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ABSTRACT This paper proposes an improved back-stepping control approach and its application to
small nonlinear UAV control systems with uncertainties such as external disturbance. Unlike traditional
back-stepping control methods, the idea of prescribed performance function (PPF) is incorporated into the
control design, such that both the transient and steady-state control performance can be strictly guaranteed.
Moreover, we design a novel tracking differentiator to avoid the ‘‘differential expansion’’ problem well
caused by the calculation of derivative. Significantly, the function approximators (e.g. neural networks) that
arewidely used to address the unknown nonlinearities in the nonlinear control designs are not needed. Finally,
the numerical simulation verifies the convergence and robustness of the system, and the results show that
the control strategy can obtain better transient and steady-state performance.

INDEX TERMS Back-stepping control, nonlinear control, prescribed performance function, robust control,
tracking differentiator.

I. INTRODUCTION
At present, UAV technology is occupying an increasingly
important position in information-based operations, and it can
achieve various combat functions such as cruise detection,
precision strike, communication relay, and damage assess-
ment [1]. However, for the small UAV system, it is a com-
plicated nonlinear system with parameter perturbation and
external disturbance. In the nonlinear control theory, many
various advanced control methods have been explored, such
as adaptive control [2]–[4], robust control [5], [6], sliding
mode control [7], [8], neural networks control [9], etc.

The UAV with complex shape will cause strong nonlin-
earity at low speed and large overshoots when maneuvering.
Some scholars adopt intelligent control strategy to solve the
nonlinearity of UAV system [10]–[13]. However, the above
nonlinear control methods do not consider the transient
performance under strong nonlinear conditions. For UAV
system, if the transient performance cannot be sufficiently
constrained, the transient response (such as overshoot, con-
vergence rate, etc.) of the system will be bad before reaching
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steady state, which will destroy the stability of the system and
even cause the failure of the whole system. Therefore, it is of
great significance to study the transient performance of UAV
control system.

Recently, Bechlioulis and Rovithakis [14], [15] has pro-
posed a prescribed performance control law, which both the
transient and steady-state performance can be analytically
examined and prescribed. This method introduces a pre-
scribed performance function and a related error transfor-
mation. According to this idea, the control performance of
the system is greatly improved in engineering applications.
Geng et al. [16]–[18] carried out prescribed performance
controller designs for the extreme value search systems
with unknown parameters, control gain and control direc-
tion. Sun et al. [19] proposed a new design method of non-
approximation prescribed performance controller for missile
control system. The design process is simple and the control
performance is superior. Li et al. [20], [21] performed pre-
scribed performance inversion control for non-affine models
of hypersonic vehicles and introduced RBF to approximate
unknown functions and model uncertainties, which improved
the robustness of the control system. Liu [22] developed a
trajectory tracking control scheme for a quadrotor unmanned
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aerial vehicle, and the position constraints and the prescribed
performance constraints on attitude tracking errors can be
achieved.

On the other hand, the back-stepping control can make full
use of the known information of the system to suppress the
influence of parameter perturbation and external disturbance.
Reference [23] used a combination of back-stepping con-
trol and adaptive law to solve the generalized uncertainties
existing in the system. However, it is necessary and difficult
to calculate the derivative of the virtual control variable for
the traditional back-stepping control, which will create ‘‘dif-
ferential term expansion’’. Reference [24] proposed a new
tracking differentiator and used it in the robust back-stepping
control. Delightedly, the problems caused by derivative calcu-
lation have been solved. Madani [25] and Stotsky [26] used
sliding mode filters to calculate the virtual control variable
derivatives; Yip [27] introduced linear filters to generate
differential signals; Farrell [28] proposed a command filter
back-steeping design method to effectively avoid cumber-
some mathematical calculations. Sharm [29] and Shin [30]
treated the derivative of the virtual control variable as an
unknown function and used neural networks to approximate
it, thereby achieving good results.

Motivated by the above discussions, this article aims to
develop an improved back-stepping control strategy for UAV
attitude control systems by combining the prescribed perfor-
mance functions and tracking differentiator techniques. The
main contributions can be highlighted as follows.

1) The performance constraints are introduced into the
back-stepping control. The global asymptotic stabiliza-
tion results are obtained of the closed-loop system.

2) A novel tracking differentiator has been developed,
which has greatly improved the ability to obtain differ-
ential signals. Differential expansion in back-stepping
control has been avoided.

