we first classified the images into different
groups according to their characteristics. Then, to maximize
the diversity of the image characteristics, test images were
selected randomly from each group. In the experiments,
we used 54 images with different characteristics.

The 2D histogram of the input image was created by con-
sidering a neighborhood with a 3 × 3 window, and α and β
in (22) are fixed to 0.2 and 0.5, respectively, in all exper-
iments, unless specified otherwise. Additionally, l in (16)
and (17) is set to 1; thus, we consider the relative contrast
between every two consecutive pixel values. For the conven-
tional algorithms, we used the publicly available implementa-
tion ofMantiuk et al.’s algorithm [12] from their webpage and
incorporated the EOTF as a lookup table into their algorithm.
We implemented Song and Cosman’s algorithm [15] with
10-bit bit-depth and used the EOTF as the display model. The
source code for Nguyen et al.’s algorithm [16] was provided
by the authors.

Two displays were used for the evaluation: a televisionwith
a peak luminance of 1,000 nits was utilized as the reference
HDR display and another television with a peak luminance
of 500 nits was employed as the target SDR display. Both
televisions use the same BT.2020 color space [9]. The HDR
display presented the original images, and the SDR display
showed the tone-mapped images, which were converted by
each algorithm. All the tests were conducted in moderate
room illumination.

B. SUBJECTIVE EVALUATION
We first evaluate the performances of the tone-mapping algo-
rithms by performing a subjective test. Figures 5–8 com-
pare the tone-mapping results on the display devices, which
were taken using a digital camera, as well as the detailed
parts of the Lavender, Flower, BlueHouse, andGlass images.
Note that, since Figures 5–8 present screen-captured images,
moiré-pattern artifacts appear due to interference between the
color filter array of the camera and the screen’s subpixel lay-
out. Therefore, we compare only the global and local contrast
and colors in the images qualitatively, instead of comparing
the amount of visible moiré artifacts.

Mantiuk et al.’s algorithm [12] reduces the contrast in
the sky regions of the Lavender image in Figure 5(b).
Their algorithm also darkens the Flower and BlueHouse
images, as shown in Figures 6–7(b), respectively. Moreover,
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FIGURE 5. Comparison of the displayed results of the Lavender image. (a) Reference image on the HDR display. Results on the SDR display
that are tone-mapped by (b) Mantiuk et al.’s algorithm [12], (c) Song and Cosman’s algorithm [15], (d) Nguyen et al.’s algorithm [16], and
(e) the proposed algorithm. The magnified parts are shown in the bottom row.

FIGURE 6. Comparison of the displayed results of the Flower image. (a) Reference image on the HDR display. Results on the SDR display that
are tone-mapped by (b) Mantiuk et al.’s algorithm [12], (c) Song and Cosman’s algorithm [15], (d) Nguyen et al.’s algorithm [16], and (e) the
proposed algorithm. The magnified parts are shown in the bottom row.

FIGURE 7. Comparison of the displayed results of the BlueHouse image. (a) Reference image on the HDR display. Results on the SDR display
that are tone-mapped by (b) Mantiuk et al.’s algorithm [12], (c) Song and Cosman’s algorithm [15], (d) Nguyen et al.’s algorithm [16], and
(e) the proposed algorithm. The magnified parts are shown in the bottom row.

the results obtained for the Glass image in Figure 8(b) are
significantly brighter than the reference image in Figure 8(a)
since the luminance is extremely enhanced, resulting in detail
loss in the bright regions, such as the flame and glass.
This degradation occurs because Mantiuk et al.’s algorithm
exploits the Laplacian pyramid to represent the image con-
trast, which is not effective since the total local contrast
of every pixel with its neighbors is not thoroughly consid-
ered. Song and Cosman’s algorithm [15] alters the over-
all contrast in the tone-mapped images, resulting in quality
degradation. For example, the sky region of the Lavender
image in Figure 5(c) loses a considerable amount of contrast.
The brightness of the petal and glass regions in the Flower
and Glass images in Figures 6(c) and 8(c), respectively, are
increased noticeably, thus the details in these regions are lost.

