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ABSTRACT Accurate wind speed forecasting is a fundamental requirement for advanced and economically
viable large-scale wind power integration. The hybridization of the quaternion-valued neural networks and
stationary wavelet transform has not been proposed before. In this paper, we propose a novel wind-speed
forecasting model that combines the stationary wavelet transform with quaternion-valued neural networks.
The proposed model represents wavelet subbands in quaternion vectors, which avoid separating the naturally
correlated subbands. The model consists of three main steps. First, the wind speed signal is decomposed
using the stationary wavelet transform into sublevels. Second, a quaternion-valued neural network is used
to forecast wind speed components in the stationary wavelet domain. Finally, the inverse stationary wavelet
transform is applied to estimate the predicted wind speed. In addition, a softplus quaternion variant of the
RMSProp learning algorithm is developed and used to improve the performance and convergence speed of
the proposed model. The proposed model is tested on wind speed data collected from different sites in China
and the United States, and the results demonstrate that it consistently outperforms similar models. In the
meteorological terminal aviation routine (METAR) dataset experiment, the proposed wind speed forecasting
model reduces the mean absolute error, and root mean squared error of predicted wind speed values by 26.5%
and 33%, respectively, in comparison to several existing approaches.

INDEX TERMS Wind speed forecasting, stationary wavelet transform, quaternion valued neural network,
RMSProp learning algorithm.

I. INTRODUCTION
Renewable energy plays an increasingly imperative role in
the global energy market [1]. Among renewable energy
resources, wind energy has attracted much attention due to
its mature technology, low cost, and climate change impacts
regarding reducing environmental pollution. Currently, wind
power is one of the fastest-growing renewable energy tech-
nologies, and according to the global wind energy council
report [2], 2019 witnessed new wind power installations
surpassing 60 GW globally, representing a 19% increase
compared with 2018, bringing the total installed capacity to
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650 GW, a rise of 10 % compared with the preceding year.
The world’s top market in new installations in 2019 was
China, with the installation of more than 2.3 GW offshore
wind in a single year. Generally, accurate wind speed fore-
casting is a precondition for constituting an advanced and
economically viable control strategy in a modern power sys-
tem, e.g., model predictive control [3]. In addition, forecast-
ing errors can significantly affect the cost of balancing the
power system [4]. Therefore, accurate short-term wind speed
prediction is essential for reducing wind farm operations and
maintenance costs [5]. The generated power will depend on
wind speed and the design of the turbine. Forecasting wind
speed instead of generated power avoids dependencies on
generator design.
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In recent decades, a large number of forecasting models
for wind speed have been developed and used to compute
estimates of wind energy. Wind speed prediction models can
be divided into three categories: physical models, statisti-
cal models, and machine learning models. Physical mod-
els consider weather conditions such as wind speed time
series, air pressure, humidity, and temperature to obtain wind
speed forecasts. These numerical weather prediction mod-
els (NWPs) divide the atmosphere into 3D cubes and solve
weather parameter equations for each atmospheric variable
at each grid point. The weather research and forecasting
model (WRF) [6], the COSMO model [7] and MM5 [8] are
examples of prediction models in this category.

In general, NWP models are not suitable for short-term
wind speeds because of their complex calculation processes
and poor performance [9]–[11].

Statistical models extract rules that govern the relationship
between sequences of previous measurements and use these
rules in prediction. When compared with physical methods,
these methods can provide more accurate results for short-
term wind speed forecasting. Examples of methods used in
this category include the autoregressive integrated moving
average (ARIMA) [12], Markov chains [13], and Kalman
filtering [14].

Machine learning models are the third class of forecasting
algorithms. They have been widely applied in predicting
wind speed with good learning ability and nonlinear mapping
ability [15]. Examples of these methods include neural net-
works, fuzzy-based systems, and decision trees. For instance,
Zhou et al. proposed a long-short-term memory (LSTM)
based lower and upper bound estimation model to construct
the prediction intervals of wind power [16]. Kisvari et al. [17]
presented a predictive model that uses gated recurrent units
(GRU) and 12 features for wind speed forecasting. Exam-
ples of these features include wind speeds at four differ-
ent heights, generator temperature, and gearbox temperature.
Extreme gradient boosting (XGBoost), which is a form of
gradient boosting decision tree, was used in [18] for wind
speed forecasting.