3) The achieved tracking control strategy has been utilized
to solve the attitude control problems for UAVs.

The structure of this article is as follows. Section II models
the nonlinear dynamics of small UAV systems. In Section III,
an improved back-stepping control strategy is proposed.
Section IV gives the results of numerical simulation verifi-
cation. Finally, conclusions are drawn in Section V.

II. PROBLEM FORMULATION
In this section, the mathematical model of the UAV system is
introduced and the control objectives are briefly described.

A. UAV SYSTEM LONGITUDINAL ATTITUDE DYNAMICS
Figure 1 briefly describes the coordinate system. The center
of gravity is selected as the coordinate origin. The Ox axis
coincides with the body axis, the head is positive, the Oy
axis is pointing up from the body as positive, the Oz axis
constitutes a right-handed coordinate system.

FIGURE 1. Definition of axes, Euler angles, aerodynamic states and
moments.

In order to simplify the research, we establish a mathemat-
ical model to describe the UAV system in the pitch plane ϑ̇ = ωzω̇z =

Mz

Jz

(2.1)

where the states (ϑ, ωz) are the pitch angle and the pitch
angular rate, respectively. Jz is the moment of inertia.

In addition, the pitching moment is a non-linear function of
pitch angle, pitch angular rate, and elevator deflection, which
is given by

Mz = qSLmz

= qSL
(
mz0 + mωzz ωz + m

α
z α+ mδez δe + m

ω3
z

z ω
3
z

)
(2.2)

where q, S, L are the dynamic pressure, reference area,
reference length, respectively. δe is the elevator deflection.
The aerodynamic moment coefficientmz0 is zero-lift pitching

moment coefficient, and else coefficients mωzz , mαz , m
δe
z , m

ω3
z

z
are the pitching moment derivatives. The control input is the
elevator deflection δz.
The uncertainty of the system is caused by unknown exter-

nal disturbances (such as wind) and the unmodeled dynamics,
which can be consider as disturbance terms d1, d2. Therefore,
the disturbance terms are added to the mathematical model
as  ϑ̇ = ωz + d1ω̇z =

Mz +1Mz

Jz
+ d2

(2.3)

B. CONTROL MODEL AND OBJECTIVES
For the convenience of controller design, equation (2.3) is
rewritten into the general form required for control design,
which is given by

ϑ̇ = f10 (ϑ, ωz)+ f11 (ϑ, ωz)+ g1 (ϑ, ωz) ωz + d1
ω̇z = f20 (ϑ, ωz)+ f21 (ϑ, ωz)+ g2 (ϑ, ωz) δz + d2
y = ϑ

(2.4)

where f10, f20 represent the known dynamics part of the
system; f11, f21 represent the unmodeled dynamics of the
system, and the combination of unmodeled dynamics and
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FIGURE 2. Block diagram of the improved back-stepping control.

external disturbances are considered as the comprehensive
disturbance, denoted as ξi = di + fi1(i = 1, 2), then the
system is rewritten as

ϑ̇ = f10 (ϑ, ωz)+ g1 (ϑ, ωz) ωz + ξ1
ω̇z = f20 (ϑ, ωz)+ g2 (ϑ, ωz) δe + ξ2
y = ϑ

(2.5)

The following assumption is made for the controller
design.
Assumption 1 [31]: The nonlinear functions F1 = f1 +

g1ωz + d1,F2 = f2 + g2δz + d2 are continuous, and∣∣∣ ∂F1(ϑ,ωz,d1)∂ωz

∣∣∣ ≥ ϕ1,

∣∣∣ ∂F2(ϑ,ωz,δz,d2)∂δz

∣∣∣ ≥ ϕ2,∀ (ϑ, ωz, δz) ∈

R3 are true for positive constants ϕ1, ϕ2 > 0. Meanwhile,

the signs of ∂F1(ϑ,ωz,d1)
∂ωz

and ∂F2(ϑ,ωz,δe,d2)
∂δz

are strictly positive
or negative.

This assumption is recognized controllability conditions in
nonlinear control designs, and the assumption indicates that
the control input gain for all t > 0 is non-zero. Without loss
of generality, this article assumes that they are all positive.

The main purpose of control design has the following two
aspects:

(1) The system output ϑ accurately tracks a given
instruction ϑc;
(2) The transient and steady state tracking errors e1 (t) =

ϑ (t) − ϑc (t) of the closed-loop system must be within a
preset range.

