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ABSTRACT In the monsoon season, sudden flood events occur frequently in urban areas, which hamper the
social and economic activities andmay threaten the infrastructure and lives. The use of an efficient large-scale
waterlogging sensing and information system can provide valuable near real-time disaster information to
facilitate disaster management and enhance awareness of the general public to alleviate losses during and
after flood disasters. Therefore, in this study, a visual sensing approach driven by deep neural networks
and information and communication technology was developed to provide an end-to-end mechanism to
realize waterlogging sensing and event-location mapping. The use of a deep sensing system in the monsoon
season in Taiwan was demonstrated, and waterlogging events were predicted on the island-wide scale. The
system could sense approximately 2379 vision sources through an internet of video things framework and
transmit the event-location information in 5 min. The proposed approach can sense waterlogging events at a
national scale and provide an efficient and highly scalable alternative to conventional waterlogging sensing
methods.

INDEX TERMS Deep neural network, internet of video things, urban flood, urban waterlogging, visual
sensing.

I. INTRODUCTION
In recent years, increasingly severe weather phenomena have
been observed worldwide. The occurrence of urban floods
has become more frequent owing to short-term local heavy
rainfall events. Such heavy rainfall events may lead to flood-
ing and subsequently incur damages in populated urban areas,
in which the highly developed plain areas are even more
vulnerable [1]. The inundation situation is further exacer-
bated with sprawling compact blocks of buildings and the
ever-growing of concrete grounds, in which such complexity
of the urban terrain results in the reduction of the drainage
efficiency [2].

Even modern properly planned cities, with the protec-
tion of extensive drainage systems and large-scale pumping
stations, are prone to flooding under torrential downpours.
Sometimes, the range of such flooding might be merely
limited to a few blocks, the dense urban road network can
still be disrupted, which may impede economic activities,
further impacting on residents’ lives. Improving the flood
control capability of the internal waters through hardware
construction incurs prohibitive costs and such structures may
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not be adequately effective against unpredictable extreme
weather. Evolving with practical experiences, traditional dis-
aster management strategies have gradually transformed into
pre-disaster prevention and disaster reduction strategies with
an emphasis on the development of avoidance capabilities to
mitigate disasters. Natural disasters cannot be fully avoided.
Nevertheless, the advance of modern information and moni-
toring technology provides opportunities to alleviate further
the possible impact of disasters [3], [4].

To reduce the damage caused by such flood events and
provide effective disaster response and emergency plans, it is
essential to quickly analyze the data collected from the disas-
ter area [5]. There aremany sources fromwhich observational
data can be collected. They include gauge data [6], [7], remote
sensing data [8], [9], and field data collection [10]. Onsite
field data collection methods include sending people to the
disaster-stricken area to investigate and record data after the
flood event.

Observational gauge data are provided by onsite gauges
that apply direct physical measurements to provide real-
time, accurate readings of the height and flux of water
for the monitored locations. For clarity, a real-time system
should return results in milliseconds to seconds, whereas a
near real-time system returns results in seconds to minutes.
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However, such gauges are typically sparsely distributed
owing to the limitations of installation location, range, main-
tenance, survival rate after floods, etc., resulting in extremely
sparse observations. Consequently, these gauges often do not
provide sufficient information to map the flooded area [11].

Remote sensing technologies such as satellite imagery
and aerial imagery are also widely used for measuring the
wide-area water level and scope for defining a flooded area.
An advantage of this technology is that it remotely acquires
data of absolute water elevations, which is helpful for the inte-
gration of flood management and for environmental science
research. However, many satellites have restrictions on their
orbital cycles and inter-track spacing of satellite movements,
which make them less useful for immediate information and
continuous monitoring [12]. Aerial imagery is another com-
mon data source, but it also depends on weather conditions
and is expensive. Moreover, the relevant information of a
flooded area needed from remote imagery can be easily
blocked by buildings in urban areas.

The global popularity of low-cost sensors, especially
vision sensors, as well as the rise of the Internet and the
improvement of communication quality, has opened up the
possibility of large-scale image monitoring. The utility of
visual sensing has been increasingly recognized when using
‘‘cameras as sensors’’ to capture real-time information during
and immediately after floods [5].

The visual sensing approach is widely applied in multiple
domains such as surveillance, traffic, disaster management,
and assisted living [13]–[15]. Smart cameras exhibit a broad
coverage compared to that of water level sensors (i.e., ultra-
sonic distance sensors, pressure sensors, manhole sensors,
and sewerage sensors) and can facilitate the assessment of
the flood impact on the society. Traditional flood sens-
ing models employ landmarks and rule-marks as reference
objects to identify the flood extent boundaries by computing
the edge and segments; however, this process is labor-
intensive and time-consuming for a national-scale applica-
tion [12], [16]. Although certain methods can automatically
compute the intersections of the flood marks, site-specific
calibration and measurements must be realized and, thus,
the application of these approaches to numerous cameras is
challenging [17], [18].

To achieve visual sensing on a specific flood objective from
remote scene images, computer vision techniques (including
machine learning methods) are traditionally used for estimat-
ing water level [19], water region [11], and the fluctuating
trend [12]. However, these computer vision-based methods
all need human intervention to a certain extent to define,
select, extract, and analyze the proper features of objects in
the sensing pipeline. In computer vision and image process-
ing, a feature is a piece of information about the content of an
image, usually about whether a certain region of the image
has certain properties.

In this context, a few cameras from a small district through
a small internet of video things (IoVT) or internet of cam-
eras (IoC) framework can be operated efficiently via a video

monitoring center. However, this practice requires specific
arrangements of space and equipment and on-duty staff,
which may not be available at the island-wide scale [11].
Consequently, it is essential to ensure rapid screening of
waterlogging with high automation and flexible control.
Under the technological and economic constraints, the use
of an intelligent visual sensing system with a large-scale
capability is necessary.

