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ABSTRACT With the emergence of computation-intensive and delay-sensitive applications, such as
face recognition, virtual reality, augmented reality, and Internet of Things (IoT) devices; Mobile Edge
Computing (MEC) allows the IoT devices to offload their heavy computation tasks to nearby edge cloud
network rather than to compute the tasks locally. Therefore, it helps to reduce the energy consumption
and execution delay in the ground mobile users. Flying Unmanned Aerial Vehicles (UAVs) integrated with
the MEC server play a key role in 5G and future wireless communication networks to provide spatial
coverage and further computational services to the small, battery-powered and energy-constrained devices.
The UAV-enabledMEC (U-MEC) system has flexible mobility andmore computational capability compared
to the terrestrial MEC network. They support line-of-sight (LoS) links with the users offloading their tasks
to the UAVs. Hence, users can transmit more data without interference by mitigating small-scale fading and
shadowing effects. UAVs resources and flight time are very limited due to size, weight, and power (SWaP)
constraints. Therefore, energy-aware communication and computation resources are allocated in order to
minimize energy consumption.In this paper, a brief survey on U-MEC networks is presented. It includes
the brief introduction regarding UAVs and MEC technology. The basic terminologies and architectures used
in U-MEC networks are also defined. Moreover, mobile edge computation offloading working, different
access schemes used during computation offloading technique are explained. Resources that are needed
to be optimized in U-MEC systems are depicted with different optimization problem, and solution types.
Furthermore, to guide future work in this area of research, future research directions are outlined. At the
end, challenges and open issues in this domain are also summarized.

INDEX TERMS Computation, energy efficiency, Internet of Things, mobile edge computing, offloading,
resource allocation, UAVs.

I. INTRODUCTION
Internet of Things (IoT) devices (for example, smart mobile
devices, smart home appliances, sensors, monitoring devices,
etc.) are characterized as resource-constrained devices due
to the limited storage, computational, and energy resources
as they have small physical size. Currently, IoT devices are
used for computation-intensive applications like augmented
reality (AR), virtual reality (VR), pattern recognition, mon-
itoring, etc [1]. The aforementioned heavy tasks on-board
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eventually results in more energy consumption making the
devices slow and latency prone. One of the main challenges
is resource allocation (energy consumption minimization,
computation efficiency maximization, computation bits max-
imization, cost minimization, completion time minimization,
and etc.). Due to limited resources, the number of applica-
tions and volume of mobile traffic in IoT devices is also
increasing [2].

A. UNMANNED AERIAL VEHICLES
UAVs, popularly known as drones/remotely piloted aircraft
(controlled or autonomous), are used in many military and
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civilian applications, for example, content delivery, intel-
ligent surveillance, traffic monitoring, telecommunication,
tracking, remote sensing, etc. [3], [4]. UAVs are used in
wireless communications due to LoS communication link
to the ground users reducing the shadowing and blockage
effect and avoiding obstacles, their adaptive altitude, high
mobility, and flexibility [5]. Small UAVs establish a reliable
connection with low transmit power, providing cost-effective
and energy-efficient solutions for mobile ground users spread
over a large geographical area. UAV based wireless com-
munications are usually deployed in emergency situations,
inaccessible places where wired infrastructure cannot be
deployed. UAV can serve as:

(i) UAV-based aerial base stations, also calledUAV-assisted
wireless systems, in which UAV serves as a flying base
station providing a reliable capacity of network, up-link and
down-link communication to the ground users, e.g., in emer-
gency situations [4], [5].

(ii) UAV-based aerial users, also called cellular-connected
UAVs, in which UAV serves as flying mobile user within the
cellular network providing reliable and low latency commu-
nication, such as in real-time video streaming.

(iii) UAV based wireless relays improving coverage of
mobile users [6].

According to hardware, UAVs can be predominantly clas-
sified into two main groups: fixed-wing and rotary-wing
UAVs. The fixed-wing UAVs (FW-UAVs) are small air-
craft with stationary wings. FW-UAVs have high speed with
heavyweight, cannot stay at a fixed point and move for-
ward to remain aloft. The rotary-wing UAVs (RW-UAVs)
are quad-copter aircraft with rotating wings. RW-UAVs have
limited mobility, limited weight and remain stationary in the
air as well as can move around in any direction freely [5].

According to flying altitude, UAVs can be categorized into
two types: High Altitude Platforms (HAPs) and LowAltitude
Platforms (LAPs). HAPs are quasi-stationary and can fly up
to 17 kilometers above the earth’s surface. HAPs can provide
wireless coverage to large geographical areas by flying up
to few months and are designed for long-term applications,
takes long deployment time and are costlier as compared
to LAPs. LAPs can fly up to very few kilometers above
the earth. LAPs have high mobility and more flexible than
HAPs. Due to their low cost and easy deployment, used in
emergency and unexpected situations. LAPs can be recharged
or replaced during flight hours if needed. Short-range LoS
link establishment with the ground users makes them more
efficient and significant [6].

Depending on the applications and goals, different types
of UAVs are used in different scenarios according to their
capabilities and functions.

B. MOBILE EDGE COMPUTING
MEC is a relatively new concept that appeared in 2014,
by European Telecommunications Standards Institute (ETSI)
Industry Specification Group (ISG), for fifth-generation (5G)
networks. It is defined in [7] as: ‘‘Mobile-Edge Computing

provides IT service environment and cloud-computing capa-
bilities within the Radio Access Network (RAN) in close
proximity to mobile device.’’ Later, the definition is slightly
broadened in [8], ‘‘Edge Computing refers to a broad set of
techniques designed to move computing and storage out of
the remote cloud (public or private) and closer to the source
of data’’. According to this concept, computing resources are
brought to the network’s edge in proximity to the end-mobile
devices.

Due to the limitation in power and battery life of
mobile devices, Mobile Edge computing / Multi-access
edge computing (MEC) is the promising and best solu-
tion to this problem which can settle the conflict between
resource-constrained devices and resource-hungry tasks by
placing the computing servers at the edge nodes like base
stations (BSs) or user devices of high computation capability,
closer to the mobile devices.

MEC is a distributed approach and consists of mobile
users and the MEC server. Mobile devices transfer partial or
complete computation tasks to the closely related powerful
edge computing cloud (edge server / MEC server) for com-
puting known as computation offloading, which saves energy,
reduces latency, and enhances the processing speed of the
device to meet the QoS (quality of service) and QoE (quality
of experience) requirements.

C. COLLABORATION OF UAV AND MEC
The location of the terrestrial MEC server is usually fixed
and cannot be changed or moved according to mobile users’
needs, limiting theMEC server’s capability [9]. GroundMEC
servers do not work with limited available infrastructures
such as battlefields, emergency and rescue operations, desert
areas, etc., [10].