Hybrid models can be formed by combining methods from
the preceding categories. The main reason for integrating
forecasting models is that a single forecasting method often
has some essential weaknesses that lead to poor prediction
results that do not adapt to the complex and changeable
environment [19]. For example, a hybrid deep neural net-
work model based on a stacked autoencoder and an LSTM
network to forecast wind speed was proposed [20]. The
presented hybrid model reduced the mean absolute error
in prediction by 13% compared with a nonhybrid version
of the model. In [21], a short-term multimodal wind-speed
prediction framework was proposed based on rough artifi-
cial neural networks and stacked denoising autoencoders.
Khosravi et al. [22] combined an adaptive neuro-fuzzy infer-
ence system with a particle swarm optimization algorithm
to predict wind speed, wind direction, and a wind turbine’s
output power. The combined model showed considerable

improvements in prediction accuracy compared with mod-
els that use either adaptive inference systems or particle
swarm optimization. Statistical and neural network-based
approaches were combined to predict hourly wind speed
data [23]. The hybridization of ant colony optimization and
particle swarm optimization for forecasting wind speed was
proposed in [24]. This hybridization approach showed better
wind speed forecasting results than other nonhybrid models.

Signal decomposition algorithms, such as the wavelet
transform and empirical mode decomposition, provide effi-
cient means for adapting the learned forecasting models to
the different components of the original wind speed series.
These methods were used successfully to enhance the per-
formance of several wind speed forecasting methods. For
example, Hu et al. [15] proposed a prediction model based on
variational mode decomposition and an improved and echo
state network. The proposed algorithm outperformed nine
comparative models in four wind speed datasets. Variational
mode decomposition (VMD) was used in [25] to decompose
wind speed data into different subbands. LSTM units were
used to predict the main trend, and a kernel density estimation
method was used to perform predictions on the residual part.
A similar approach was offered in [26], where VMD decom-
position signals were used as input to convolutional LSTM
prediction units.

The wavelet transform and packet decomposition are often
combined with other AI models for wind power and wind
speed forecasts [27]. For example, in [28], wavelet soft
threshold denoising and gated recurrent units were com-
bined to forecast wind speed. In the proposed model, denois-
ing by wavelet soft threshold was used to filter the noisy
samples from the wind signal, and a gated recurrent unit
was used as a forecaster. Liu et al. [29] used the empirical
wavelet transform to decompose raw wind speed data into
several sublayers. The signal’s low-frequency components
were forecasted using a long short-term memory neural net-
work, and an Elman neural network was used to predict
high-frequency components. Aasim et al. [30] combined the
wavelet transform with an autoregressive integrated moving
average (ARIMA) model to forecast wind speed data. The
wavelet representation was combined with adapted LSTM
units to predict wind speed in [31].

The existing hybrid models based on the wavelet decom-
position technique and neural networks treat each wavelet
subband individually. However, significant correlations exist
between these subbands [32], and improved forecasting
results can be achieved by developing algorithms that exploit
these dependencies between wavelet subbands.

To address this limitation, we propose using quaternion
vectors to represent wavelet subbands. A quaternion valued
neural network (QVNN) is used in this paper to model the
relationship between quaternion inputs and outputs represent-
ing previous and forecasted wind speed values. QVNNs have
quaternion inputs and outputs and use quaternion weights and
bias parameters. Representing wavelet subbands as quater-
nion vectors forms a unifying representation that avoids
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FIGURE 1. The proposed architecture. A quaternion representation of stationary wavelet subbands is used to train a quaternion-valued neural
network. The predicted wind speed is computed by using the inverse stationary wavelet transform.

separating the naturally correlated sequences. QVNNs have
achieved improvements in several tasks in image, speech, and
signal processing [33]. They were recently used for time-
series forecasting [34], where they achieved performance
levels surpassing real-valued neural networks.

In the proposed system, wind speed data are first decom-
posed into wavelet levels using the stationary wavelet trans-
form (Fig. 1). The resulting coefficients are used to train
the QVNN to predict the wavelet subbands representing the
forecasted value. The inverse stationary wavelet transform
is then used to reconstruct the predicted wind speed. The
adaptive quaternion learning rate algorithm is developed and
used to enhance the performance of the model. Finally, the
performance and convergence speed are improved by using a
softplus function within the RMSProp based optimizer [35].
The introduction of the softplus function was shown to cal-
ibrate the learning rate and lead to improvements in conver-
gence speed.