To mitigate the damage caused by flood events and for
effective disaster response and emergency plans, the rapid
analysis of data collected from the affected area is essen-
tial. In recent years, with the rise of deep learning tech-
nology, especially in the application of image recognition,
remarkable breakthroughs have been made in the academic
community [20], [21]. Currently, image recognition is one
of the most successful areas of deep learning. The major
difference between deep learning of convolutional neural
networks (CNNs) and conventional machine learning (ML)
methods is that traditional ML methods rely on hand-crafted
features for image classification, so the corresponding results
will be profoundly affected. In particular, the designed image
features are usually ideal and simple, and are limited to
human choice, making them difficult to use in complex and
changeable content image applications. In contrast, the deep
learning covers the image features extracted by its convolu-
tional neural network architecture, and generates a multiplic-
ity of specific features through numerous image samples in
the training phase. These trained specific features and other
characteristics summarized from images in real life have
more uses than those designed by human experts. Therefore,
CNNs provide state of the art performance in image recog-
nition and are suitable for end-to-end applied recognition
applications [22].

Recently, CNNs have been innovatively applied in flood
sensing research. In particular, a CNN model has been used
to classify input camera scenes as foggy, stained or normal,
to allow the visual sensing system to select an appropriate
algorithm to segment the flood region [23]. Moreover, trans-
fer learning of CNNs has been implemented to infer the water
level by using the lasso regression method, and satisfactory
results have been obtained [24]. In addition, a CNN can be
trained with multiple inputs and fed with a flood image and
relative absolute water level of the image as a pair to output
thewater level-ranking [25]. Thewater level-ranking involves
mapping to the height at the centimeter level. However, these
approaches may require the retraining of the neural network
and performing regression for each camera. Moreover, for
separate training inputs, the ground truth of the absolute water
level for every image must be provided, which is usually
derived from manual labeling. Thus, the scalability of this
approach is limited.

Another approach to estimate the water level is to consider
the immersion of ubiquitous objects, for which the height is
known, as a reference. This kind of approach involves two
subcategories: object detection (OD) and semantic segmen-
tation (SE), which are based on different CNN techniques.
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Using the OD method, the reference objects can be detected
from the videos of the flood and non-flood periods. Subse-
quently, the height difference between the detected reference
object and standard reference object can be used to estimate
the flood level [26]. The reference objects can be pavement
fences, ashbins, post boxes, traffic buckets [27], people or
bicycles [25]. The main limitation of these approaches is
that the above-mentioned specific reference objects must
be present in the video footage. Moreover, human effort is
required to calibrate the height of each reference object or
create an annotation for the training data and test data in
advance.

In the extension method, SE is applied to detect the
reference object at the pixel level, which can provide an
approximation contour rather than an outlier bounding box.
Moreover, this method can be used to estimate the water
depth based on the reference object with a known height (e.g.,
bicycles [28] and tires [29]). However, such objects must be
visible in the scene to extract the information. In particular,
SE can be used to obtain the number of pixels in the water
body instead of the reference objects to infer the trend of the
flooding level [30]. This approach does not refer to the real
size of the reference, which may reduce the preparation effort
to a certain extent. However, the flood pixel ratio, which is
used as a signal, is susceptible to factors such as the camera
displacement, changes in the scene content, and objects (such
as persons and vehicles) entering and leaving the scene. Sim-
ilar to the previously mentioned image classification method,
the SE method can be used as a flood detector [31]. However,
the OD and SE processing workload is significantly higher
compared with that of the image classification methods.

Three main types of approaches are involved in
CNN-based flood sensing research. These approaches have
obtained promising results, and although certain limitations
remain, considerable progress has been attained in intelligent
visual sensing. In this context, near real-time information of
the flood event and transparency of information play key
roles in disaster impact management and tolerance. Thus,
to realize the near real-time sensing and broadcast of urban
floods, it is necessary to integrate the cross-field integration
of sensor networks, flood cognitionmethods, and information
technology.

Considering these aspects, this study was aimed at devel-
oping a large-scale cognitive sensing system driven by deep
learning techniques and information and communications
technologies to perceive waterlogging through an IoC frame-
work at the island-wide scale (approximately 2.4k vision
sources). To promptly determine whether a flood event is
occurring in the scene, a flexible strategy of visual sensing
modules was used in the system. The main sensing module
applies a classification model (section III.C) to rapidly screen
the island-wide video source. This model does not require
retraining and regress for each camera, and no additional
annotation work is required except for the class label of the
image itself. Then, the on-demand module (section III.D)
employs the OD and SE models to grade and estimate the

water level, respectively. These models share the same train-
ing dataset to diminish the effort of data preparation and use
a unique universal reference to maximize the availability of
reference. The key contributions of this work include the
following:

(1) We integrate the deep learning approach within an end-
to-end cyber-physical system in scale.

(2) We use the Internet of Cameras to conduct large-scale
island-wide visual sensing experiments in real flood
events (which is the first such work to the best of our
knowledge).

(3) A GIS map and an instant notification are presented
to handle the dynamic flood events to provide users
with flexible and feasible awareness when waterlogging
occurs.

The remainder of this paper is organized as follows.
Section II reviews the relevant literature. Section III describes
the deep sensing system, including the data I/O, flood per-
ception modules, GIS mapping and notifications, and the
corresponding results. Section IV discusses possible direc-
tions for future work in the area. Finally, Section V presents
concluding remarks.

II. RELATED WORK
The focus of this work is the achievement of system-wise
near-real-time end-to-end flood-mapping services. As men-
tioned before, using deep learning to remotely sense flood
events from real-time ground-level images is still a relatively
new idea, and intelligent end-to-end flood-mapping systems
are also rare. In Table 1, we summarize those works that
are closely related to this study. As demonstrated in Table 1,
all related papers have sorted based on their sensing source
and publication date. It also shows whether they have imple-
mented the flood detection, water leveling, geographic map-
ping, and notifying or not, and we have marked them with a
‘‘v’’ mark and a ‘‘–’’ mark respectively. The last row of the
table belongs to the system proposed in this current study,

A. SENSING FROM CROWDSOURCED AND SOCIAL MEDIA
IMAGES
The convenience and versatility of smartphones have resulted
in the in situ information collected from crowdsourced or
crawled from social media (secondary sources) being fre-
quently used as input data for sensing floods [32], [33].