Due to the highly flexible mobility, easy deployment,
low cost, and small size of UAVs, it can be deployed as
a host of edge servers giving rise to UAV-enhanced edge /
intelligent MEC server which provide mobile edge services
and on-demand communication and computations resources
to the users where the fixed terrestrial MEC networks are not
accessible or readily established or where natural disasters
destroy MEC systems. A UAV-enabled MEC system has the
following benefits:

(i) U-MEC system uses LoS link establishment to provide
a wider range of applications [11], making the system flexible
and efficient.

(ii) U-MEC system improves the computation services
by providing high-bandwidth (large coverage) to users and
improving the capacity of the system [12].

(iii) U-MEC system provides computation offloading in
an energy-saving manner with low latency to enhance the
performance of the system [13]. Despite the various appli-
cations and benefits; limited battery, power capacity, low
latency, speed up high-links, multiple users interference
and SWaP contraints of UAV bring new challenges in
U-MEC systems. Hence, energy-efficient model is of key
importance. The propulsive energy consumption required
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by the UAV to remain aloft in the air is also taken into
consideration.

D. MOTIVATION
• UAV-enabled MEC system is an ineluctable trend in future
wireless communications and is useful in 5G and beyond
wireless communication. It is a contemporary concept of
using UAVs as moving MEC servers, i.e., cellular BSs or
Wi-Fi access points, to improve the computation perfor-
mance of mobile devices like latency, network congestion,
energy efficiency, and quality of IoT services.

• A plethora of research work has been published on UAVs,
wireless communications, and mobile edge computing.
However, there are very few on mobile edge computing
assisted by UAVs [14]. Some of the future research possi-
bilities are also discussed in those papers, which are yet to
be achieved. The intersection of UAVs and edge computing
is a novel technology that promises to lower the latency and
energy consumption of miniature IoT devices prolonging
their battery life and boosting the QoS along with QoE.

• To the best of our knowledge, the UAV-assisted MEC
system’s energy efficiency perspective in IoT devices has
not been investigated yet. The research in U-MEC net-
works is at its early stage, and efforts are required to
bring this technology to maturity. Our goal is to discuss
the energy-efficient resource management in IoT devices
using U-MEC networks and the associativity of UAVs,
MEC servers, and mobile users. Furthermore, an elabora-
tive review is done based on the previous related work in
this area. Future research directions are also highlighted in
order to help the researchers.

A summary of previous surveys on U-MEC systems is shown
in Table 1.

E. ORGANIZATION
The remainder of this paper is assembled in this man-
ner: Section II summarizes the possible architectures used
in UAV-enabled MEC (U-MEC) systems. Section III sum-
marizes the computing techniques of local computing and
offloading the tasks by the users to the UAV. Section IV
describes the different access schemes, including multi-
ple access and duplex schemes in the U-MEC system.
Section V explains the energy-efficient resource management
inU-MECnetworks. SectionVI summarizes the optimization
problems, their types, algorithms used to solve these prob-
lems and the solution types. Section VII discusses the future
research directions. Finally, Section VIII concludes the whole
paper. Fig. 1 shows the diagrammatic view of the organization
for this paper as a reading map.

II. UAV-ENABLED MEC SYSTEM
This section introduces the UAV-enabled MEC networks and
sheds light on the three possible architectures in U-MEC
systems. Then the channel used for uplink and downlink
communication is highlighted. The idea of installing anMEC
processor on a UAV was initially given by Jeong et al.

in [17]. The system model of the U-MEC system is shown
in Fig. 2.

U-MEC uses three main models: (1) Local Computing
Model, which executes the tasks locally on mobile devices.
(2) Computation Task offloading Model, in which the user
offloads the task to be executed by the MEC server on the
UAV. (3) UAV Hovering/Flying Model, in which the task is
uploaded at a fixed location for some time [18].

In the fixed terrestrial MEC servers, mobile users locally
execute their tasks on embeddedmicroprocessors, consuming
a large amount of energy. However, in U-MEC, the mobile
device decides either to compute the heavy tasks locally or
to offload such heavy tasks to the UAV-based MEC server
co-located in UAVs (edge computing), closer to the user
saving their energy and traffic load on the fixed servers. Then,
the UAV completes the task as the MEC server on its behalf
and passes the calculation back to the mobile device. Finally,
the mobile device user will then download the results.

Each mobile device is associated with a U-MEC having
enough resources and battery. Because of LoS communica-
tion between UAVs and ground mobile users, the offloading
and downloading capacity can be boosted, and the coverage
can also be enhanced in the UAV-aided MEC system.

A. POSSIBLE ARCHITECTURES IN U-MEC SYSTEM
U-MEC architectures have three possible scenarios based on
the role played by UAVs. In each scenario, the two main
components are mobile devices/end users and MEC Servers,
which are small data centers installed by telecom operators
closer to the users. Users and servers are connected to each
other via a wireless link using wireless networking and com-
munication technologies. The server is linked to the cloud
data centers via Internet through a gateway [19].
Assisted U-MEC: The first architecture is shown in Fig. 4.

In this scenario, the UAV acts as an aerial MEC
server-enabled base station to help the ground users, to which
the users offload their computation-intensive tasks for execu-
tion to one or multiple UAVs. This architecture is applica-
ble where the UAV has sufficient battery and computation
capabilities. Also, it is applicable in areas where limited,
or no terrestrial infrastructure is available, and ground base
stations cannot provide services due to unexpected events
or disaster responses. Such architecture is usually used to
minimize the total energy consumed by the devices meeting
the QoS requirements [17].
Cellular-Connected U-MEC: The second architecture is

shown in Fig. 5. UAV acts as an aerial user in this scenario,
which has heavy computation tasks, i.e., trajectory optimiza-
tion, to offload at ground base stations (GBSs) equipped
with an MEC server (terrestrial fixed MEC server/MEC
host) for remote computation. This architecture is appli-
cable in areas where UAV has limited onboard battery
capacity and computation capability, but it has to perform a
computation-intensive task.
Relayed U-MEC: The third architecture is shown in Fig. 6.

In this scenario, UAV operates as a relay, which assists the
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TABLE 1. Summary of existing surveys on U-MEC.

users to offload their heavy computation tasks to the GBSs
integrated with the MEC server. This architecture is appli-
cable where the communication link between the users and
the ground MEC server is imperfect. Also, the UAV is not
equipped with an MEC server [14].

Table 2 shows the possible architectures of U-MEC used
in related works.

B. COMMUNICATION CHANNEL
The channel used for uplink and downlink communica-
tion is usually a line-of-sight (LoS) link which is dominant
than other channel impairments like small-scale fading and
shadowing because of the high altitude of UAVs. In [46],
multi-UAV system is considered in which the energy of
ground mobile users is minimized by using UAVs as com-
puting servers. While offloading the user energy to the UAV,
LoS link is assumed between the user and the UAV. The goal
is then achieved by utilizing a two-layered optimization tech-
nique. [47] also considers strong LoS path between ground
and mobile users where the objective is to minimize the
energy consumption to enhance the capacity of the network
and to provide computing services to the ground users by the
UAV. The communication link between the UAVs serving as
edge nodes and the mobile users is dominated by line of sight

in [48] which avoids the latency and high energy consumed
during the transmission of data to the cloud.