III. IMPROVED BACK-STEPPING CONTROLLER DESIGN
In this section, we will develop an improved back-stepping
control design method. PPF and tracking differentiator are
introduced into the back-stepping control for improving the
control performance. First, we incorporate the prescribed
performance function and the transformed errors, and give
their definition and concrete expression. Then, a new fast and
stable tracking differentiator is developed for the following
controller design. Finally, back-stepping control scheme is
conducted step by step. The structure of the controller is
shown in Figure 2.

A. PRESCRIBED PERFORMANCE FUNCTION AND ERROR
TRANSFORMATION
A prescribed performance function (PPF) is introduced to
meet transient performance and steady-state performance

FIGURE 3. Prescribed tracking error bound with ρ
(
t
)
.

constraints. The performance function is defined as
following:
Definition 1 [12]: Continuous function ρ (t) : R+ → R+

is the performance function, which satisfies:
(1) ρ (t) is positive and decreasing;
(2) lim

t→∞
ρ (t) = ρ∞ > 0, lim

t→0
ρ (t) = ρ0.

Select the expression of the performance function as

ρ (t) = (ρ0 − ρ∞) e−lt + ρ∞ (3.1)

where ρ0 is the initial error boundary, ρ∞ is the steady-state
error boundary, and l determines the convergence rate. Above
three parameters are positive numbers.

Therefore, the control objective (2) can be achieved by
making the error e (t) in a set defined in advance with ρ (t)
in the form

−δρ (t) < e1 (t) < δρ (t) , ∀t > 0 (3.2)

where δ, δ are positive constants.
In order to deal with the inequality constraint (3.2),

we introduce an error transformation function to convert the
inequality constraint into an equality constraint [31]. Here,
we define a smooth and strictly increasing function S (ε) as

e (t) = ρ (t) S (ε) (3.3)

where ε is the transformed error. The error transformation
function S (ε) satisfies the following properties:
(1) −δ < ρ (t) ε (t) < δ,∀ε ∈ L∞;
(2) lim

ε→+∞
S (ε) = δ, lim

ε→−∞
S (ε) = −δ.

Then select the error transformation function as

S (ε) =
δeε − δe−ε

eε + e−ε
(3.4)

Because S (ε) is a smooth and strictly increasing function,
the inverse function is

ε (t) = S−1 (λ) =
1
2
ln
(
δ + λ

δ − λ

)
(3.5)

where λ (t) = e(t)
ρ(t) .

B. TRACKING DIFFERENTIATOR DESIGN
This section designs a novel tracking differentiator based on
the sigmoid function to solve the calculation of the derivative
of the virtual control variable. First, we need to introduce
some theorems about nonlinear tracking differentiator.
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Theorem 1 [32]: For the system S

S :

{
ż1 (t) = z2 (t)
ż2 (t) = f [z1 (t) , z2 (t)]

(3.6)

If its solution z1 (t), z2 (t) satisfies: lim
t→∞

z1 (t) =

0, lim
t→∞

z2 (t) = 0, then there will be a solution of system
S1 as

S1 :

 ẋ1 (t) = x2 (t)

ẋ2 (t) = R2
{
f
[
x1 (t)− v (t) ,

x2 (t)
R

]}
(3.7)

For any given integrable function v (t) and constant T , the
solution of S1 satisfies: lim

t→∞

∫ T
0 |x1 (t)− v (t)|dt = 0 (or

lim
t→∞

∫ T+τ0
0+τ0

|x1 (t)− v (t)|dt = 0), lim
t→∞

x2 (t) = 0.

Then we use the sigmoid function [24] to design the func-
tion expression as

h (x) =
1− e−βx

1+ e−βx
(3.8)

where β is a positive constant to adjust the width of the
approximate linear region of the function.
Remark 1: The function h (x) has the following character-

istics:
(1) When the independent variable approaches 0, it shows

a good linear characteristic; when the independent variable
takes a large value, it shows a saturated characteristic; and
the function is globally smooth.

(2) Thus, this function can not only speed up its global
convergence, but also make the tracking response smoother,
and avoid high-frequency vibration.