Witherow et al. [34] proposed a flood detection and water
level determination methodology that uses image process-
ing and photogrammetric methods to process photos from
smartphone cameras with volunteered geographic informa-
tion (VGI) that is then linked to a local terrain model.
Ning et al. [35] implemented a prototype screening system
to identify flooding-related photos from social media (e.g.,
Twitter, Facebook, and Instagram). Feng et al. [36] also used
social media posts with VGI and interpreted water level with
people contained in the images as a scale rule. These crowd-
sourced photos from smartphones that are associated with
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TABLE 1. Analysis of flood sensing applications against sensing sources.

their geographic locations can provide free, timely, and in situ
visual information about flood events to decision-makers.

Pereira et al. [37] focused on flood severity assessment
from crowdsourced social media photos with deep neural net-
works. Chaudhary et al. [25] focused on an automatedmethod
for predicting water level from social media images with
pairwise ranking. However, these works focused on flood
detection rather than flood mapping and further awareness
services.

However, as social media photos lack quality control,
the time and location of a flood event may not be correct.
Furthermore, the near-real-time aspect is dependent on the
immediacy with which the images are uploaded by the public.
Thus, although the people in the communitymay be able to go
deep into certain key locations and collect images from differ-
ent perspectives, there may be many uncertain quality factors
that affect the correctness of crowdsourced data. Moreover,
the distribution range and density of the observation points
cannot be ascertained in advance, which hinders the analysis
results and feasibility of the overall situation.

B. SENSING FROM IN SITU VIDEO STREAMING
Recently, directed real-time streaming video sources
(primary sources) that integrate image processing methods
and deep learning with CNN have been used to analyze the
live situation of flood development.

In earlier studies, Lo et al. [11], [12] combined real-
time streaming video and image processing methods to

automatically monitor the water level and extent of floods.
In addition, the continuous video frames can also be used
for this visual sensing method to clearly determine the
fluctuation of the water level. Filonenko et al. [38] used
background subtraction and color probability to divide the
flood region on roadway images. In a live camera approach,
Bhola et al. [16] used the size of bridges and the detected
water surface in the images to estimate the water level.
Further, Menon and Kala [39] used a region-based image
segmentation method (GrowCut) to detect the flood extent
and provide warning information by mobile app.

Deep CNNs are being more frequently used because
of their state-of-art performance. One such approach for
flood level trend monitoring with surveillance cameras
was reported by Moy de Vitry et al. [30], who used
U-net [43] to segment the water body and compute the pro-
portion of water-covered area over a series of video frames.
Son et al. [40] also used FNC-AlexNet to segment a flood
region from the pan-tilt-zoom (PTZ) cameras. Oga et al. [41]
proposed a method that combines patch processing and CNN
to classify the river state from images captured by a river
surveillance camera.

More recently, Jafari et al. [42] proposed a real-time water
level monitoring approach using images from live cameras.
They applied a deep learning-based semantic segmentation
algorithm to label the water body and reference objects (staff
gauge, pier) as a scale. Their proposed method was verified
via laboratory experiments and field experiments on two
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FIGURE 1. Overview of the end-to-end visual sensing system. The system acquired images from the physical world through a network of cameras and
provided the situation information of the island-wide flooding to the users.

urban rivers. They combine live cameras and deep learning
to achieve a timely processing flow, with primary focus on
the water level of urban rivers.

Although many studies have focused on CNN-based flood
sensing with the primary source being live cameras, studies
that are focused on system-wise end-to-end flood-mapping
from in situ IoC during floods, with near-real-time visual
sensing and announcement systems are still limited.

III. DEEP SENSING SYSTEM AND CASE RESULTS
An end-to-end visual sensing systemwas used to intelligently
and automatedly process the input from the physical world
and output the information to the users. The system was
expected to exhibit an enhanced data acquisition capability,
access the hidden modules, and broadcast the release flood-
ing information to users over-the-air. As shown in Fig. 1,
the proposed end-to-end visual sensing system involved two
main modules. The data pipeline performed the data acquisi-
tion, stream decode, and scene inference. Next, the informa-
tion pipeline compiled the inference outcome and deployed
the results to the information hub. Each sub-module in the
pipelines could operate in a cloud resource; in this study,
the two main pipeline modules were implemented in two
public clouds, namely, the Taiwan computing cloud (TWCC)
and AmazonWeb Services to optimize the network usage and
data transfer. This strategy could help retain the massive data
I/O inside the independent cloud and only transfer the pruned
outcomes to the subsequent cloud. The detailed function of
each sub-module is described in the following subsections.

A. INTERNET OF CAMERAS
Recent developments in vision sensors have led to their
widespread use in a variety of applications, such as video
surveillance, traffic monitoring, crowd counting, behavior
understanding, and flood detection. In Taiwan, the cam-
era networks are distributed island-wide for different pur-
poses. To realize traffic monitoring and ensure public safety,
the cameras are distributed in proportion to the human activ-
ity density and urbanization level. Consequently, the cam-
era density is lower in areas with a sparse population and

fewer public facilities in which the waterlogging may not
have a direct impact. In this study, several camera networks
that covered the high human activity areas were considered,
as shown in Fig. 2(a). To ensure an appropriate coverage
to sense the waterlogging distribution, 2379 camera sources
were used to provide the perception input of the physical
world. Several flood scenes obtained through this camera
network are shown in Fig. 2(b). These monitoring scenes
involve a highly complex environmental background and
multiple different view perspectives.Moreover, the resolution
and encoding format of the streams are varied because of
the different specifications of the camera networks. Table 2
lists the stream sources and the corresponding resolution and
encoding format. Each camera information of IoC including
streaming URL, geographic coordinates, and road section,
etc., is stored in SON format (please refer to the format of
a JSON object in the Appendix).

B. COLLECTION AND ENCODING OF THE IMAGE FROM
THE SCENE SOURCES
The module described in this section obtained real-time
surveillance images from the camera networks. Approxi-
mately 2379 CCTV real-time images were captured and
encoded to the JPEG format synchronously on the cloud
platform. Considering the numerous cameras to be processed,
a multiprocessing technique was used to capture streams in a
parallel manner. In particular, an efficient approach to acquire
large numbers of images is to use multiple processes to
execute the task calls asynchronously, in which each process
is responsible for a URL of the camera source to capture,
decode, and encode a frame from the video stream. Con-
sidering the uncertainties in the network and absence of the
source, each process is preset to capture the video stream for
15 s. Subsequently, the process is automatically stopped, and
the memory is released. In the true event trial, the collect
and decode module processed a camera network in less than
1min. In other words, the time interval between the individual
scenes can be less than one minute, which corresponds to
near-real-time simultaneous collection. After the complete
stream capture, the flooding sensing module in the next stage
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FIGURE 2. Island-wide internet of cameras (IoC). (a) Distribution of the cameras used in this study. The locations of
the cameras correspond to the human activity density. (b) Sample flood scene obtained from the IoC.