III. MOBILE EDGE COMPUTATION OFFLOADING
This section summarizes the techniques used in the comput-
ing process in the ground mobile users, such as in the Local
Computing andOffloading Process. Furthermore, this section
focuses on the process of computation offloading, different
modes of operations to offload the tasks to the UAVs, and
decisions made during this process.

Computational offloading is a process of transferring the
computing tasks from mobile devices (MDs) to the external
sources [49] for execution via wireless access, such as an
edge server, which has sufficient computation resources to
compute the tasks. The edge server, in return, sends the
results back to the mobile device. MECO is beneficial if the
device is unable to process any heavy task. For example,
encoding a video is an energy-consuming task. As a solution,
encoding services are offloaded to edge servers for execution
which will save energy and reduce the latency of the device,
ensuring good video quality [50].

MECO is a key paradigm in MEC as it has several advan-
tages: (i) Battery life of MDs can be prolonged by avoiding
local execution. (ii) Offloading the tasks to the MEC server
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FIGURE 1. Paper organization.

FIGURE 2. UAV-enabled MEC server.

will reduce energy consumed by increasing the system’s per-
formance and speeding up the computation. (iii) Minimizes
the overall execution time as well as improving the user
experience and service quality.

A. COMPUTATION OFFLOADING (CO) PROCESS
MEC server executes the following steps before performing
computation offloading, as shown in Fig. 7.
(i) Primarily, theMEC server checks the legality of the user

applying for the service of computation offloading.
(ii) If the user is legal, the computation resources are

assigned to the user, keeping the data amount of the users’

FIGURE 3. U-MEC possible architectures.

FIGURE 4. UAV equipped with MEC server.

task and resource usage using the resource allocation algo-
rithm. Meanwhile, the computation resources and energy
conditions are updated instantaneously. Now, the user can do
computation offloading to the MEC server.

(iii) If the user is not legal, he is not provided with the
service of computation offloading [51].

Mostly, the computation offloading algorithm’s purpose
is to minimize the energy consumed by MDs by migrating
tasks to the MEC server while fulfilling the reduction in
execution delay accordingly. 90% of the energy savings can
be achieved, and 98% of the delay can be reduced. Hence,
a trade-off between both can be optimized using computation
offloading [52].

B. OPERATION MODES FOR COMPUTATION OFFLOADING
Computation offloading from mobile devices to the U-MEC
can be done in three operation modes [52] / processes:
Local Computing Process in which all tasks are executed

locally. Most of the devices process data without going
through the MEC server. Data read speed and CPU per-
formance influence the efficiency of the local computing
process. It is useful if either no MEC server is available,
the connection between the user and the server is poor, or the
task is not intensive. On the basis of CPU frequency of the
embedded microprocessors in the mobile devices. U-MEC
system has two techniques for local computing. Constant
Frequency: For fixed CPU frequency of device computing
circuit, local computing is done by a fixed constant rate
[53]. Dynamic Frequency: For dynamic CPU frequency of
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TABLE 2. Summary of U-MEC architectures.

FIGURE 5. GBS equipped with MEC server.

FIGURE 6. UAV as a relay.

the mobile device, local computing is done using dynamic
voltage and frequency scaling techniques, in which voltage
or frequency of the CPU are adjusted/lowered according to
the computation tasks to be executed [10], [40] to save the
energy and latency in highly complexed computing circuits.
This technique is more powerful than the fixed one in order
to reduce the energy consumption of whole system.
Binary/Full Offloading Process in which the tasks cannot

be divided into sub-tasks, i.e., either all the tasks are executed
locally or completed offloaded to the MEC server as a whole
for computation, and the final results are sent back to the
mobile devices. The efficiency of the fully offloading process
is influenced by the computing power of the U-MEC server,
channel capacity, and channel states [51]. The flexibility of

resource allocation schemes can be constrained because the
UAV cannot perform local computing and task offloading
simultaneously.
Partial Offloading Process in which the tasks can be par-

titioned into sub-tasks, i.e., some of the tasks are processed
locally, and some of them which are consuming more energy
or are complex are offloaded to the U-MEC server. Both
U-MEC server and mobile devices are used for computation,
and final results are obtained after combining both individ-
ual computations [54]. Factors such as the transmission of
data, energy consumption, task data processing, and resource
allocation influence the effectiveness of this process, and
these factors also have an effect on each other. It is more
efficient than the binary mode as the UAV can dynamically
allocate the computation resources for local computing and
communication resources for computation offloading [14].
But this mode is more complex than the other ones as it needs
to combine a number of factors.

Choosing one of these modes depends upon the application
used by the user, features of the computing task, and structure
of the UAV. Fig. 8 shows the process of offloading modes in
U-MEC networks.

C. COMPUTATION OFFLOADING DECISIONS
As for computation offloading, it is crucial to important to
decide [55] that:

(i) Whether to offload the task or not? If yes, what should
be offloaded (binary/partial). If no, then the task is processed
locally.

(ii) When should the task be offloaded? i.e., deciding the
time slot to offload under different limitations.

(iii) Where must the task be offloaded? i.e., which location
will be best for offloading to available resources.

(iv) Which policy will be suitable for offloading according
to the objective, i.e., single or multiple?

Table 3 shows the summary of contributions done in
U-MEC systems.

IV. COMPUTATION OFFLOADING ACCESS SCHEMES
This section highlights different access schemes used in
U-MEC networks for uplink and downlink communication
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without any interference. Computation offloading is enabled
by uplink and downlink communication between the mobile
users and UAVs using different techniques/schemes, which
are more efficient than the terrestrial MEC networks because
of the UAVs used in the U-MEC network. Mostly used
schemes for computation offloading in the U-MEC system
are discussed below.

A. MULTIPLE ACCESS SCHEMES
Multiple access schemes allowmultiple mobile users to share
and access the same channel and limited resources so that
interference is avoided. It is categorized into two groups:
(1) Orthogonal Multiple Access (OMA) Scheme: Every

ground user can utilize orthogonal resources in terms of fre-
quency band called Orthogonal Frequency Division Multiple
Access (OFDMA) scheme and time slot known as Time
Division Multiple Access (TDMA) scheme, in order to miti-
gate the multiple access interference. Periodic / cyclic TDMA
[56] is also used for communication between mobile users
and UAVs when the UAVs are closer to the ground users
increasing the offloading efficiency. In OMA, the total band-
width is divided into different subchannels, one user occupies
each sub-channel, and equal time resources are allocated for
every user. OMA provides insufficient and unsuitable system
performance. It is less complex using simple receivers in the
system, and ideally, there is no mutual interference among
multiple users [57].
(2) Non-Orthogonal Multiple Access (NOMA) Scheme:

Every mobile user can exploit non-orthogonal resources
simultaneously for offloading the tasks in the uplink, and
UAV sends back the final result in the downlink. In NOMA,
the entire frequency band or time slots are shared among
multiple mobile users. It uses successive interference can-
cellation (SIC) techniques at the receiver side, making it
complex. Nevertheless, it is more efficient than the OMA
because it provides high spectral efficiency and lower latency.
NOMA is widely used in U-MEC networks because of high
spectrum utilization compared with OMA [58].