According to the above analysis, the specific form of the
construction system S2 is as follows:{

ẋ1 (t) = x2 (t)
ẋ2 (t) = −ah (x1)− bh (x2)− chn (x2)

(3.9)

The stability conclusion of the tracking differentiator pro-
posed in this paper is as follows:
Theorem 2: For the system S2, when a > 0, b > 0, c >

0, and the positive parameter n is odd. The solution of the
equation (3.5) satisfies the Theorem 1.Therefore the system
S2 is gradually stable, and converges to (x1, x2)T = (0, 0)T ,
which means lim

t→∞
x1 (t) = 0, lim

t→∞
x2 (t) = 0. The proof of

stability is as follows:
Proof: Select Lyapunov function

V =
∫ x1

0
ah (τ ) dτ +

1
2
x22 (3.10)

h (x) is an odd function, xh (x) > 0, according to the nature
of the definite integral, we get

∫ x1
0 ah (τ ) dτ > 0, so V > 0.

When x1 → ∞, x2 → ∞,
∫ x1
0 ah (τ ) dτ → ∞, 12x

2
2 → ∞

is true. Therefore, when
[
x1 x2

]
→ ∞,V (x1, x2) → ∞

holds.
Differentiate V (x1, x2) with time to as

V̇ = ẋ1ah (x1)+ ẋ2x2 (3.11)

According to (3.5)

V̇ = ax2h (x1)+ x2
(
−ah (x1)− bh (x2)− chn (x2)

)
= −bx2h (x2)− cx2hn (x2) (3.12)

where x2h (x2) > 0 holds for x2 6= 0, and n is odd, thus
x2hn (x2) > 0, so we can get

V̇ (x1, x2) < 0 (3.13)

V̇ (x1, x2) = 0 holds if and only if x2 = 0.
When x1 6= 0, there is ẋ2 6= 0, that is, x2 is unstable at 0,

indicating that there is no point outside the origin that satisfies
V̇ (x1, x2) = 0. Therefore, the solution of the system S2 is
globally asymptotically stable.

Design the tracking differentiator based on Theorem 1 as
ẋ1 (t) = x2 (t)
ẋ2 (t) = R2 {−ah [x1 (t)− v (t)]

− bh
[
x2 (t)
R

]
− chn

[
x2 (t)
R

]} (3.14)

where a > 0, b > 0, c > 0, n > 0 are positive and odd design
parameters, and v (t) is the signal to be tracked.

According to Theorem 1 and the above analyses, for
any bounded integrable function v (t) and any positive
numberT , the solution of formula (3.10) can satisfy
lim
t→∞

∫ T
0 |x1 (t)− v (t)|dt = 0. The designed tracking dif-

ferentiator can theoretically track and differentiate the input
signal.

C. CONTROL DESIGN
In this section, an improved back-stepping controller is devel-
oped based on PPF and TD. The design process is divided into
the following two steps:

Step 1: Define tracking error as e1 = ϑ − ϑc, PPF ρ1 =
(ρ10 − ρ1∞) e−l1t + ρ1∞. According to the equation (3.5),
transformed error is given as

ε1 (t) = S−1 (λ1) =
1
2
ln
(
δ1 + λ1

δ1 − λ1

)
(3.15)

where λ1 = e1
/
ρ1.

Derivative of ε1 is

ε̇1 =
∂S−1

∂
(
e1
ρ1

) 1
ρ1

(
f10 + g1ωz + ξ1 − ϑ̇c − v1

)
, r1

(
f10 + g1ωz + ξ1 − ϑ̇c − v1

)
(3.16)

where r1 = ∂S−1

∂
(
e1
ρ1

) 1
ρ1
, v1 =

e1ρ̇1
ρ1

.

Then we define ξ̂1 as the estimated value of comprehensive
disturbance ξ1, so the estimation error is written as ξ̃1 = ξ1−
ξ̂1. Select Lyapunov function

V1 =
1
2
εT1 r
−1
1 ε1 +

1
2
ξ̃T1 Q1ξ̃1 (3.17)

Derivative of V1

V̇1 = εT1 r
−1
1 ε̇1 − ξ̃

T
1 Q1
˙̂
ξ1
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= εT1
(
f10 + g1ωz + ξ1 − ϑ̇c − v1

)
− ξ̃T1 Q1

˙̂
ξ1 (3.18)

where Q1 is a positive definite matrix.
Design the virtual control quantity ωzd as

ωzd = −g
−1
1

(
f10 + ξ̂1 − ϑ̇c − v1 + k1ε1

)
(3.19)

where the gain k1 is the positive parameter to be designed.
The estimation law of comprehensive disturbance ξ1 is

˙̂
ξ1 = Q−11 ε1 (3.20)

Substituting (3.20) and (3.21) into (3.19)

V̇1 = εT1 r
−1
1 ε̇1 − ξ̃

T
1 Q1
˙̂
ξ1

= εT1
(
f10 + g1ωz + ξ1 − ϑ̇c − v1

)
− ξ̃T1 Q1

˙̂
ξ1

= −k1εT1 ε1 ≤ 0 (3.21)

which shows that the variable ε1 will converge with the action
of the virtual controller.