FIGURE 3. Image acquisition from the camera network. In the TWCC public cloud, each docker block represented a GPU container
involving multiple processes to capture the video stream. Next, each process accessed the IoC video stream through the internet to
obtain a real-time scene. In the current setup, the optimal number of query-and-decode processes was 256.

performed the scene recognition through the complete batch
of the images.

At this stage, the container computing service (CCS) of the
TWCCwas used as the public cloud. In particular, TWCC has
2,016 NVIDIA Tesla V100 32 GB GPUs. Each CCS can use
up to eight V100 GPU accelerators, with 32 CPU cores and
720 GB of memory. Fig. 3 shows the IoC scene collection

workflow and multiprocessing layout in the TWCC. Each
docker block represents a container in which multiple pro-
cesses are implemented to manage massive video streaming.

In this study, all the modules were deployed on a container
with aminimum set of oneGPU, four CPUs, and 90GBmem-
ory. According to previous experiments, the optimal num-
ber of processes was 256. Under this setting, the streaming
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TABLE 2. Specifications of the camera networks.

capture could be completed in one minute, and the complete
end-to-end workflow involving a round of image capturing
of the IoC and providing the final recognition information
required five minutes.

For the considered IoC scale, one CCS was sufficient
(processing for 2.4k cameras completed in five minutes).
However, the system can be efficiently scaled up to increase
the number of CCSs to account for an increased number
of cameras. Because image files corresponded to the largest
demand for the data storage, the simple storage service (S3)
cloud data repository was used as a high-performance file-
sharing space, and the decoded images could be automatically
input and output seamlessly among the cloud containers.
The shared S3 repository was created and maintained in the
TWCC for the decoded images, and the module config files
and outcome JSON files were stored in the local hyper-file
system in each container to ensure secure and efficient data
access.

C. FLOOD SENSING
Flood sensing involves efficiently screening thousands of
camera sources to promptly determine whether a flood
event is occurring in the scene. In this module, a CNN-
based image classifier was used to screen all the collected
scenes. If the input scene was classified as that involving

waterlogging, it was transferred to the next stage for flood
event mapping (III.D) and subsequently for waterlogging
notification (III.E).

1) URBAN FLOOD DATASET
To prepare the target domain data to train the neural net-
work, we divided 19,622 images into three labels, namely,
normal (15295 images), floods (3689 images), and unknown
(638 images). The images were recorded in all the locations
of the IoC during a real event. The validation set involved
20% (3924 images) of the training set and was not included
in the training process. The performance of the trained neural
network was evaluated through the validation set.

2) TRANSFER LEARNING FOR FLOOD INSTANCES
In practice, training a complete CNN from the initial state
requires a sufficiently large target dataset. However, most
such sets for a particular application are inadequate. In this
study, the data set contained scenes from specific normal,
waterlogging, and unknown situations under various weather
and light conditions. The complete CNNwas not trained from
the initial state, and a pre-trained model on the extremely
large ImageNet dataset was employed, which contained
1.4 million images and 1000 categories [20]. This pre-trained
model did not include the final fully connected layer, and a
fixed feature extractor was used for the flood scene dataset.
After fine-tuning, themodel was retrained using the new Soft-
max classifier through the new target dataset. This process
corresponded to transfer learning [44].

The key concept of transfer learning is to retrain the model
from the existing weights to new target classes [45], [46].
In this work, the source model was the MobileNet [47]
network pre-trained on the ImageNet dataset. The choice
of neural network architecture is based on accuracy density
(representing how efficiently the model uses its parameters)
and the need for super real-time performance (0.61∼3.34 ms
per image for MobileNet) [48]. MobileNet represents an
efficient model for mobile and embedded vision applications
and is based on a streamlined architecture that employs depth-
wise separable convolutions to build lightweight deep neural
networks. Therefore, this model is suitable for applications
that require the rapid screening of a large number of input
images. The source model retrained the final layer for the
new target dataset, whereas all the other layers remained
unchanged. Table 3 presents the MobileNet neural network,
which maintained the weight of the feature extractor and only
employed the new images from the target domain to retrain
the classifier. To automatically recognize scenes from the
IoC, the retrained neural network model was used as the flood
scene classifier.

This MobileNet was implemented by using Keras with a
TensorFlow backend and is based on pre-trained weights of
the ImageNet dataset. All images were automatically resized
to 224×224×3 pixels by the input layer when being fed to the
model. The model training was performed on one NVIDIA
Tesla V100 with hyperparameters as follows: trained for
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FIGURE 4. (a) Training log with accuracy and loss for the training and evaluation dataset, and (b) normalized confusion matrix for each
class. Note that the predicted accuracy of the normal class (central) was 0.99707 (automatically rounded to 1).

TABLE 3. Architecture of MobileNet. Each layer remains unchanged
expect for the top layer (Classifier), which is modified through the new
classes for the target domain.

500 epochs using the Adam optimizer [49] with an initial
learning rate of 1e-2; the learning rate was decreased by a
factor of two if the validation loss had no improvement for
5 epochs (patience = 5 epochs) until the lower bound of the
learning rate of 1e-8; the batch size was 32; and the early
stopping callback with the patience of 10 epochs. The final
model weights were taken from the training epoch with the
best value of the monitored validation loss.

After the training process, each image of the training
dataset was fed to the network to derive the predictions. Next,
the predictions were compared to the actual labels to update
the weights of the final layer through the back-propagation
process. Finally, this model was retrained with the flood

dataset to distinguish among different scenes. Fig. 4(a) shows
the results for the training and validation set along with the
confusion matrix. The model trained for 388 epochs, and
the training and validation accuracies were 96% and 97%,
respectively. The training process was terminated via an early
stopping scheme when the validation loss did not decrease
in the last 10 epochs. Fig. 4(b) shows the confusion matrix
for the classification results of the trained model over the
validation dataset.