B. ONE-BY-ONE ACCESS SCHEME
In this scheme, UAV can connect with only one mobile user
at any time. It is superior to the OMA because, at most,
one mobile device can communicate with its associated UAV
during each time slot. In [36], a one-by-one access scheduling
mechanism is adopted, making the system more efficient and
easier than the OMA.

C. DUPLEX SCHEMES
Forward Link: The link from the U-MEC to the mobile user
is called downlink (DL or D/L).
Reverse Link: The link from the mobile user to the U-MEC

is called uplink (UL or U/L).
Full duplex or simply duplex is a bi-directional scheme in

which transmission can occur in both directions (UL and DL)
[59] simultaneously, i.e., in U-MEC offloading and outcome
result downloading process takes place simultaneously. Also,

FIGURE 7. Generic flowchart for computation offloading.

the interference between the offloading and downloading
process is controlled efficiently [14]. Duplex schemes are
categorized into two types: FDD and TDD.
(1) Frequency Division Duplex (FDD): In FDD,

the offloading and downloading are achieved concurrently
at same time using two communication channels for UL and
DL. It uses a lot of spectrum, i.e., twice than the TDD, and
has more interference. It is usually used in long-distance
scenarios between U-MEC and mobile users.
(2) Time Division Duplex (TDD): In TDD, the uplink and

downlink channels use the same frequency band by allocating
alternating time slots [60] for offloading and downloading.
It is speedier than the FDD and uses a single channel of the
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spectrum with less interference. It is used in short distance
scenarios.

Both schemes have their advantages and disadvantages.
According to applications and uses, they are used in different
areas to be used for the greatest advantage.

V. RESOURCE MANAGEMENT
This section briefly explains the energy-efficient resource
management in UAV-enabled MEC networks. Resources
management is a factor required to complete an activity in
order to achieve the desired goal, such as bandwidth or max-
imum power, which are usually limited in wireless commu-
nications. Management is managing the resource according
to the need. When the resources are managed, one must also
allocate resources to the system.

FIGURE 8. Computation offloading modes.

Resource Management is the process of managing,
scheduling, or allocating the resources from one user/system
to another by using different schemes to ensure the over-
all efficient performance of the system. For improving the
performance of offloading services, the dynamic availability
of resources plays a crucial role. Various resource allo-
cation schemes are adopted to guarantee the best appli-
cation of resources to achieve better performance for the
U-MEC network and meet the increasing demand for
computation-intensive applications and resource-constrained
devices. Resources (communication and computation/
storage) allocation is of crucial importance in order to meet
better QoS and QoE requirements. In U-MEC networks,
resource allocation is a key challenge due to UAVs’ battery
and trajectory constraints. The resource may incorporate
the MUs’ computational speed transmit power, computa-
tion resource at the MEC servers, bandwidth, and the time
assigned to the offloading users [61].

In the local computing model, the frequency of the cen-
tral processing unit (CPU) and computation time are the
resources to be optimized. In the computation offloading
model, communication resources such as bandwidth, task
offloading power, task assignment, and offloading time are
the resources to be optimized. In the UAV flying model,
trajectory, maximum flying time, weight, and speed of UAV
are the resources to be optimized because of their constrained
computation resources due to SWaP limitations.

Different objectives achieved by designing resource man-
agement in U-MEC systems are Energy Consumption
Minimization, Completion Time (bigger value among the
local computation time and offloading computation time),
Minimization, Cost Minimization, Computation Bits Max-
imization, Computation Efficiency (computation bits per
Joule of energy) Maximization, etc., Resource Allocation in
U-MEC systems has been researched in [17], [26], [29], [43],
[62], [63].

As discussed above, because of the compact size and
constrained battery life of IoT devices, they have restricted
energy storage and resources. Recharging or replacing the
battery of IoT devices often is quite inefficient. Therefore,
U-MEC architecture is employed to reduce energy consumed
by these devices resulting in prolonged battery time. It is
done by offloading the users’ heavy computation tasks to
the nearby rich resourced MEC server, which eventually
boosts the energy efficiency of the whole system. UAVs are
equipped with MEC servers owing to their maneuverability,
easy deployment, flexibility, and mobility, providing extra
coverage. U-MEC networks are generally used in areas where
the conventional terrestrial infrastructure is not available.
UAV energy is consumed in hovering, mobility, propulsion,
communication, and computation. Typically, the UAVs have
a limited onboard battery, and they have to be charged
frequently. Energy consumed in U-MEC networks for the
local computing process comprises CPU frequency, compu-
tation time, and data read speed [17]. Energy Consumption
in the offloading process incorporates of transmit power,
computation-related energy, and task offloading time. The
consumed energy in the flying process includes propulsion
energy, communication related energy, speed, and accelerated
velocity of UAV [14].

In [64], the author designs UAVs trajectory for hovering
over the single user and investigates the energy efficiency
of the system. In [17], [62], single-UAV path planning and
bit allocation are jointly optimized using resource alloca-
tion strategy to minimize the consumed energy by the users
with subject to maximum latency and energy utilization of
UAV-mounted cloudlet providing the offloading services and
fulfilling the QoS requirements of the offloading users.

In [10], weighted sum power consumption is focused to
obtaining the optimal solution. In [43], [44], the author
discusses the task completion time and UAVs energy
consumption minimization problem in cellular-connected
U-MEC networks. In [21], hovering and computation energy
consumption of UAV is reduced in order to achieve the goal
of energy efficiency.

Table 4 depicts the summary of channel access schemes
and total energy consumption of the system in U-MEC
networks.

VI. OPTIMIZATION
This section explains the basic optimization terms used
in mathematical modeling. Furthermore, related work in
energy efficient U-MEC networks is discussed in detail.
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TABLE 3. Summary of contributions to U-MEC system.

Lastly, different types of optimization problems and
solutions are summarized. Table 5 presents the sum-
mary of the objectives and constraints used in U-MEC
networks.