Step 2:The tracking error of the intermediate state quantity
ωz is defined as e2 = ωz − ωzd , and ωzd is the virtual control
quantity. Meanwhile, the prescribed performance function is
ρ2 = (ρ20 − ρ2∞) e−l2t + ρ2∞. According to the equation
(3.15)

ε2 (t) = S−1 (λ2) =
1
2
ln
(
δ2 + λ2

δ2 − λ2

)
(3.22)

where λ2 = e2
/
ρ2.

Derivative of ε2

ε̇2 =
∂S−1

∂
(
e2
ρ2

) 1
ρ2
(f20 + g2δz + ξ2 − ω̇zd − v2)

r2 (f20 + g2δz + ξ2 − ω̇zd − v2) (3.23)

where r2 = ∂S−1

∂
(
e2
ρ2

) 1
ρ2
, v2 =

e2ρ̇2
ρ2

.

As in step 1, ξ̂2 is defined as the estimated value of the
integrated disturbance ξ2, and ξ̃2 = ξ2 − ξ̂2 is the estimated
error. Select Lyapunov function

V2 = V1 +
1
2
εT2 r
−1
2 ε2 +

1
2
ξ̃T2 Q2ξ̃2 (3.24)

Derivative of V2

V̇2 = V̇1 + εT2 r
−1
2 ε̇2 − ξ̃

T
2 Q2
˙̂
ξ2

= V̇1+εT2 (f20+g2δz+ξ2−ω̇zd − v2)− ξ̃
T
2 Q2
˙̂
ξ2 (3.25)

where Q2 is a positive definite matrix.
It is easily seen that ω̇zd appears in V̇2, so the tracking

differentiator designed is introduced in Part III to deal with
this item. The tracking differentiator is designed as follows:{
q̇d = ν

ν̇=R2
{
−ah [β (qd−ωzd )]−bh

[ ν
R

]
− chn

[ ν
R

]} (3.26)

where a, b, c, β, n are the tracker parameters to be designed.
qd is the virtual control derivative.

Finally, the control law is designed as

δz = −g
−1
2

(
f20 + ξ̂2 − v2 − ω̇zd + k2ε2

)
(3.27)

where the gain k2 is a positive parameter.
The estimation law for comprehensive disturbance ξ2 is

˙̂
ξ2 = Q−12 ε2 (3.28)

Substituting (3.28) and (3.29) into (3.26)

V̇2 = V̇1 + εT2 r
−1
2 ε̇2 − ξ̃

T
2 Q2
˙̂
ξ2

= V̇1 + εT2 (f20 + g2δz + ξ2 − ω̇zd − v2)− ξ̃
T
2 Q2
˙̂
ξ2

= −k1εT1 ε1 − k2ε
T
2 ε2 ≤ 0 (3.29)

According to the Lyapunov stability theory, the closed-
loop system is gradually stable.

From the above design process, the design method can
guarantee the transient and steady-state performance for
small UAV system. In addition, the proposed tracking dif-
ferentiator can solve the ‘‘differential expansion’’ problem
caused by the calculation of derivative well.

IV. NUMERICAL SIMULATION
Case 1: Research on Tracking Differentiator Simulation

In order to study the tracking characteristics of the
proposed tracking differentiator further, a comparative
numerical simulation with the tangent sigmoid tracking dif-
ferentiator (TSTD) in [24], second-order nonlinear tracking
differentiator (SNTD) in [32] and arbitrary-order exact robust
differentiator (AERD) in [33] is conducted to verify the
proposed tracker has fast convergence speed and tracking
accuracy. Here step signal and unit sinusoidal signal are
both selected as input signals. The design parameters of the
tracking differentiator in this paper are set as: R = 3, β = 5,
h1 = 40, h2 = 20, h3 = 20, n = 3, and the simulation
step is 0.001s. The parameters of the other three kinds of
tracking differentiators are set according to the corresponding
literature [24], [32], [33].