The trained model was used to identify the IoC scenes.
Several representative results are shown in Fig. 5, in which
the top, middle, and bottom rows correspond to the nor-
mal, flood, and unknown scenes, respectively. The unknown
scenes include the scenes with signal loss, harsh noise, dam-
aged video streaming, and incorrect field of view. To illustrate
the proportion of each class feature, the confidence value is
displayed on the upper left of the figure as a bar graph. The
length of the bar graph represents the confidence value in
percentage points. The background features of the flood scene
are similar to those of the normal scene; therefore, the con-
fidence value is partially biased toward the normal class.
However, the class of the scene can still be distinguished
through the magnitude of the confidence value.

3) VISUAL EXPLANATION OF THE MODEL DECISIONS
Usually, the accuracy and loss of the training and validation
can adequately represent the model (trained networks) per-
formance for a specific dataset. The accuracy/loss metrics are
simple and can directly represent the model’s ability to iden-
tify scenes with different categories. However, the decision
behavior of the trained model is implicit, and a human cannot
easily understand themechanism adopted by a neural network
model to attain the outcome. To clarify the behavior of the
model inference, the gradient-weighted class activation map-
ping (Grad-CAM)method [50], [51] was used to demonstrate
the role of feature judgment, that is, the process in which
model seeks the decision basis. Fig. 6 presents theGrad-CAM
heatmap for each class example. The examples demonstrate
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FIGURE 5. Example of the scene recognition result from the model. The top, middle, and bottom rows show the results for the
normal, flood, and unknown scenes, respectively. The label bars represent the confidence scores for each class (in percentage
points).

FIGURE 6. Example of the decision attention of the trained model. The upper and lower rows show the input scene and
Grad-CAM heatmap for the normal, flood, and unknown classes, respectively.

that in most cases, the model focuses more on the related
regions from which the scene class can be inferred. Further-
more, to confirm and explain how to learn the right region for
a specific class’s features with the trained model, Fig. 6(a)

shows that the ‘‘Normal class’’ focused on the dry area of
the road, Fig. 6(b) shows that the ‘‘Flood class’’ focused
more attention on the waterlogged areas, and Fig. 6(c) shows
that the ‘‘Unknown class’’ focused on unrelated background
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FIGURE 7. Tire marking and size, and the relationship to flood height.
This tire marking example of 215/60/R16 represents the width, aspect
ratio, radial construction, and rim diameter. Further, to grade the water
level, the scale relationship between wheel (Tpx) and flood (Fpx) is
defined as Fh.

objects. Moreover, the unknown class contained images other
than normal and flood class. Most of them were low-quality
images with much noise, unstable or interrupted streaming
signals, and the wrong field of view. Therefore, Fig. 6(c)
shows a few abnormal samples outside the normal and flood
class. The first two are signal sources interruption, the third
is the wrong field of view, and the last two samples are
poor image quality. These images are likely to influence the
performance of normal/flood judgment, hence they are used
as the third category for discrimination.

D. PLUGGABLE WATER LEVEL SENSING MODULES
As presented in the introduction, the current ‘‘ruler-free’’
water level estimation methods have their own limitations
(proper shooting angle, field of view, distance between cam-
era and reference object, reference object existing in the
scene, scale calibration of reference object, etc.) and various
uncertainties could affect the availability of water level esti-
mation (image quality, visibility of reference object, actual
size of reference object, etc.). In the proposed system, these
water level estimation methods are only used in a small
number of specially selected monitoring locations, owing to
the above-mentioned reasons. In order to give some context
to the ‘‘ruler-free’’ water level sensing methods, we present
a brief overview of our implementation, which is based on
object detection and segmentation networks.

1) UNIVERSAL REFERENCE
In large-scale visual sensing, the cost may too high to set
up the water level ruler for most of the cameras [17], [18].
Furthermore, it is also difficult to find a consistent and com-
mon object as a reference ruler in all scenes. Therefore, these
conditions limit the availability of vision-based water level
estimation.

Considering a reference object that is available in most
urban scenarios (a universal reference), and to avoid repeated
measurement and calibration of the various reference objects,
this study uses the wheel of a sedan as the reference for the
fast flood status grading and estimation of the water level.
The main size mark definition of a tire is shown in Fig. 7.

The aspect ratio (H/W) defines the relationship between tire
width and sidewall height in percentage (excluding rim diam-
eter, D). The higher the aspect ratio, the higher the height of
the tire. As shown in (1), the wheel diameter can be calculated
from the size marking. We need to know the rim diameter and
the tire height in order to calculate the diameter of the wheel.
The rim diameter is already given by size marking. The tire
height (tire sidewall) can be calculated from the aspect ratio.
For example, a tire with the size marking 215/60R16 has the
following:
1) tire width (Wtire) of 215 mm,
2) aspect ratio (Aratio) of 60 %,
3) radial layers (R),
4) rim diameter (D) of 16 inch (40.64 cm),
5) tire height (H) of 129 mm (215 mm × 60%).
The diameter of the wheel (Dwheel = 66.44 cm) as follows:

Dwheel = D+ (Wtire × Aratio × 2) (1)

where D is the rim diameter in inches, Wtire is tire width
in centimeter, and Aratio is the aspect ratio of the tire in
percentage (%).

The geometric relationship between the water level and the
wheel is also shown in Fig. 7, where
1) Fpx is the depth of flooding in pixel,
2) Tpx is the entire height of the wheel in pixel,
3) T′px is the height of the non-submerged part of the wheel

in pixel.
Thus, Fh is the water level in unit of wheel range from zero

to one, and can be obtained from

Fh = Fpx/Tpx = 1− T′px/Tpx (2)

where FL is the water level in centimeter, and can be obtained
from

FL = Fh × Dwheel (3)

The goal is to take into account the universality of the car
itself and, in general, the fact that the common wheel size of a
car is about 14 inches to 18 inches, with a maximum possible
wheel diameter range of about 55 to 75 cm. Fig. 8 shows
the possible wheel diameter range under different tire speci-
fications. According to Taiwan’s local disaster compensation
regulations, a flooding level greater than 50 cm is the basis for
disaster compensation1; thus, half the height of the wheel is
used as the preliminary classification rule for rapid warning.
Therefore, the tires are especially suitable as a reference for
the fast grading of floods.