A. RELATED WORKS
1) ENERGY EFFICIENCY
In [9], an UAV-enabled MEC system with multi-UAVs and
the multiple ground users model is solved. The objective
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is to reduce the energy consumed by the whole system.
A two-layered optimization method jointly optimizes the
resource allocation, task scheduling, deployment, offloading
decision, location, and the number of UAVs under delay
constraints. EAs are basically used for the population-based
heuristic search approach, which needs no gradient infor-
mation. It faces three issues: (i) large scale search space,
(ii) mixed decision variables, (iii) correlation between UAVs
deployment and scheduling of task is ignored. Therefore,
to avoid these problems, an effective algorithm is used to
solve these types of problems, called ToDeTaS, which works
in two layers, i.e., upper and lower layers. For the upper layer,
an encoding mechanism is used, which encodes the UAVs
location into an individual so that the entire population is
represented as the entire UAVs deployment. Then a num-
ber of UAVs are prioritized given that all the tasks can be
accomplished, therefore reducing the energy consumption.
Then the differential evolution (DE) algorithm with an elimi-
nation operator acts as a search engine, optimizing the UAVs’
location and determining the maximum number of UAVs.
The elimination operator gradually decreases UAVs’ number
when all the tasks are completed, therefore tuning the num-
ber of UAVs adaptively. The greedy algorithm is proposed
in the lower layer for optimizing the binary programming
problem of offloading decisions with lower computation time
under given UAVs deployment. ToDeTaS is more efficient
than other joint optimization problems because of these rea-
sons: (i) The upper and lower layer problems have very
few decision variables, eventually reducing the whole search
space, (ii) By leveraging encoding mechanism and elimina-
tion operator, this algorithm avoids the problem of mixed
decision variables, (iii) Correlation between task scheduling,
and UAVs deployment is not ignored anymore. The upper
layer helps the lower one complete all the tasks; as a result,
the lower layer increases the accuracy of the evaluation done
in the upper layer. The problem ofminimizing the total energy
consumption of the system, including communication, com-
putation, andmechanical power (transmission, execution, and
propulsion power) of both the users and the UAVs, is formu-
lated in [20] by jointly optimizing user association, location
planning, and computation capacity allocation under latency
and coverage constraints. A compressive sensing-based algo-
rithm is used for the user association subproblem. Optimal
Location Planning Algorithm applies the one-dimensional
(1D) search method for optimal three-dimensional (3D)
location planning and beamwidth. The optimal computation
capacity allocation subproblem is solved in closed form.
In [25], the author discusses an energy-efficient scheme in
which total energy of both the ground users and UAVs is
minimized by optimizing the UAVs trajectory and bit allo-
cation of uploaded, computed, and downloaded data collabo-
ratively under the number of bits in each task, energy budget
of UAV, data causality and UAVs velocity constraints. This
optimization problem is divided into two subproblems which
are solved by using lagrangian duality method and CVX
solver.

The author in [31] discusses the minimization problem of
energy consumed by the computation tasks to prolong users’
battery life and the UAVs. A joint optimization problem is
formulated by jointly considering the decision making for
task offloading, uplink, and downlink bit allocation during
the transmission and trajectory design for UAV with sub-
ject to the latency of the tasks and energy budget of the
UAV. An alternative optimization algorithm is used to solve
this problem based on SCA and BCD techniques. In [27],
the author presents joint offloading task and UAVs placement
problems with the objective of minimizing the energy con-
sumption in UAVs and delay for the users by jointly opti-
mizing communication and computing resource allocation,
task splitting decisions, and position of UAV. Due to the
non-convex objective and constraints of the problem, it is
re-transformed into a solvable one by using the SCAmethod.
Then an efficient algorithm is developed to find the solutions.

In [21], energy consumption, including hovering and com-
putation energy of UAVs, is minimized by jointly optimiz-
ing the hovering time of UAVs, resource allocation, and
scheduling of the tasks received from users with limitation
to the QoS requirement of the ground users and the com-
puting resources at the UAV. An iterative algorithm, block
coordinate descent (BCD) is used to solve this joint opti-
mization problem to find suboptimal solutions. Total energy
consumption, including communication, computation, and
flight energy of UAVs, is minimized in [24]. It jointly con-
siders the allocation of computation bits, scheduling the time
slot, transmit power allocation, and UAVs trajectory with
subject to trajectory design of UAVs, communication and
computation resource allocation and computation causality.
The problem is decomposed into two parts using the problem
decomposition method. Those parts are then solved by using
the lagrangian dualitymethod and the SCA technique. Energy
obtained as a result is always minimum by using these two
approaches. In [26], the energy consumption minimization
problem at the UAV is optimized under the limitations of the
amount of computation bits and energy harvesting causal-
ity by jointly considering the offloading computation bits,
CPU frequency of users, and the UAV and UAVs trajectory.
An alternative algorithm is proposed for this purpose, which
is based on the sequential convex approximation (SCA)
method. The author describes the efficient-energy algorithm
in [34] by leveraging three-layered computation offloading
strategy for reducing the energy consumption of the UAV
due to their limited energy. UAV position optimization algo-
rithm is used for dynamically adjusting the UAVs’ position
so that they can cover all the users by providing better
transmission services. Task prediction algorithm based on
LSTM is employed to predict the offloaded tasks by users
to the UAVs. Task offloading strategy is utilized to get max-
imum energy efficiency for the system. In [42], the author
discusses the model of UAV-aided wireless powered coop-
erative MEC system, in which an optimization problem is
formulated to achieve the goal of minimizing the required
energy for UAVvia jointly optimizing the frequency ofUAVs,
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number of offloading bits, transmit power of active users
(with data required to be processed), and trajectory of UAV
with subject to the computing task of active users constraints,
energy harvesting, and information causality constraints, and
UAVs trajectory constraints. The non-convex problem is
first decomposed into subproblem by using first-order taylor
series and introducing auxiliary variables to make the prob-
lem convex. The SCA-based algorithm is employed which
updates the auxiliary variables and optimizes the UAVs tra-
jectory iteratively with updated trajectory variables reducing
the complexity of the algorithm. Then, the decomposition and
iteration (DAI) based algorithm is used for optimizing the
CPU frequency, offloading amounts and trajectory variables
both iteratively and separately with lower complexity. Interior
Point Method (IPM) theory is applied for worst-case com-
putational complexities. The objective in [35] is to minimize
the energy consumption of computation processing and com-
pletion time of UAVs detection in wind farms. This is done
by jointly optimizing the process of computation offload-
ing, computation frequency of UAV and offloading power,
modes, and time while guaranteeing the accuracy of wind
turbines (WTs), flight speed, transmission power of UAV,
and computation frequency constraints. Detection trajectory
planning for multi-sorties and UAV scheduling (DTPUS)
approach is proposed to lessen the wind’s influence on the
WTs. DTPUS approach consists of three steps: grouping of
WTs, planning detection trajectory for each sortie, scheduling
of UAV. Then iterative offloading trajectory and computation
offloading (IOTCO) algorithm are adopted for optimizing
computational offloading and routine inspection trajectory
solutions. Finally, the lagrangian duality method is used for
optimizing UAV computation frequency, offloading time, and
power calculation.