In addition, there are over-enhancement artifacts in the wall
and stair regions of the BlueHouse image in Figure 7(c). This
is because Song and Cosman’s algorithm only exploits a 1D
histogram that cannot consider the spatial information in the
input image. Nguyen et al.’s algorithm [16] in Figure 5(d)
also reduces the contrast in the sky regions of the Lavender
image. Their algorithm yields output results with perceptual
detail losses in the bright regions of the tone-mapped images,
e.g., the petal in the Flower image, the wall in the BlueHouse
image, and the glass in the Glass image in Figures 6–8(d).
This loss occurs because their algorithm attempts to pre-
serve the absolute luminance value using a guided TMC
without taking into account the global contrast of the tone-
mapped image. On the contrary, the proposed algorithm
in Figures 5–8(e) produces the best results without contrast
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FIGURE 8. Comparison of the displayed results of the Glass image. (a) Reference image on the HDR display. Results on the SDR display that
are tone-mapped by (b) Mantiuk et al.’s algorithm [12], (c) Song and Cosman’s algorithm [15], (d) Nguyen et al.’s algorithm [16], and (e) the
proposed algorithm. The magnified parts are shown in the bottom row.

FIGURE 9. Comparison of the TMCs obtained for the (a) Lavender, (b) Flower, (c) BlueHouse, and (d) Glass images using
different tone-mapping algorithms.

alternation and visible artifacts, which are perceptually
more similar to those on the reference HDR display
in Figures 5–8(a), since both the local and global relative
contrast of the output images are considered adaptively to
the HVS.

Figure 9 compares the TMCs that yield the output images
in Figures 5–8. Mantiuk et al.’s algorithm produces TMCs
that reduce the contrast and darken the output images,
as shown in the Lavender, Flower, and BlueHouse images.
Moreover, the large saturated region in the TMC obtained
by their algorithm causes detail loss in the bright regions in
the Glass image, since the total local contrast of every pixel
is not considered. Song and Cosman’s algorithm enhances
the brightness of the output images significantly, result-
ing in saturated regions and detail loss in the Lavender,
Flower, and Glass images, while darkening the output Blue-
House image in lower luminance regions. This saturation and
detail loss occurs because their algorithm does not take into
account the textual details of the image. Nguyen et al.’s algo-
rithm produces similar TMCs for the images with different

characteristics, which indicates that their algorithm is less
adaptive since the guided TMC in their algorithm is image
characteristic-independent. In contrast, the TMCs obtained
by the proposed algorithm produce results adaptive to
the image characteristics thereby minimizing the saturated
region.

We also conducted a subjective evaluation of the proposed
algorithm against the HDR10 standard [31], [33]. 13 subjects
participated in this evaluation, and they rated the quality of
each converted image on the SDR display in comparison
with the original image on the HDR display on a five-point
Likert scale [45] in terms of both bright preservation and local
contrast. Table 1 compares the average scores on 13 randomly
selected test images. The proposed algorithm gets signifi-
cantly higher scores than the HDR10 standard on both cri-
teria. This is because the proposed algorithm takes the HVS
model-based global and local contrast of the input image
into account by employing the 2D histogram and exploit-
ing the characteristics of the display devices on which the
tone-mapped images are presented.
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TABLE 1. Mean subjective evaluation scores on the brightness
preservation and the local contrast of the HDR10 standard [31], [33] and
the proposed algorithm. Boldface numbers denote the highest scores for
each criterion.

C. OBJECTIVE EVALUATION
In addition to the subjective evaluation, we also com-
pare the results of the tone-mapping algorithms using four
objective quality metrics: the tone-mapped image quality
index (TMQI) [46], feature similarity index for tone-mapped
images (FSITM) [47], visual difference predictor for HDR
images (HDR-VDP) [48], [49], and dynamic range indepen-
dent image quality assessment metric (DRI-IQM) [50]. To
this end, we first convert the pixel values of the original and
tone-mapped images into the absolute luminance maps using
the standard EOTF [30], [31], and then compute the objective
metrics between the luminance maps.