The major contributions of this paper are as follows:
• We propose a novel wind-speed forecasting model that
combines the stationary wavelet transform (SWT) and
quaternion-valued neural networks (QVNN). To the best
of our knowledge, the hybridization between the QVNN
and SWT has not been proposed before in the literature.
This hybridization provides a compact and unifying rep-
resentation of the different wavelet subbands.

• We propose a quaternion version of RMSProp, the adap-
tive learning rate algorithm, to improve accuracy and
convergence speed of the proposed quaternion neural
network model.

• We enhance the developed quaternion RMSProp algo-
rithmwith a softplus function to further improve the per-
formance and convergence speed of the proposedmodel.
In addition, the proposed softplus function prevents the
forecasting model from overfitting.

The developed wind speed forecasting method is tested
on wind speed data collected from different sites in China
and the United States. The results demonstrate that the devel-
oped model outperforms several widely used and recently
proposed wind speed prediction models.

II. PROPOSED METHODOLOGY
This section describes the three main components used
in the presented model: the stationary wavelet transform,
the QVNN, and the quaternion soft plus RMSProp learning
algorithm.

A. THE STATIONARY WAVELET TRANSFORM
The stationary wavelet transform (SWT) [36] is designed to
solve the shift-invariance issue in the discrete wavelet trans-
form. The wavelet transform decomposes the source signal
into different levels; the resulting subsignals are of a length
that is equal to 1/2 of the approximation signal at the pre-
ceding wavelet level. The SWT removes the downsampling
operator from the usual implementation of the DWT. The
resulting subsignals in the SWT have the same length as the
source signal, this is a desired property for the proposed wind
speed forecasting model because this equality in length in
wavelet subbands allows the formation of a quaternion vector
representing the four different wavelet components of the
signals at each time step.
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This paper develops a quaternion-based forecasting system
where each input signal is represented by a quaternion vector
containing information from the four different wavelet sub-
bands (Fig. 1). Similar to the DWT, the SWT decomposes
the input series into sets of low and high-frequency coeffi-
cients called approximation and detail coefficients; however,
the output signal is nondecimated (i.e., downsampled). The
approximation components present the general trend of the
time series, whereas the detail coefficients describe the small
variations in the series (i.e., high-frequency components).
The decomposition can be demonstrated as a dyadic tree [37].

Fig. 2 shows an example of a two-level decomposition
based on the SWT. For a given signal u (t), the SWT decom-
poses it into two coefficients: approximation coefficients
A1 (t) and detail coefficientsD1 (t). These coefficients repre-
sent the convolution results produced by low- and high-pass
filters. This decomposition process is repeated using approx-
imation coefficients as input in each subsequent decomposi-
tion level.

B. THE QVNN AND THE QUATERNION SOFTPLUS
RMSPROP LEARNING ALGORITHM
The proposed wind speed forecasting system uses a QVNN
with three layers. The input layer receives the quaternion-
valued form of the two-level SWT approximation and detail
coefficients

[
A1 (t) D1 (t) A2 (t) D2 (t)

]
.

The hidden layer has m neurons, and the output layer with
one neuron produces a one-step forecast of the SWT approxi-
mation and detail coefficient levels (Fig. 1). The inverse SWT
is used to compute the predicted time series by combining the
three predicted coefficients, i.e., A2 (t), D1 (t), and D2 (t).
The QVNN layers are connected with quaternion-valued

weights wI and wII . The hidden and output layers have
quaternion-valued biases bI and bII .
The predicted quaternion QVNN output can be com-

puted as:

ŷ (k + 1) = ϕ
(
Re
[
ỹ
])
+ iϕ

(
Imi

[
ỹ
])

+jϕ
(
Imj

[
ỹ
])
+ k ϕ

(
Imk

[
ỹ
])

(1)

where Re is the real part of the predicted vector ŷ, Imi, Imj
and Imk are the imaginary parts in the i, j, and k complex
dimensions of the quaternion vector, respectively; and ϕ is the
nonlinear sigmoid function given by the following equation:

ϕ (·) =
1

1+ e− (·)
(2)

The quaternion vector ỹ is computed using

ỹ =
m∑
p=1

wIIp hp + b
II , (3)

where p = 1, . . . ,m and hp is the pth hidden neuron’s output
given as follows

hp=QReLU
(
h̃p
)
=ReLU

(
Re
[
h̃p
])
+ iReLU

(
Imi

[
h̃p
])