2) FLOOD GRADING AND FLOOD LEVEL ESTIMATION BY
OBJECT DETECTION
This module uses the YOLO [52] network for rapid grading
of the flood level and is treated as a double check module
for the previous output of the flood detection network. The
concept of grading is to use the tires of a sedan as the scale
reference to estimate the flood level indirectly.

1 Disaster Prevention and Protection Act (https://law.moj.gov.tw)
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FIGURE 8. Wheel diameter range according to size parameters. For
simplicity, to determine the flooding level for alarm, this study assumed a
215/60R16 (Dwheel = 66.44 cm) tire for the sedan type vehicle.

Flood grading utilizes the vehicle detection model and the
wheel detection model. The vehicle detection model uses
the pre-trained model from the original paper [52], and in
the detection results objects other than the vehicle are filtered
out. Then, the wheel detectionmodel detects the wheels in the
bounding box of the detected vehicle. Note that the reason for
not directly detecting the wheels is to avoid the reduction of
the detection efficiency when the wheels are submerged more
than 2/3. Furthermore, using the bounding box of the detected
vehicle limits the relative position of the wheels to where they

can be used as a basis for exception judgment when the flood
exceeds the wheels or a flood does not exist. Additionally,
only performing wheel detection in a limited bounding box
can reduce the amount of calculation and speed up processing
performance.

There are only two types of images in the flood grading
dataset to train the wheel detection model (also based on
the YOLO): flooding above 1/3 of the wheel (84 instances)
and no flooding (307 instances). An example of the train-
ing set with the bounding box of ground truth is shown in
Figs. 9(a) and (b). Consequently, the wheel detection model
outputs the direct grading of a flood that indicates whether
the flooding is higher than 1/3 of the wheel or not.
Figs. 9(c) and (d) show the results of the flood grading from
the wheel detection model. Note that the confidence value
shown in Figs. 9(c) and (d) is not used as a basis for deter-
mining the flooding height. It is only used for grading scenes
as flood or flood-free.

The tire detection result also can be used to calculate
the flooding level in centimeters (FL). As shown in Fig. 7,
the flooding level in pixel (Fpx) is simply obtained by the
upper bound of water inside the bounding box of the detected
wheel, and Tpx is the height of the bounding box in pix-
els. Therefore, the Fh is the flood level in the unit of the
wheel obtained from (2). The value of Fh is between zero
to one and represents the proportion of the water level to
the wheel height. While the flood level in the unit (Fh) is
estimated from the wheel detector, the flood level (FL) in
centimeter is obtained by multiplying by the wheel diameter
Dwheel, as in (3). However, the wheel diameter varies with the

FIGURE 9. Result of flood grading by wheel reference. The training set contains two identical types of (a) flood-free
and (b) flood wheel instances. (c) Detection result of a normal scene. (d) Detection result of a waterlogged scene. The
labels and bounding boxes represent the normal tire (green) and flooded tire (red) and its confidence scores
respectively. (e-f) Additional flood levels in unit (Fh) based on the wheel, and the flood level in centimeter (FL) are
(e) left: 38.5 cm, right: 37.2 cm and (f) left: 26.5 cm, right: 32.2 cm based on 215/60R16 (Dwheel = 66.44 cm). Note that
the annotation in (e-f) is ‘‘flood: (confidence score) – (Fh).’’
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FIGURE 10. Results of wheel segmentation and water level estimation. (a) Wheel segmentation results from
various relative distances and perspectives to the objects. (b-c) Case of water wave occluding a part of the wheel
as the car passes through the water at a relatively high speed. (d-g) Water level estimation of (b-c) according to (2);
then, FL = 1− (T′px/Tpx)∗Dwheel, when Dwheel = 66.44 cm, resulting in (d) FL = 10.5 cm, (e) FL = 28.4 cm,
(f) FL = 23.7 cm, (g) FL = 9.9 cm.

specifications and will affect the final FL value. Therefore,
this module reserves Dwheel as an input-able parameter to
meet the present conditions of different regions or countries.
The most common tire size in Taiwan was chosen as the basis
of the calculation. In the present results, the default is set
to 215/60R16 (Dwheel = 66.44 cm) tire for the sedan type
vehicles (as shown in Fig. 8). The experimental results of the
flood level in units (Fh) are shown in Figs. 9(e) and (f).

3) FLOOD LEVEL ESTIMATION BY SEMANTIC
SEGMENTATION
As explained above, we used the height difference between
the tire and the upper bound of water to estimate the flood
level from the wheel detection network. In this module,
we use a segmentation network, Mask R-CNN [53], to detect
the wheel location at the pixel level rather than the bounding
box. Previous research showed that using the segmentation
network to detect the wheel and calculate the flood depth is
an effective approach [29]. For more information about the
water level estimation with the segmentation network, please
refer to the original paper [29].

The advantage of the wheel segmentation network is that
both flooded and flood-free instances can be used to train the
network to learn the wheel features. Generally, the presence
of non-flooded images is more frequent and easy to collect
rather than the flooded images. The slight drawback is that
the time cost increases when annotating the ground truth
for the wheel at the pixel level. The training dataset is the

same as the previous object detection approach but with
additional mask annotation to trainMask R-CNN. The results
of wheel segmentation from the trained network are shown
in Fig. 10(a). Moreover, Figs. 10(b) and (c) show that water
level estimation is easily affected by the image quality and
water waves. Finally, Figs. 10(d) to (g) show the base pixels
from the segmented mask used for water level estimation.

E. GEO-REFERENCED FLOOD-MAPPING
The resulting flooded location from the flood sensing phase
was updated in the web-based GIS map. This map was public
to the citizens and could update the flood information in inter-
vals of 5 min or longer according to the requirements. In peri-
ods of rainstorm advisory, such as the periods of weather
warning from the Center Weather Bureau, the system could
achieve minimal time latency in 5 min. In other situations,
the interval could be increased to an hour or more to reduce
the computing and storage resource.