Figure 4 provides the comparative simulation results of
the four tracking differentiators. From Figure 4(a) and (b),
the proposed TD in this paper can accurately track step signal,
while both the transient and steady-state performance can
be guarantee. However, the TSTD leads to an aggressive
transient response with fairly large overshoot although it can
converge. On the other hand, it is also found that the SNTD
takes a long time to achieve convergence, where exists a
large overshoot. Moreover, the AERD leads to a significant
tracking error. Figure 4(c) shows the result of calculating
step signal differentiation. One may find that the differential
result of the proposed TD satisfies the situation, but the rate
of change is very large when the signal produces a step
change. Nevertheless, large overshoot occurs when the TSTD
calculates the differential of step signal. However, the SNTD
takes a long time to converge and has a low intensity of
impulse signal. The AERD has a weak ability to obtain the
differential signal although the convergence rate is faster than
other three tracking differentiators.
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FIGURE 4. Research on tracking differentiator performance.

Next, we investigate the tracking of sinusoidal signals and
the extraction of differential signals. The parameters of the
tracking differentiator in this paper are set as: R = 15, β =
20, h1 = 10, h2 = 10, h3 = 10, n = 3.

TABLE 1. System parameter nominal value.

The simulation results are shown in Figure 5. From
Figure 5 (a) and (b), we can see that the TD proposed in
this paper and the AERD achieve fast tracking of sinusoidal
signal, with small tracking error and no vibration. However,
the TSTD has high-frequency vibration and slow conver-
gence rate. Obviously, the SNTD has a large tracking error
and cannot accurately track the input signal. As seen from
Figure 5 (c) and (d), the proposed TD can solve the differ-
ential signal of the input signal with higher accuracy, and
can quickly converge. But it takes a long time for TSTD
to obtain an accurate differential signal, and it has a large
vibration in the initial stage. Similarly, there is a large track-
ing error when SNTD extracts the differential signal, and
it cannot converge to a small set for a long time. More-
over, when AERD calculates differential signal, the vibration
occurs in the part with larger curvature, and the calculated
differential curve is not smooth. By comparing the tracking
characteristics of different tracking differentiators, the pro-
posed TD improves the convergence rate and reduces high-
frequency vibration. It can track the input signal quickly
and stably, and can obtain accurate and smooth differential
signals.
Case 2: Control Simulation
In order to verify the effectiveness of the improved back-

stepping control method proposed in this paper (prescribed
performance back-stepping control, PPBC), this section
compares with traditional back-stepping control (BSC) and
feedback linearization control (FLC). We mainly study the
control performance of control system, especially the tran-
sient performance (such as overshoot, convergence rate, etc.).
The initial state of the system is ϑ0 = 0 and ω0 = 0, and the
simulation step is taken as 0.01s. The control command is
ϑc = 1 deg and ϑc = cos (t) deg, the relevant parameters are
listed in Table 1.

The controller parameters designed in this paper are as
follows:

ρ1 = (1.2− 0.01) e−15t + 0.01ρ2 = (16− 0.4) e−15t + 0.4

δ = δ = 1, k1 = 0.03, k2 = 20, Q1 = 10, Q2 = 10.
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FIGURE 5. Research on tracking differentiator performance.

FIGURE 5. (Continued.) Research on tracking differentiator performance.

The traditional back-stepping controller (BSC) is designed
as follows:

e1 = ϑ − ϑc, qd = −
(
d̂1 + k1e1

)
e2 = ωz − qd , δz = −g−1x

(
f20 + d̂2 − q̇d + k2e2

)
d̂1 = e1

/
Q1, d̂2 = e2

/
Q2

k1 = 20, k2 = 20, Q1 = Q2 = 0.01.

The feedback linearization controller (FLC) is designed as
follows [34]:

e1 = ϑ − ϑc, e2 = ωz − ϑ̇c
s = − [k1, k2] [e1, e2]T

δz = −
K
g2
(ω̇z − s) , K = 6, k1 = 20, k2 = 5

A. CONTROL SIMULATION OF NONLINEAR UAV SYSTEM
Figure 6 shows the comparative numerical simulation results
of three control methods: PPBC, BSC, and FLC. All three
methods track control commands accurately, but their track-
ing performances are different. Figures 6 (b) and (d) show
that PPBC’s pitch angle tracking error and pitch angular rate
tracking error can be limited to prescribed boundaries, but
the tracking errors of the other two methods are beyond the
boundaries. At the same time, there is a significant difference
in the tracking of pitch angular rate, BSC and FLC have large
overshoots and the convergence time of them needs about
0.35s, while PPBC only needs less than 0.1s and without
overshoot. Compared with the other two methods, PPBC has
better transient performance. Through this example, we ver-
ify the effectiveness of PPBC and its advantages in transient
performance.