The goal is to reduce the total energy consumed by the
users in air-ground integrated MEC networks in [33] due to
limited energy in the IoT devices. For this purpose, the author
formulated a joint optimization problem by jointly optimizing
power control in the uplink, computation capacity and chan-
nel allocation, user association, and the 3D placement of UAV
by guaranteeing constraints on the latency of users, power
consumption by UAVs, bandwidth, and computation capac-
ity. For solving this problem, an efficient optimization algo-
rithm is used leveraging the BCD method. Then the original
problem is decomposed into subproblems, and CCCP algo-
rithm and Karush Kuhn Tucker (KKT) conditions are utilized
for computation capacity allocation. For offloading computa-
tion tasks by the users to the GCAPs, UAVs 3D placement
is managed by using cooperative computation offloading
scheme. [36] proposes an energy-efficient computational task
offloading scheme to achieve minimum energy consump-
tion of the users by jointly optimizing resource partitioning,
uplink and downlink bit allocation, number of processed bits
at UAV, power allocation and scheduling of user-UAV and tra-
jectory of UAV subject to a fraction of resource partitioning,
bit-casuality in uplink and downlink, initial/final location and
a maximum speed of UAV, energy budget (communication,

propulsion, and computation energy) of UAVs, allocated for
users. Two strategies are proposed for this purpose, one for
an extreme case and the other one for a practical case. Firstly,
a one-by-one access scheduling mechanism is adopted in
which only one user wakes up at a time to communicate with a
UAV. It is a better approach than the orthogonal one making
the system easier. Based on this scheme, the Lagrange dual
method is used to reduces the energy usage and complexity
of the method. Secondly, to handle the huge data volume,
a resource partitioning strategy is adopted to compute the data
of users and UAV jointly in order to minimize the energy
consumption of the ground terminals. Then the problem is
converged into two subproblems. User-UAV scheduling is
obtained by solving its dual problem within the given tra-
jectory of the UAV. Power allocation, resource partitioning,
bit allocation in uplink and downlink and UAVs trajectory
are solved mutually by employing the SCA method, which
further reduces the energy consumed by the users. In [39],
an UAV integrated with an MEC server based on the TDMA
scheme is discussed. The objective is to minimize the total
energy consumed by the user by assuring the completion of
computation tasks during each time slot performed by the
users. AnUAV trajectory optimization problem is formulated,
which obtain both the local and global optimal solutions.
A 2D search method over possible UAV positions is used to
get a global optimum solution. It jointly optimizes the slot
allocation and computation task partitioning by adopting the
augmented lagrangian active method. An alternative efficient
optimization scheme is proposed to find a local solution that
reduces the algorithm’s complexity. The proposed scheme is
better than none, full or central gravity offloading schemes.

In [38], the author discusses the NOMA-based
UAV-assisted MEC system and formulates a joint optimiza-
tion problem in which maximum energy consumption among
the users is minimized (min-max problem). Task data, com-
puting resource allocation, and UAVs trajectory are jointly
optimized with subject to task delay of users, the total amount
of task data, mobility, and UAVs trajectory constraints. It is
challenging to solve this problem due to interference among
the users and the unreliability of UAVs’ trajectory. The
problem is decomposed into multiple problems by utilizing
auxiliary variables, and the subproblems are solved using
an efficient iterative optimization algorithm. Two schemes
are used to solve the problem with low complexity. The
general scheme optimizes the task data, joint trajectory, and
computing resource allocation to reduce energy consumption
among all ground users. The fixed point service (FPS) scheme
optimizes and finds out the location of a fixed point.

TDMA based model for UAV-enabled MEC is modeled in
[32] to increase the energy efficiency and prolong the serving
time of UAV. Based on this model, an energy consumption
minimization problem is formulated by jointly optimizing
the computing resources allocation of the users, the hovering
time of the UAV, wireless powering duration and sequence
of user’s service under user association limitation. The BCD
method is used to solve this problem. The solution for
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TABLE 4. Summary of wireless access schemes and energy consumption to U-MEC system.

computing resources allocation is found in closed form by
using the Lagrangian dual method. To obtain the sequence
for user services, the flow-shop scheduling technique is used.

[23] models energy-efficient resource allocation [20] and
UAV trajectory design, which minimizes the energy con-
sumption in UAV-mounted cloudlet, consequently improv-
ing the computing services.Resources for communication
and computation are allocated by jointly optimizing UAVs
trajectory; user transmits power and computation load allo-
cation with subject to user offloading, energy budget for
user communication, computing capabilities, and mechanical
operations of UAV constraints. SCA Method and dinkel-
bach algorithm are exploited for UAVs trajectory. Then the
whole problem is decomposed into subproblems by using the
alternating direction method of multipliers (ADMM) tech-
nique. When user mobility is not known, a spatial distribution
technique is used to predict the users’ location for optimal
resource allocation. [40] studies the problem of resource allo-
cation in UAV assisted [65] wireless powered MEC system
in which the goal is to maximize the computation bits/rate
of computation of all the ground users under binary and
partial offloadingmode by jointly optimizing offloading time,
transmit power of users, frequency of CPU and UAVs tra-
jectory under limitation to speed of UAV and causal con-
straint of energy harvesting. The two-stage and three-stage

optimization algorithm is used to solve computation bits max-
imization under partial and binary offloading mode simul-
taneously. An optimal selection scheme is employed under
a given trajectory, which depends on users’ choice of com-
puting the task locally or offloading them to the UAVs. The
decision of the user depends upon the trade-off between
the operation cost and attainable rate of computation. UAVs
trajectory is optimized by SCA technique under both partial
and binary offloading mode. In [37], the goal is to achieve
energy-aware resource allocation in which the objective to
maximize the total utility in the UAV-assisted MEC system
over social internet of vehicles (SIoV). It jointly optimizes the
transmit power allocation of the vehicles and UAVs trajectory
under the constraint of each vehicle’s evolution law of energy
consumption state. The total utility maximization problem is
converted into energy aware dynamic problem, which merges
instantaneous power reduction utility and energy consump-
tion cost for each vehicle. Dynamic programming method
is used to optimize dynamic power allocation of vehicles
with fixed UAV trajectory under cooperation and noncoop-
eration cases. A search algorithm is employed for optimizing
UAVs trajectory with an acceptable distance of user-UAV and
offloaded bits of vehicles.