Table 2 lists the average values of the first three metrics
obtained by the different algorithms from 54 test images.
For each metric, the best results are indicated in bold. First,
TMQI quantifies structural fidelity and naturalness of a
tone-mapped image using a statistical naturalness model built
upon various types of natural scenes. A high TMQI score
demonstrates that the tone-mapped image has good structural
details and is natural-looking. In this test, Song and Cosman’s
algorithm and Nguyen et al.’s algorithm yield the highest
scores, whereas the proposed algorithm ranks third. However,
the differences in TMQI are insignificant among these algo-
rithms, which all yield comparable results according to the
TMQI scores. Second, FSITM evaluates the similarity of a
tone-mapped image based on the local phase similarity with
respect to the HDR image. A high FSITM score indicates
a high degree of structural similarity between the images
in the pair. Mantiuk et al.’s algorithm and the proposed
algorithm produces the highest scores since they attempt to
minimize the contrast distortion between the HDR image and
its tone-mapped image. Third, HDR-VDP, which is derived
from the contrast sensitivity, estimates the probability with
which a human observer can detect differences between two
images in a pair. HDR-VDP provides higher scores for the
image pairs that have lower probabilities of visual detection
of differences. The proposed algorithm outperforms all the
conventional algorithms in terms of the HDR-VDP since the
perceptual differences between the input HDR image and
tone-mapped image are minimized effectively.

Figure 10 compares the results of the DRI-IQM [50]
assessment for the test images in Figures 5–8. DRI-IQM
predicts the perceptual differences between the reference and
query images and generates a distortion map that shows the
loss, amplification, and reversal of visible contrast in the
query image. As can be seen from the results, the conven-
tional algorithms produce tone-mapped images with contrast
alteration compared to the reference images. For example,

TABLE 2. Objective evaluation results of the tone-mapping algorithms
using three metrics: TMQI [46], FSITM [47], and HDR-VDP [48], [49].
Boldface numbers denote the highest scores for each metric.

the results show that Mantiuk et al.’s algorithm causes con-
trast loss in the bright regions and amplifies the contrast along
the edges of the Glass image since the local contrast is not
taken into account effectively. Song and Cosman’s algorithm
experiences the same problem in the Glass image. Further,
the results for the Flower image exhibit notable contrast loss.
This loss occurs because their algorithm uses a 1D histogram
that cannot consider the local detail of an image. Moreover,
the tone-mapped images obtained by Nguyen et al.’s algo-
rithm also exhibit visible contrast loss, e.g., the bright regions
of the Lavender and BlueHouse images, since the guided
TMC that is used to preserve the absolute luminance does
not consider the global contrast of the tone-mapped image.
On the contrary, the proposed algorithm provides images
with less contrast distortion by minimizing both the local and
global contrast differences with respect to the reference HDR
images.

D. IMPACTS OF α ON TONE MAPPING
As discussed in Section III, the proposed algorithm performs
local and global contrast preservation simultaneously, and
the parameter α in (22) controls the relative importance
of these types of preservation. In Figure 11, we show the
tone-mapped Motor and Flower images obtained using the
proposed algorithm with three different values of α. When
α = 0, only the global contrast-preserving term is included
in the proposed algorithm. As α increases, the proposed algo-
rithm further enhances the local contrast of the tone-mapped
images. For example, the local details of the dust regions in
the Motor image and the petals regions in the Flower image
are increased noticeably in Figures 11(a)–(c), in proportion
to the increase in α. Therefore, α can be selected adaptively
depending on the application or user preferences.

E. COMPUTATION TIMES
Table 3 compares the average execution times obtained by
applying the different tone-mapping algorithms to ten images
of resolution 3840 × 2160. In this test, we use a PC with a
3.6 GHz CPU and 32 GB RAM. Except for Mantiuk et al.’s
algorithm, which is developed using C++, all the other
tone-mapping algorithms were implemented usingMATLAB
without code optimization.

Song and Cosman’s algorithm is the most efficient in terms
of computation time due to its simplicity. However, it fails
to preserve the perceptual quality on the target SDR display.
Aside from this algorithm, the proposed algorithm is the
most efficient. It should also be noticed that the proposed
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FIGURE 10. DRI-IQM assessment on the Lavender (top row), Flower (second row), BlueHouse (third row), and Glass (bottom row) images. The
colormap represents the predicted visible distortions between reference HDR images and tone-mapped images obtained by
(a) Mantiuk et al.’s algorithm [12], (b) Song and Cosman’s algorithm [15], (c) Nguyen et al.’s algorithm [16], and (d) the proposed algorithm. The colors
green, blue, and red indicate loss of visible contrast, amplification of invisible contrast, and reversal of visible contrast, respectively.