B. CONTROL SYSTEM ROBUSTNESS ANALYSIS
In order to further study the robustness of the control system
designed, the system external disturbance is considered. The
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FIGURE 6. Numerical simulation results.

FIGURE 6. (Continued.) Numerical simulation results.

other conditions are the same with those in Case A. The com-
prehensive disturbance is selected as ξ1 = ξ2 = 5 sin (2π t).
The simulation results are shown in Figure 7. According

to Figure 7 (a) and (c), in the case of external disturbances
in the system, PPBC can successfully compensate for the
impact of disturbances and accurately track input command.
The BSC can also converge to the input command over time,
while FLC has a large error and cannot track the command
accurately. As shown in Figure 7 (b) and (d), the error curves
of PPBC can be limited to prescribed boundaries, it con-
vergences quickly, and the steady-state error is small and
without vibration. Although BSC can converge eventually,
it has a large overshoot in the convergence process and a slow
convergence rate. Moreover, the errors still vibrate slightly
during a long time. Therefore, the steady-state and transient
performance of BSC is inferior to that of PPBC. For FLC,
it is difficult to compensate the unknown disturbances, so it
has obvious tracking errors, and the control performances are
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FIGURE 7. Numerical simulation results ϑc = 1 deg.

not as good as the other two methods. Figure (e) shows that
the control signals are stable and there is no high-frequency
vibration. From the figure (f) we can see that the designed

estimate law can estimate the disturbance term accurately.
Through the above analysis, we can conclude that PPBC can
successfully compensate the influence of the disturbances
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FIGURE 8. Numerical simulation results ϑc=cos
(
t
)

deg.

in the presence of external disturbances. Meanwhile, both
transient and steady state performance meet the requirements
of the performance function.

C. TRAJECTORY SIMULATION
In the above simulation, the control command ϑc is the unit
step signal, which verifies the effectiveness of the proposed
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FIGURE 9. Numerical simulation results.

PPBC. In this case, in order to study the practical engineering
application ability of the controller, we take the command of

a certain trajectory as the control command and observe the
response of the system.
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Figure 9 shows the numerical simulation comparison
results of the three control methods when the control com-
mand is an actual trajectory command. As shown in the figure
(a) and (c) that these three control methods can track the
command accurately. Since the back-stepping control can use
more system information, such as the derivative information
of the control command, the control performance can be
improved under the condition of making full use of the known
information of the system. PPBC combines back-stepping
control and PPF, which can limit the range of tracking error
by setting the boundary functions, so that the tracking errors
are always within a small range, thus ensuring good transient
and steady-state performance. FLC method uses less system
information than the other two methods, and its control per-
formances are far worse than PPBC and BSC.

It can be seen from Figure 9 (b) and (d) that the error
curves of FLC exceed the prescribed boundaries, and they
are accompanied by some vibration, especially the tracking
error of ωz, which has large vibration and takes a long time
to reach steady state. And the error curves of BSC have a
large overshoot, and the convergence rate is slow. Compared
with the other two methods, PPBC improves the transient
performance, the tracking errors have a fast convergence rate
and a small overshoot, and the convergence process is stable
without vibration.

V. CONCLUSION
This paper proposes an improved back-stepping control
method for nonlinear UAV systems with uncertainties and
external disturbances. By introducing a prescribed perfor-
mance function and error transformation function, the con-
troller can design the transient and steady-state performance
of the system quantitatively. Meanwhile, a novel tracking
differentiator designed in this paper is introduced into the
control design to solve the ‘‘differential expansion’’ problem
in traditional back-stepping control. The cost of this method
is small and no complex neural network approximator is
needed, so the development of the controller is not com-
plicated. The proposed systematic recursive control design
procedure can also be extended to high-order systems.

Numerical simulation results verify the effectiveness of
the method and it can be seen from the simulation results
that, whether it is a step signal command or a real signal
command, the control method proposed in this paper can
complete the control task well, and has greatly improved the
control performance and the robustness of the system. The
proposed method relies on the complete information. In the
subsequent work, the control method will continue to be
improved to make it independent of the complete information
of the system.
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