In [66], latency and consumed energy are minimized, and
stability of the system is increased in UAV-assisted MEC
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TABLE 5. Summary of optimization in U-MEC system.
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system, and it is done by using the DR method via jointly
optimizing the UAV trajectory, users’ task scheduling, and
performance of thewhole system. The author in [67] proposes
the minimization problem of weighted sum energy consump-
tion of the whole system, i.e., users and the UAVs, by opti-
mizing the trajectory of UAV bandwidth and bits allocation,
transmit power and frequency of the CPU jointly. A resource
allocation method and UAVs trajectory design algorithm are
proposed to find the solution to the formulated problem.
In [68], UAV-assisted multi-access edge computing is consid-
ered, which aims the minimization of weighted latency cost
and consumed energy by taking resources competition and
offloading decisions into account. The goal is then achieved
by using a game theory-based scheme to find the optimal
solution.

2) COMPUTATION EFFICIENCY
[45] proposes the computation efficiency maximization

problem by taking into account the central processing
unit (CPU) frequencies, maximum energy consumption,
offloading time of the user, position and mobility of UAVs
and transmit power constraints of the user and jointly opti-
mizing transmit power and offloading time of users, CPU
frequencies and UAVs trajectory. Lagrangian DualityMethod
is used for transmitted power and CPU frequencies, and the
SCA technique solves the UAV trajectory problem.

In [30], user association, trajectory scheduling and
resource allocation are jointly optimized to achievemaximum
computation efficiency under local CPU frequency alloca-
tion, transmit power of the users, spectrum resources and
UAVs trajectory which scales the energy consumption and
computation bits of the system. The optimization problem is
then reformulated into the parametric problem, which is then
solved by adopting an iterative search algorithm consisting
of a double loop structure. The outer loop employs dinkel-
bach method to solve and update the computation efficiency,
while for the inner loop, a joint optimization algorithm is
used to solve user association, scheduling the trajectory and
resource allocation. [69] considers computation efficiency
maximization problem in which amount of offloaded data
is maximized while minimizing the energy consumption of
UAV to guarantee users’ QoE by jointly optimizing the user
scheduling, UAVs trajectory, transmit power, and bandwidth
allocation. This non-convex problem is then solved by using
the multistage optimization algorithm to obtain high compu-
tation efficiency of the system by fulfilling QoE of users in
limited resources.

3) DELAY MINIMIZATION
In [29], the aim is to minimize themaximum delay (min-max)
among all the users for each time slot by jointly optimiz-
ing user scheduling binary variables, offloading task ratio,
and trajectory of UAVs under discrete binary constraints.
The equality constraints of the objective function are basi-
cally dualized and penalized as Augmented Lagrangian (AL)
entities. Then this problem is solved by using penalty

dual composition (PDD) based algorithm consisting of two
loops. For the inner loop, the variables are updated using
the concave-convex procedure (CCCP) algorithm. For the
outer loop, AL multipliers and penalty factor is updated.
Finally, a simplified l0-norm algorithm of low complexity is
proposed.

[41] models a big three-layered data processing archi-
tecture consisting of ground users, edge nodes (UAV-BSs),
MEC and cloud center. It is assumed that the cloud center is
power enough and the aim is to minimize the cost and delay
at the UAV-BSs by optimizing the multi-UAV whole path set,
enhancing the coverage of the UAV. The constraints to these
optimization problems are the capability of edge processing,
on-board energy, and computational resources of edge nodes.
A DRL-based algorithm is adopted, which develops online
path planning of hovering edge nodes having large service
coverage. An online determination policy based on Lyapunov
Optimization Method is used to save energy and stabilizing
the delay in the system by smartly managing the resources
of the network. For a low data rate, this method reduces the
frequency of the edge processor in order to save energy. For a
high data rate, it smartly allocates bandwidth offloading data
at the edge.

4) LOAD BALANCING AND SECRECY CAPACITY
To guarantee global load balance at the UAVs in [22], a prob-
lem of minimum global load balance deployment is formu-
lated by jointly optimizing task scheduling and deployment
of UAVs under coverage constraints. Deep Reinforcement
Learning (DRL) [70], [71] based task scheduling scheme
is used for efficient task execution, effective scheduling of
offloaded tasks in multi-UAVs, reducing the transmission
delay, and improves the QoS of the users.

In [28], the main goal is to maximize the minimum secrecy
capacity efficiently with limitation to the minimum offload-
ing requirement, latency, and total power. Therefore, a joint
optimization problem is formulated for security purposes by
optimizing jamming power, computing capacity and the loca-
tion of the UAV, transmit power, offloading user association,
and offloading ratio collectively. Firstly, the location of the
UAV is optimized, which enhances the secrecy capacity of
each offloading link, as well as reduces the latency of the
users offloading the data. It is done by employing the bounded
eavesdropper location error model to find the uncertain loca-
tion of the eavesdropper. Then the original problems are
converted to five subproblems adopting the BCD method,
which are then solved by using low complexity algorithms.
The sole purpose of using specifically BCD method is its
implementation on large size problems while it cannot be
implemented on single variable.The first three subproblems
of jamming power of UAV, location of UAV, and transmit
power of user are optimized by applying SCA technique.
SCA is further category of BCD problem and applicable to
non-convex and larger problems. SCA lags with the imple-
mentation deficiency on single variable. In the last, the branch
and cutmethod are used to solve the user association problem.
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The solution shows that there exists a trade-off between secu-
rity and latency.

Using multiple UAVs equipped with MEC server in [72],
IoT devices to be served are maximized under energy budget
and co-channel interference constraints via jointly optimizing
computational offloading, UAVs trajectory, service indicator,
and resource allocation. The formulated problem is solved by
using the SCA technique which converges the solution of the
given problem to a point.

Joint optimization of different performance metrics and
solutions proposed are summarized in Table 6.

B. TYPES OF OPTIMIZATION PROBLEMS
IN U-MEC NETWORK
In U-MEC networks, the problem types are defined as per
following.

1) LINEAR PROGRAMMING (LP) PROBLEM
It is a continuous optimization problem that maximizes or
minimizes the linear objective function subject to one or more
linear (equality and non-equality) constraints.

In [34], the formulated energy efficient optimization prob-
lem is linear which is then solved by using three layered com-
putational offloading strategy based on LSTM task prediction
algorithm. Finally, an optimal solution is found out.

2) NON-LINEAR PROGRAMMING (NLP) PROBLEMS
These are continuous optimization problems have non-linear
objective functions subject to the non-linear (equality/
non-equality) constraints. It contains the properties of
non-convex problems. Multiple local optimal solutions are
obtained in non-convex optimization, or it takes plenty of
time while recognizing whether there is a solution available
or the solution is global.

[20], [23], [24], [26]–[30], [37]–[39], [45] proposes non-
linear optimization problems which are then solved by utiliz-
ing different approaches to obtain optimal solutions.

3) MIXED-INTEGER NON-LINEAR PROBLEMS (MINLP)
Discrete non-convex non-linear problems with the
combination of continuous and discrete variables. In [9], [21],
[31]–[33], [36], [40], MINLP problems are assumed in order
to obtain sub optimal solutions.