+jReLU
(
Imj

[
h̃p
])
+ kReLU

(
Imk

[
h̃p
])

(4)

FIGURE 2. Two decomposition levels obtained using the SWT. Two
approximations and the two details coefficients are used to construct a
quaternion vector u = u1 + iu2 + ju3 + ku4, where u1 = A1

(
t
)
,

u2 = A2
(
t
)
, u3 = D1

(
t
)
, and u4 = D2

(
t
)
.

where h̃p is given by

h̃p = wIpu+ b
I
p, (5)

where u is the input which contains the quaternion-valued
representation of the two level SWT approximation and detail
coefficients.

The objective of this model is to find the network’s optimal
weights and bias parameters that minimize the sum-squared
error at the output layer, which can be written as

E =
1
2
eHe =

1
2

N∑
l=1

ele∗l =
1
2

N∑
l=1

El (6)

El = ele∗l = |el |
2 (7)

The superscript ‘∗’ represents the conjugate operator, and
H is the Hermitian operator.

el = y(k + 1)− ŷ(k + 1)

= Re [el]+ iImi [el]+ jImj [el]+ kImk [el] (8)

where el is the lth error between the l th desired output y and
the lth estimated output ŷ, l = 1, . . .N .

We develop a quaternion version of the RMSProp learning
algorithm to train the proposed QVNN. We also equip this
algorithm with a quaternion softplus function (Algorithm 1)
to accelerate the convergence rate [35]. vθ (k) is the second-
order quaternion momentum calculated as a combination of
previous and current squared stochastic gradients.

The stochastic gradient of the QVNN is computed using
the following equations (see [34], [38]–[40] for further
details).

To compute the gradient of the bias,

bII = Re
[
bII
]
+ iImi

[
bII
]
+ jImj

[
bII
]
+ kImk

[
bII
]
,

we have:

∇bIIE =
∂ E

∂Re
[
bII
] + i ∂ E

∂Imi
[
bII
]

+j
∂ E

∂Imj
[
bII
] + k ∂ E

∂Imk
[
bII
] (9)
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Algorithm 1 Quaternion SRMSProp
1: Inputs: θ, u, y(k + 1) ∈ Q, learning rate η = 0.001,

Parameters β2 = 0.999, β = 50,
2: Initialize: mθ (0) = 0, ṽθ (0) = 0,
3: for k = 1 to T do
4: Compute the stochastic gradient of all weights

and biases
6: ṽθ (k) = β2̃vθ (k − 1)+ (1− β2) (∇θE)2

7: vθ (k) = max (vθ (k − 1), ṽθ (k))
8: θ (k + 1) = θ (k)− η

Qsoftplus(
√
vθ (k))

×∇θE
9: end for

∇bIIE = −
{
Re [e]

(
1− Re

[
ŷ
])
· Re

[
ŷ
]
+ iImi [e]

×
(
1− Imi

[
ŷ
])
· Imi

[
ŷ
]
+ jImj [e]

(
1− Imj

[
ŷ
])

·Imj
[
ŷ
]
+ kImk [e]

(
1− Imk

[
ŷ
])
· Imk

[
ŷ
]}

(10)

For the weight

wII = Re
[
wII
]
+ iImi

[
wII
]
+ jImj

[
wII
]
+ kImk

[
wII
]
,

we have:

∇wIIE =
∂ E

∂Re
[
wII
] + i ∂ E

∂Imi
[
wII
]

+j
∂ E

∂Imj
[
wII
] + k ∂ E

∂Imk
[
wII
] (11)

∇wIIE = −h
∗
s · ∇bIIE (12)

For the bias term,

bI = Re
[
bI
]
+ iImi

[
bI
]
+ jImj

[
bI
]
+ kImk

[
bI
]
,

we have:

∇bIE =
∂ E

∂Re
[
bI
] + i ∂ E

∂Imi
[
bI
]

+ j
∂ E

∂Imj
[
bI
] + k ∂ E

∂Imk
[
bI
] (13)

∇bIE = −
{
(Re [h] > 0)× Re

[
∇wIIE · w

II∗
]

+i (Imi [h] > 0) × Imi

[
∇wIIE · w

II∗
]

+j
(
Imj [h] > 0

)
× Imj

[
∇wIIE · w

II∗
]