FIGURE 11. Tone-mapped Motor (top row) and Flower (bottom row) images for various values of α. (a) α = 0,
(b) α = 0.5, and (c) α = 1.

TABLE 3. The average computation times in seconds of Mantiuk et al.’s
algorithm [12], Song and Cosman’s algorithm [15], Nguyen et al.’s
algorithm [16], and the proposed algorithm for the test images.

algorithm is implemented in MATLAB without code opti-
mization; the computation performance could be further
enhanced by using low-level languages such as C/C++. The
use of parallel computing could also reduce the execution
time.

V. CONCLUSION
We have proposed an optimized HVS model-based tone-
mapping algorithm for displaying HDR10 image content on
conventional SDR devices. We first quantified the perceptual
quality of an image when it was displayed on a device using
a HVS model-based 2D histogram. Then, we formulated
an optimization problem to minimize the perceptual quality
difference between an input HDR and its tone-mapped image
in terms of local and global contrast. Finally, we obtained
the optimal TMC by solving the optimization problem using
the ADMM approach. Experimental results demonstrated
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that the proposed tone-mapping algorithm provides a higher
image quality than other conventional algorithms on actual
displays. One important direction for future work is to more
accurately quantify the perceptual contrast by considering
ambient illumination [15], [51], [52].

APPENDIX
DERIVATION OF THE CLOSED-FORM SOLUTION H(k+1)

T
IN (24)
In (23), we define f (HT ) as

f (HT ) = α‖H ◦ Rl −HT ◦ Rl,T ‖
2
F

+ (1− α)‖H ◦ Rg −HT ◦ Rg,T ‖
2
F

+β‖HTD‖2F . (30)

Using the trace of a matrix tr(·), f (HT ) can be rewritten as

f (HT )

= αtr
(
(H ◦ Rl −HT ◦ Rl,T )(H ◦ Rl −HT ◦ Rl,T )T

)
+ (1− α)tr

(
(H ◦Gl −HT ◦ Rg,T )

× (H ◦ Rg −HT ◦ Rg,T )T
)
+ βtr

(
HTD(HTD)T

)
.

(31)

Then, the target 2D histogram HT is obtained by solving

∇HT f (HT ) = 0 (32)

where ∇HT f (HT ) is the Jacobian matrix, and 0 denotes the
matrixwith all zero elements. The Jacobianmatrix is obtained
by [53]

∇HT f (HT )

= αRl,T ◦ (2HT ◦ Rl,T −H ◦ RL −HT
◦ RT

l )

+ 2(1− α)Rg,T ◦ (2HT ◦ Rg,T −H ◦ Rg −HT
◦ RT

g )

+ 2βHTDDT

= 2(αRl,T ◦ Rl,T + (1− α)Rg,T ◦ Rg,T ) ◦HT

−αRl,T ◦ (H ◦ RL +HT
◦ RT

l )

− (1− α)Rg,T ◦ (H ◦ RG +HT
◦ RT

g )+ 2βHTDDT

= A ◦HT +HTB− C (33)

whereA = 2(αRl,T ◦Rl,T+(1−α)Rg,T ◦Rg,T ),B = 2βDDT ,
and C = αRl,T ◦ (H ◦Rl +HT

◦RT
l )+ (1− α)Rg,T ◦ (H ◦

Rg +HT
◦ RT

g ).
From (33), the problem in (32) can be written as

C = A ◦HT +HTB. (34)

Using the vectorization operation vec(·), the problem
in (34) is expanded as

vec(C) = vec(A ◦HT )+ vec(HTB)

= vec(A) ◦ vec(HT )+ vec(IHTB)

= diag(vec(A))vec(HT )+ (BT ⊗ I)vec(HT )

=
(
diag(vec(A))+ (BT ⊗ I)

)
vec(HT ) (35)

where I and ⊗ denote the identity matrix and the Kronecker
product, respectively. Thus, we have

vec(HT ) =
(
diag(vec(A))+ (BT ⊗ I)

)−1vec(C). (36)

Finally, let vec−1 denote the inverse of the vectorization
operator, then the closed-form solution HT is obtained by

HT = vec−1
((
diag(vec(A))+ (BT ⊗ I)

)−1vec(C)). (37)
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