Fig. 11 shows the detected flood scene from the IoC,
with each possible flooded location marked as a red point
to enhance the identifiability. The GIS map provided the
island-wide mapping of each scene location of the IoC, and
the pop-sub-window relayed the real-time video stream when
the user clicked the marker point. Fig. 11 corresponds to the
same map shown in Fig. 2(a), albeit with a zoomed-in view to
clarify the details. In particular, Fig. 11 shows a snapshot of
the system trial run from the rainstorm event in south Taiwan
on August 13, 2019.
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FIGURE 11. Real-time in situ video stream viewing at the GIS map (same as that shown in Fig. 2(a), albeit
zoomed-in). Each location marker indicates an in situ camera marked in red (flood), green (normal), gray
(unknown), or white (no video). Clicking each marker led to the popping out of a sub-window that displayed the
real-time video streaming, description of the street address, camera ID, timestamp of observation, and probabilities
for each class from the classification model (see Section III-C).

Fig. 12 shows a special case for the false alarm of flood
detection. Under the same rainstorm event, the system rec-
ognized a camera at the farther south location as a flood and
marked it in red as an alarm point. However, this scene did not
correspond to a flood event; the scene involved a bridge over
an overflowing river, with the water submerging the pipes.
In this context, the trained network performed an accurate
inference for this scene, as the muddy water covered the
ground. In such cases or other false alarm cases, the users
should refer to the onsite video stream for the final decision-
making. In other words, onsite images for reference must be
provided when the system broadcasts the flood information to
the citizens. The subsequent section describes the notification
module that compiled both the visual clue with the flood-
mapping information to the authorized users.

F. REPORTING AND NOTIFICATION AGENT
In the aforementioned processes, the visual sensing system
performed flood recognition and updated the instance infor-
mation to the flood map. Although the citizens could easily

access the flood map through a browser and search and
navigate the flood events on the map, the flood information
was a passive announcement. A specific group of users may
require concise and rapid dissemination of the information
regarding the flood development state. Thus, a notification
agent was used to provide disaster prevention crews with the
latest waterlogging information immediately. These instant
infographics were not directly sent to the citizens, but the
information could be accessed at the flood-mapping web
service page, as described in Section III.E.

The notification agent used a filtered map that only
displayed the flood event and annotated the address and
corresponding image of the events over the flood map.
Fig. 13 shows the concise report pertaining to the flood
situation. This report represented a sub-version of the flood
GIS map, which only showed the flood events with each
event numbered from north to south. Moreover, this report
showed the annotated road section on the left of the map
and the appended corresponding scenes on the right side.
Through the summary report of the visual sensing, specific
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FIGURE 12. Unique case of false alarm from the visual sensing system under the same rainstorm event. As shown in
the lower-right pop-window, the trained network misjudged the overflowing river as a flood (confidence 82% for a
flood). However, this judgment was actually correct in terms of the visual characteristics.

users could be informed of the current disaster situation and
onsite image information, which could effectively allow the
users to promptly respond to the disaster. In addition, this
concise map could be used as a flood GIS map in the subpage
without the flood scenes.

In the final phase, the agent sent the instant visual report
to the LINE group to enable prompt awareness enhance-
ment and response capabilities, along with a URL link of
the flood map to provide detailed information. LINE is a
freeware app to realize instant communication on electronic
devices such as smartphones, tablet computers, and personal
computers. LINE users can exchange texts, images, video
and audio, and conduct free VoIP conversations and video
conferences [54]. LINE is the most popular instant messaging
app in Taiwan, with a penetration rate of 86% for internet
users aged from 16 to 64 y [55].

Fig. 14 shows the immediate flood report received by a
LINE user. In this app, to obtain detailed information, the user
can tap the URL link from the bottom of the report to access
the web portal of the flood map to check the flood events and
corresponding real-time video. Moreover, the user can check
the current event situation through the GIS map simply via

a browser. Each clickable red flag marker in the map repre-
sents an in situ camera that provides real-time video and the
corresponding description of the street address, camera ID,
timestamp of observation, and probabilities for each class
from the classification model (as described in Section III.C).
Based on this report, the user can immediately perceive the
flooding distribution and realize in situ viewing via a single
visual graph that can help the citizens respond promptly to
the disaster.

IV. DISCUSSION
This research demonstrated a scalable deep sensing workflow
to be used during island-wide flood events. The proposed
approach is based on public cloud computing resources with
deep CNNs to provide end-to-end flood perception services.

The deep sensing system has two main functions: it can
efficiently discriminate a large number of scenes from the
IoVT/IoC and provide/update the flood geo-referenced map
over-the-air. The final decision-making and response are
implemented by the users in different roles to avoid the
flood sections or formulate an action plan to alleviate the
impact of the flood event. The systemwas applied to flooding
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FIGURE 13. Summary report of the visual sensing with real events from the test case. The report
presents a near-real-time map of the detected flood scenes and incidents in graphical form. The
individual events are numbered sequentially from north to south according to the latitude for easy
identification. The ‘‘flood location’’ block on the upper left and road name block below it, similar to
the live scene on the right, are automatically generated in the summary report.

events in 2019. The current system can process a 2.4K input
from the IoC and output results in five minutes, provide
preliminary examinations for disaster prevention units, and
assist the citizens in familiarizing themselves with the system.
Future work can be aimed at examining the approaches to
effectively combine various sensing information points and
perform analyses to assist the disaster prevention department
in making decision and ensuring the information correct-
ness and implementing rapid corrections in the case of false
information.

The neural network developed in this study can still not
surpass human accuracy, and a small number of misclas-
sifications may be displayed on the GIS map. Generally,
users can directly refer to the images in the GIS map or the
summary report and automatically ignore the misclassified
locations. However, a feasible direction in future work is the
implementation of a user interaction interface based on the
GIS map that allows users to rectify the prediction results
by the neural network and use this feedback to dynamically
update the neural network and GIS map.

Moreover, this system only used a part of the training set
to evaluate the recognition accuracy (theoretical recognition
performance of the network model) because in this study,
the resources required to acquire a considerable amount of
data and perform manual annotation for the actual flooding
event were limited. During the system operation in 2019,
all the collected images were not fully reserved and prop-
erly interpreted. Hence, the complete accuracy of the system

was not evaluated on the true flood event. In future work,
to suitably evaluate the system performance, a consummate
flood scene dataset corresponding to long-period collection
and variety of weather events should be established.