+ k (Imk [h] > 0)× Imk

[
∇wIIE · w

II∗
]}

(14)

For the weights,

wI = Re
[
wI
]
+ iImi

[
wI
]
+ jImj

[
wI
]
+ kImk

[
wI
]

we have:

∇wIE =
∂ E

∂Re
[
wI
] + i ∂ E

∂Imi
[
wI
]

+j
∂ E

∂Imj
[
wI
] + k ∂ E

∂Imk
[
wI
] (15)

∇wIE = −u
∗
· ∇bIE (16)

The real-valued RMSProp gradient update equation
given by [41]:

θk+1 = θk −
η

√
vθ (k)+ ε

×∇θE (17)

where vθ (k + 1) = β2vθ (k) + (1− β2) (∇θE)2, η, β2 ∈
[0, 1], θ can be any weight or bias of the QVNN and ε is
a small value that is set to equal 10−8. The moving average
parameter β2 should be strictly greater than 0 and less than 1.
RMSprop converges if β2 is large enough, i.e., near to one.
β2 = 0.999 was found to be optimal for most applications.
In the proposed forecasting model, we extend Eq. (17) into

the quaternion domain and equip it with a softplus activation
function. The softplus RMSProp gradient update is computed
using [35]

θk+1 = θk −
η

softplus
(√

vθ (k)
) ×∇θE (18)

In this paper, we use a quaternion softplus function, which
has the same form as its real-valued analog and is given by

Qsoftplus
(√

vθ (k)
)
=

1
β
Q log

(
1+ exp

(
β
√
vθ (k)

))
= r0 + ir1 + jr2 + kr3 (19)

where Q log is the quaternion natural logarithm and is
defined as

Q log = log |q| +
qp∣∣qp∣∣ar cos x0|q| (20)

where
∣∣qp∣∣ = √

x21 + x
2
2 + x

2
3 is the magnitude of the imag-

inary component in the quaternion number q = x0+ ix1+

jx2+ kx3, and |q| =
√
x20 + x

2
1 + x

2
2 + x

2
3 is the magnitude of

the whole quaternion number. The parameter β(eq. 19) can
be any non-negative and non-zero real number.

The square root of a quaternion is computed using Euler
rotation angles [42] and is given by

(q)
1
2 = |q|

1
2 ·

((
cos

ϕ

2
cos

ϑ

2
cos

ψ

2
+ sin

ϕ

2
sin

ϑ

2
sin

ψ

2

)
+ i

(
sin

ϕ

2
cos

ϑ

2
cos

ψ

2
− sin

ϕ

2
sin

ϑ

2
sin

ψ

2

)
+ j

(
cos

ϕ

2
sin

ϑ

2
cos

ψ

2
+ sin

ϕ

2
cos

ϑ

2
sin

ψ

2

)
+ k

(
cos

ϕ

2
cos

ϑ

2
sin

ψ

2
− sin

ϕ

2
sin

ϑ

2
cos

ψ

2

))
(21)

where

[ϕ, ϑ, ψ]

=
1
2
·

 atan2
(
2x2x3 + 2x0x1, x20 − x

2
1 − x

2
2 + x

2
3

)
-asin (2x1x3 − 2x0x2)

atan2
(
2x1x2 + 2x0x3, x20 + x

2
1 − x

2
2 − x

2
3

)
 (22)

We use quaternion divisions to divide the quaternion gra-
dient ∇θE by the term Qsoftplus

(√
vθ (k)

)
. The quater-

nion division of a quaternion number S is computed using
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1
/
S = S∗

/
SS∗ = S∗

/
|S|2. The quaternion weights and

biases are initialized as random uniformly distributed unit
quaternions.

Network parameters η, β2 and β can be tuned using
hyperparameter optimization algorithms such as grid search,
random search [44], and Bayesian optimization [45]. In our
experiments, we used η = 0.001, and β2 = 0.999, the values
recommended in [35].

The performance of the network is strongly influenced by
the number of neurons in the hidden layer and the parameter β
(eq. 19). The relationship between these two parameters is
studied in detail in Section III.

C. PROPOSED FORECASTING METHOD
The proposed forecasting method uses a training stage,
where the developed system is trained, and a testing stage
where the developed system is used to forecast wind speed
values. These stages are summarized below.

1) TRAINING STAGE
1) Obtain a window of n wind speed measurements. This

window represents a single training sample. In our
experiments, we used a value of n = 100.