4) GENERALIZED ASSIGNMENT PROBLEM (GAP)
It is a convex problem in which tasks are assigned by the
users to the UAVs in such a way that each task is assigned to
precisely oneUAV subject to given constraints. [22] describes
GAP which is resolved by incorporating DE based UAV
deployment technique and DRL algorithm which achieves
near-optimal results. s.

C. SOLUTION TYPES IN U-MEC NETWORKS
Different types of solutions are there in relevant works on
U-MEC problems for each specific algorithm used, which are
discussed below.

1) OPTIMAL SOLUTION
Objective function reaches its maximum/minimum value
out of all the feasible solutions available. [20], [23], [25],
[31], [32], [36], [41], [45], [73] acquires optimal solutions
to the given problems by adopting efficient optimization
techniques.

2) SUB-OPTIMAL SOLUTION
It is less than the optimal (best) possible solution but is
quickly produced than the optimal one [21] converges the
energy consumption minimization non convex problem to a
high quality sub-optimal point by employing efficient itera-
tive algorithm. In [27], SCA technique is exploited to solve
the given weighted sum latency of all ground IoT devices and
UAVs energy consumption optimization problem. As a result,
sub-optimal solutions are yielded.

3) NEAR-OPTIMAL SOLUTION
It is a feasible solution in which the maximum/minimum
value of the objective function is within a specified range
from the not known optimal objective function value. In order
to achieve near-optimal solutions to the energy consumption
problems formulated in [9], [24], three layered and two lay-
ered optimization algorithms are proposed to solve the given
problems efficiently.

4) GLOBAL OPTIMAL SOLUTION
It is the best solution that has a better objective value as
compared to all the other best solutions available. It is attain-
able usually in linear problems. Globally optimal solution
is obtained to the joint optimization problem by employing
2D search method over the UAV positions and augmented
Lagrangian searchmethod in [39]. Local optimal solution can
also be gained by deploying other optimization scheme to the
same problem.

Table 7 summarizes the problems and solution types in
U-MEC networks.

VII. FUTURE RESEARCH DIRECTIONS
U-MEC system is considered as a propitious technology in
enhancing the capacity, coverage, connectivity, QoS and QoE
of the user, but it is still facing some challenges and open
issues in order to facilitate its wider range of applications due
to complexity and fewer works done in the context of U-MEC
systems. In the following, some future research directions and
open issues are listed.

• U-MEC also serving as an user is a challenging open issue
for future work.

• Due to limited flight and operation time of UAVs, efficient
online resource management schemes under a dynamic
channel environment should be focused due to uncertainty
in the mobility of users, as UAVs have to serve multiple
ground users in large geographical region.

• The mobility impact of both the users and UAVs
can be studied by jointly optimizing UAVs trajectory,
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TABLE 6. Comparison of papers focusing on energy-efficient U-MEC system.
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TABLE 7. Summary of problem and solution types in U-MEC system.

communication, and computation resource allocation for
moving users and UAVs.

• Because of unlimited on-board energy of UAVS,
Energy-Aware UAV Trajectory can be introduced in
U-MEC networks. The trajectory of multiple UAVs should
be jointly optimized in order to increase the capacity,
coverage and computation efficiency.

• Multi-UAVs and multi-users scenarios can be considered
in computation efficiency maximization.

• The ground users distributed over large geographical area
can be investigated further.

• Complicated models for flying and communication can be
considered in future work by taking into consideration the
mobility of the users and fading factors.

• In task offloading by the users to the UAVs, the work can be
extended by considering multi-UAV and multi-hop MEC
scenario during UAV swarm placement.

• For security purposes, multiple legalized UAVS for user
offloading can be an interesting topic for future work, as it
will be a more complex optimization problem dealing with
multiple UAVs. Different physical layer techniques can
also be introduced for better security.

• Communication, computation, and caching in these net-
works can be jointly optimized by using UAVs coverage
algorithm and dynamic network resources prediction based
on the DRL method.

• To make the results more satisfying, event-driven software
can be used in future works, for making more real channel
models.

• Rather than ideal LoS links in A2G/G2A, practical channel
models, such as rician fading and probability models can be
taken into account for future research.

• In data offloading from one UAV to the multiple users’
scenario, the delay-energy tradeoff can be investigated for
further work.

• Controlling the trajectory and transmit power of UAV to
reduce the offloading energy consumed by the users is also
a worthy and interesting topic to be investigated.

• Multiple antenna techniques can be used in the computation
rate maximization to tackle the problem of limited compu-
tation performance in flight time of UAVs.

• Computation time duration has not been investigated yet
but it is not negligible in reality. Also the queuing process of
computation task should be considered very carefully and
can be an interesting future topic.

• Spatial coupling of bandwidth allocation among edge
nodes can bring a new challenge due to limited capacity
of computation at edge cloud.

• In offline path planning, unexpected environment changes
can also pose an new challenge in U-MEC systems.

• The problem of offloading the user’s computation tasks to
the UAVs, acting as flying MEC server, can also be found
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out by using various approaches like matching and game
theory, convex optimization techniques etc.

• Taking in account both the velocity and speed of UAVs can
be a challenging issue.

• Due to restricted flight time of UAVs, the path planning in
U-MEC is an important issue.

• In U-MEC networks, it is challenging to jointly optimize
trajectory (flying path) and location of UAV to provide
efficient offloading services for the ground users.

• Control on mobility affects the network quality. Therefore,
jointly optimizing UAVs path planning, resource alloca-
tion, channel variability, task assignment, QoS metrics,
offloading power allocation and maximum flying speed of
UAV with subject to delay constraint to achieve different
objectives like relay minimization, energy efficiency maxi-
mization, computation rate maximization etc., is challeng-
ing to tackle with the UAVs trajectory optimization.

• The performance parameters like throughput, delay, cover-
age, reliability and capacity affect the overall performance
of the system. Therefore, performance analysis in U-MEC
networks is a challenging issue.

VIII. CONCLUSION
Due to the significant benefits of U-MEC networks, it has
been an imminent trend in future wireless networks, as it
improves the computation performance of the system by
maximizing energy efficiency and minimizing the execution
delay.With a view to the recent advances done in this domain,
this paper highlights the key concepts, applications, and ben-
efits of combining UAVs and MEC. Basic three architec-
tures, assisted, cellular-connected and relayed U-MECs, are
explained, which can be used in different scenarios depend-
ing upon the application to be used. Then the main idea of
local computing, computation offloading process, decisions,
binary and partial modes are elaborated in detail. Different
access schemes used in uplink and downlink communication
are summarized. Energy-efficient resource management and
optimization techniques to solve different problems in order
to achieve various objectives and their solution types are
outlined. In the end, state-of-the-art research in the U-MEC
system is explained. Due to the early stage of research regard-
ing this topic, future research directions, key challenges, and
open issues are also discussed to help the researchers to
bring considerable research efforts, with the purpose that this
technology can lead towards full growth advancement.
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