The ability to obtain fine-grained flood depth estimation
in visual images can assist in extracting the flooding infor-
mation. In particular, in addition to detecting whether local
flooding occurs, the current flooding depth can also be esti-
mated. Nevertheless, the actual situation is more complex.
In the latest related research, common reference objects such
as pedestrians, bicycles, and car tires were used as virtual
ruler to estimate the water depth. However, such applications
require specific shooting angles and image quality or use
crowdsensing images, which limits the distribution density
of the sensing, as well as the sensing timeliness and usability.
Therefore, identifying a common reference target under most
camera conditions and developing a general water depth-
sensing method is a worthy research direction.

In terms of the computational performance, the current
system used two computing containers belonging to differ-
ent public cloud providers to process the image recogni-
tion and outcome presentation. The advantage of the cloud
platform system is that the number of computing contain-
ers and internet connection groups can be rapidly adapted
to achieve load balance under varied scales. For an IoC
with 2.4K video sources, the overall end-to-end processing
can be completed in less than five minutes (including the
input IoC streams to output the flood notification); therefore,
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FIGURE 14. The LINE bot agent automatically sends the current
localization mapping of the waterlogging to the LINE group. This auto
notification is for disaster management and research and only sent to
specific users. The final summary report of the notification agent for the
real event from the test cases is also shown, which corresponds to the
immediate rendering of the GIS map and detected scenes.

the released notifications and GIS maps are less than five
minutes old. As this system adopts the sensor to the cloud
mode, all the sensor data are captured and transmitted to
the cloud for batch processing. In other words, the system
cannot meet the demand for real-time response owing to
the operation latency. In this context, the real-time sensing
and onsite analysis of large-scale visual sensors and means
to realize a balance of the computing performance, power
consumption, and low cost are valuable research directions.

We choose CNN in terms of process automation and recog-
nition performance. There are two end-to-end scenarios: sys-
tem level, from the input of IoC to GIS map, and inner
module level, from the CNNmodel trains/inferences the input
images to output detection results, both without any man-
ual feature engineering and pre-processing. The CNN-based
approaches provide an end-to-end pipeline that excludes the
usual manual feature engineering process within machine
learning and other image processing methods. It also elim-
inates the uncertainties of variable environmental conditions
that most often affect the performance of image processing
methods. In addition, we chose the neural network with the
higher accuracy density to achieve the goal of large-scale
recognition in near real-time. Most of the current studies are
based on existing neural networks that have been empirically

tested with large open datasets. However, comparing different
depths, widths, and architecture of CNNs may be interesting
in future work. Within the scope of our knowledge, there has
not been a similar quantitative study on the neural network
for flood recognition.

According to the research pertaining to image recognition
tasks, AI models can easily reach or surpass the so-called
human-level performance (HLP), which is also the purpose
of research and experimentation. However, even if a model
surpasses theHLP in terms of the test-set accuracy, the system
is not necessarily superior to humans in practical applications
in the real-world. In practice, the objective of researchers
and disaster management administrators is not limited to
surpassing the HLP in terms of the test-set accuracy. The
tolerance, latency, bias, performance on rare scenes, and
additional factors must be considered when deploying the
system. This aspect can be attributed to the extensiveness of
the training data and the inference performance of noisy data
and rare classes. Therefore, another possible future research
direction is to improve the HLP by exploiting the superior
performance of AI models. Specifically, AI can facilitate the
decision-making of humans instead of completely replacing
or outperforming human decision-making.

At present, owing to the lack of long-term flooding data
collection and correct labeling in the flood identification
domain, AI is lacking in terms of long-term real-world identi-
fication performance testing. Therefore, in real-world disaster
applications, an acceptable system may exhibit low false
negatives and high false positives, because it is more desir-
able to display a larger number of possible flooding events
(regardless of the trueness of the information) than miss an
opportunity to identify a flooding event owing to a false
negative. The deep sensing system can simplify all the inputs
and reduce their number, leaving only a few more possible
events. Such a design can simplify the information extraction
and decision-making process.

This research involved the development of an end-to-end
flood sensing and response system based on IoVT/IoC on an
island-wide scale. This research helped examine the various
scenarios that may be encountered in the practical operation
of large-scale cyber-physical systems, and the observations
can serve as an empirical reference to develop visual sensing
systems.

V. CONCLUSION
A scalable deep sensing workflow with real flood events on
an island-wide scale was developed. The proposed workflow
involves a cognitive sensing system for large-scale water-
logging perception based on deep learning models, informa-
tion and communications technology, and cloud resources.
The system has enabled plug-in functions, allowing flexible
changes to the visual sensing module. Therefore, the end-to-
end system architecture and key modules may be utilized in
other types of disaster events for damage/impact assessment,
such as wildfires, land slippage, urban fire, and explosions.
From a practical viewpoint, the proposed system can offer
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an efficient and cost-effective alternative to provide rapid
waterlogging screening reports on-the-air to facilitate deep
remote sensing.

APPENDIX
JSON OBJECT OF IoC

IoC =

{

"DGH":

[

{

"tvid": "thbCCTV-12-0090-037-01",

"Longitude": 121.70156,

"Latitude": 24.93671,

"roadsection": "Provincial Highway 9 (Sec. 8, Beiyi Rd.)",

"url": "http://11.22.33.44/T9-1K+150"

. . .

},

{

"tvid": "thbCCTV-11-0022-044-05",

"Longitude": 121.62588,

"Latitude": 25.26965,

"roadsection": "Provincial Highway 2 (Zhongzheng East Rd.)",

"url": "http://11.22.33.44:/T2-3K+750",

. . .

},

. . .

],

"NTPC":

[

{

"tvid": "NTPC-C000001",

"Longitude": 121.4699,

"Latitude": 25.0203,

"roadsection": "Minsheng Rd., Wanban Rd., Banqiao District",

"url": "http://77.66.55.44/Media/Streaming?deviceid=1"

. . .

},

. . .

],

. . .

"NC":

[

. . .

]

}
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