2) The SWT with two decomposition levels is applied to
the wind speed values (Fig. 2).

3) Use the SWT coefficients representing the last sample,
i.e., sample n, to train a QVNN to forecast the SWT
coefficients representing the next sample n + 1.

4) Apply the inverse SWT to a vector composed from the
SWT coefficients predicted in step 3 and concatenated
with the past n coefficients.

5) Use the (n + 1)th value of the inverse SWT output as
the predicted wind speed value.

6) Compute the mean squared error between the actual
and predicted wind speed values.

7) Update the network parameters.
8) Shift the training window by one sample to obtain a

new vector of wind speed measurements and iterate
until the desired number of epochs is achieved or the
mean squared error is below or equal to 0.001.

2) TESTING STAGE
1) Obtain a vector of n past wind speed samples

(100 samples in our case).
2) Use the pretrained QVNN to forecast the SWT coeffi-

cients representing the next sample n + 1 based on the
SWT coefficients representing sample n.

3) Apply the inverse SWT to a vector composed of the
SWT coefficients predicted in step 2 and concatenated
with the past n coefficients.

4) The predicted wind speed value is the (n + 1)th value
of the inverse SWT output vector.

D. EVALUATION CRITERIA
The model’s performance is evaluated using the root mean
squared error (RMSE), the mean absolute error (MAE), and

the mean absolute percentage error (MAPE). These metrics
are given as follows:

RMSE =

√√√√ 1
N

N∑
k=1

(
yk − ŷk

)2 (23)

MAE =
1
N

N∑
k=1

∣∣yk − ŷk ∣∣ (24)

MAPE =
100%
N

N∑
k=1

∣∣∣∣yk − ŷkyk

∣∣∣∣ (25)

where yk is the k th sample value in y, ŷk is the kth forecasted
value, and N is the total number of samples.

III. RESULTS AND DISCUSSIONS
To evaluate the proposed QVNN-SWT-SRMSProp model,
we use four wind datasets, three of which are obtained from
theMERRA-2 project for three different areas in China: Peng
Lai, Hebei, and Inner Mongolia [46]. The fourth dataset is
a real-world wind speed dataset provided by Meteorological
Terminal Aviation Routine (METAR) [47].

A. CASE STUDY I: FORECASTING WIND SPEED AT
THREE SITES IN CHINA
This example investigates the developed system’s perfor-
mance on data from three different areas in China: Peng Lai,
Hebei, and Inner Mongolia. The real-valued neural network
(RVNN) or the so-called multilayer perceptron, complex-
valued neural network (CVNN), the long-short term mem-
ory (LSTM) network, and quaternion-valued neural networks
(QVNN) are considered for comparison purposes.

The stopping criteria are either a root mean squared error
less than 0.001 or a number of epochs higher than 100. The
data are sampled at a standard height of 10 meters, with a
temporal resolution of 10 minutes.

Wind speed values sampled at the standard height are first
extrapolated to values at the hub height using the following
empirical power law [48]:

v
v1
=

(
h
h10

)α
(26)

where v1 and v are the wind speeds at the standard height
h10 = 10 meters and the hub height h in meters, respectively,
and α is the roughness factor equal to 1/7 [48].

By substituting h = 50 meters and the measured wind
speed data at the standard height of 10 meters into Eq. (26),
the wind speed values at the hub height are obtained. The
wind speed data was time-averaged over an hour and time-
stamped with the central time of the interval, starting at
00:30 UTC [46]. Wind speed data for the three areas were
obtained from May 15, 2019, to May 15, 2020. The first nine
months of data (i.e., May 15, 2019, to Feb 15, 2020) are used
to train the networks, and the remaining three months of data
are used to validate the network’s performance.
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TABLE 1. Performance of the proposed forecasting method at three Chinese sites: Peng Lai, Hebei, and Inner Mongolia.

Wind speed data were scaled to be in the range of 0.1-0.9.
The quaternion weights and biases were initialized as random
uniformly distributed unit quaternions.

We first studied the effects that the parameter β and the
number of hidden neurons have on the performance of the
developed model. We trained the developed system on wind
speed data from the Inner Magnolia region using numbers of
hidden neurons that varied between 5 and 200. In addition,
we tested the performance of the forecasting network using
different values of the parameter β = {0.1, 0.5, 1, 5, 50,
100, 500, 1000}. The results are shown in Fig. 3, where one
can observe a surface of multiple groups of local minima
that are close in magnitude at β values between one and
five. The overall minimum in terms of MAE (MAE= 0.056)
and RMSE (RMSE = 0.90) is achieved using β = 5 and
110 neurons. The MAPE value at these parameters is close
to the MAPE global minimum. This pair of values will be
used in the remaining experiments in this paper. In addition,
we tested different wavelet families and the Haar wavelet
achieved the best results, so we use it in all experiments.

The results from the three sites are presented in Table 1,
in which we can see that our model outperforms all other
models in all metrics. In this table, methods that don’t use the
SRMSProp algorithm are optimized using SGD (i.e., a fixed
learning rate). We would like to note CVNN-SWT results
indicate overfitting, and this can be fixed by reducing the
number of hidden neurons n is less than or equal to 60. The
performance of the proposed system at this setting remained
better than the other forecasting models.

In general, models that use the stationary wavelet trans-
form and the SRMSProp optimizer outperform the remaining
methods. Tables 2 and 3 present the results obtained by the
proposed model with and without the quaternion softplus
RMSProp component. The tables show that the addition of
the softplus function reduced overfitting when the number
of neuron n = 110 (Table 2), and significantly improved the
results when n = 10 (Table 3).
Comparing the proposed model with LSTM-SWT-

SRMSProp, which is the model that produced the clos-
est results, the proposed QVNN-SWT- SRMSProp model
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FIGURE 3. The effect of the parameter β and the number of hidden neurons on the performance of the developed
model as measured by (a) MAE, (b) MAE (c) MAPE.

TABLE 2. The effect of the softplus quaternion RMSProp optimization
method on the performance of the proposed model with 110 hidden
neurons.

improved the MAE, MAPE, and RMSE by (0.06-0.03)/
0.06 = 50%, (2.07 – 1.25)/2.07 = 40% and (0.09-0.06)/
0.09= 33%, respectively, in Peng Lai. In Hebei, the proposed
model improves the MAE, MAPE, and RMSE predictions by
66%, 54%, and 63%, respectively, compared with LSTM-
SWT-SRMSProp, the closest performing model. In Inner
Mongolia, the proposed model improves the MSE, MAPE,
and RMSE predictions by 45%, 44%, and 47%, respec-
tively, compared with the LSTM-SWT-SRMSProp model.
Fig. 4 shows the validation part of the actual and forecasted
wind speed outputs and the corresponding error between
them at the Peng Lai site. A zoomed-in view is shown
in Fig. 5, in which one can see the performance of the
proposed method compared to the SRMSProp optimized
RVNN-SWT model.

The proposed model provides better forecasts in regions
with smooth transitions, and the error increases in regions

TABLE 3. The effect of the softplus quaternion RMSProp optimization
method on the performance of the proposed model with 10 hidden
neurons.

with high-frequency content. Similar observations can be
observed in the results from Hebei and Inner Mongolia
in Fig. 6 and Fig.8.

A zoomed-in comparison between the proposed model
and its real-valued counterpart for the Hebei and Inner
Mongolia sites is presented in Fig. 7 and 9. The proposed
model outperforms the equivalent RVNN-SWT-SRMSPRop
model.

Bar graph plots comparing the proposed model with other
SRMSProp models in terms of the MAE and RMSE are
shown in Fig. 10. The proposed model offers the best
wind speed forecasting predictions among the presented sys-
tems. This figure indicates that for all sites, the introduction
of the SWT improves the correlation values between the
measured and forecasted time series and produces outputs
with close standard deviation and less root mean square
difference.

VOLUME 9, 2021 127363



L. Saad Saoud et al.: Wind Speed Forecasting Using SWT and Quaternion Adaptive-Gradient Methods

FIGURE 4. Actual and forecasted wind speed using the
QVNN-SWT-SRMSProp learning algorithm for the Peng Lai site, and the
error between the actual and forecasted wind speed.

FIGURE 5. A zoomed-in view of the actual and forecasted wind speed
using the QVNN-SWT-SRMSProp learning algorithm at the Peng Lai site.

FIGURE 6. Actual and forecasted wind speed using the
QVNN-SWT-SRMSProp learning algorithm at the Hebei site, and the error
between the actual and forecasted wind speed.

B. CASE STUDY II: METEOROLOGICAL TERMINAL
AVIATION ROUTINE DATASET
This experiment uses a dataset collected from 57 East Coast
stations, including Massachusetts, Connecticut, New York,

FIGURE 7. A zoomed-in view of the actual and forecasted wind speed
using the QVNN-SWT-SRMSProp learning algorithm at the Hebei site.

FIGURE 8. Actual and forecasted wind speed using the
QVNN-SWT-SRMSProp learning algorithm at the Inner Mongolia site, and
the error between the actual and forecasted wind speed.

FIGURE 9. A zoomed-in view of the actual and forecasted wind speed
using the QVNN-SWT-SRMSProp learning algorithm at the Inner Mongolia
site.

and New Hampshire weather forecasts provided by the
Meteorological Terminal Aviation Routine (METAR) [47].
This dataset consists of 6361 data points that are not incor-
porated into a standard grid and have an hourly frequency.
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FIGURE 10. Bar graph of the results achieved by SRMSProp methods at the (a) Peng Lai site, (b) Hebei site, and (c) Inner Mongolia site.

TABLE 4. Performance of the proposed forecasting method on the METAR
dataset.

We use 5700 samples to train the networks, 300 samples for
validation, and 361 for testing. This setup allows comparisons
with the existing methods in the literature. The data were
measured every 6 h, and the goal was to forecast each hour
until the next measurement.

We use three widely used prediction models for
comparison, namely, the persistence model, multilayer per-
ceptron (MLP), and the long-short term memory (LSTM)
network. In addition, we compare the performance of the
developed system with other recently published wind speed
forecasting models in the literature. These models are: deep
learning-based spatiotemporal forecasting (DL-STF) [47],
conventional neural network (CNN) [49], learnable inputs-
local weights-CNN (LI-LW-CNN) [49], predictive deep con-
volutional neural network (PDCNN) [50], a combination
of a CNN with a fully connected layer (FC-CNN) [50],
end-to-end model (E2E) [51], predictive spatiotempo-
ral network (PSTN) [52], CNN with coordinate trans-
form (CoordConv) [53], and convolutional LSTM network
(ConvLSTM) [54].

The METAR case results are summarized in Table 4.
We computed the Persistence,MLP, and LSTMmodels; other
results are from [47]. We can see that the proposed model
outperforms all other forecasting strategies in both evaluation
metrics.

The proposed QVNN-SWT-SRMSProp improves the
MAE and RMSE by (1.4920 - 1.063) /1.492 ≈ 28.8% and
(1.106 – 0.783) /1.106≈ 29.2%, respectively when compared

FIGURE 11. Bar graph of the results presented in Table 4.

with the LI–LW–CNN, which is the model that produces the
nearest results to the proposed model.

A bar graph comparing the proposed model with the
remaining models in terms of the MAE and RMSE is shown
in Fig. 11.

Despite the effective results achieved by the proposed
SWT-QVNN-SRMSProp wind speed forecasting model,
we discuss two limitations of the proposed approach.

First, our proposed system is learning-based and may fail
when faced with circumstances not observed during training.
One potential way to alleviate this issue is to dynamically
update the model with new training data in an attempt to
increase the size and variability of input data. The second
limitation is that our proposed model utilizes quaternion mul-
tiplications that can slow the training process.

Computing the Hamilton product of two quaternion neu-
rons requires 28 operations while a single multiplication
operation is required to multiply two real neurons [55]. In our
experiments, we observe that training a single epoch in a real-
valued neural network requires approximately 0.3 seconds
and 102.6 seconds in the equivalent quaternion-valued neu-
ral network. This problem can be mitigated by devel-
oping efficient GPU-based implementations of quaternion
multiplications.
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In this work, the proposed forecasting model relies only
on wind speed data, but other weather parameters like tem-
perature or humidity can be used to improve forecasting
performance.

IV. CONCLUSION
In this paper, a novel approach for forecasting wind speed
is presented. The developed model uses the stationary
wavelet transform and quaternion-valued neural networks.
Furthermore, a novel quaternion version of the softplus
RMSProp learning algorithm was developed to improve the
proposed model’s prediction accuracy. Four real-world wind
prediction datasets were used to demonstrate the excellent
forecasting performance of the proposed model.

Experimental results indicate that the proposed model can
effectively forecast wind speeds, particularly over the short
term. Therefore, the proposed model is reliable and useful for
predicting wind speeds in modern power systemmanagement
systems.
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