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ABSTRACT This paper addresses the synchronization problem of coupled harmonic oscillators via
event-triggered impulsive control. Different from the existing results where both position and velocity mea-
surements are required to achieve the synchronization, two kinds of event-triggered impulsive mechanisms,
that is, the position-only and velocity-only approaches are proposed respectively, which effectively extends
the event-triggered impulsive control strategy to the synchronization problem with limited information.
Sufficient conditions are proposed to exhibit the convergence behavior of the coupled harmonic oscillators.
Meanwhile, it is derived that Zeno behavior can be excluded by using the designed controller. Two simulation
examples are illustrated to substantiate the performance of the proposed synchronization protocols.

INDEX TERMS Coupled harmonic oscillator, event-triggered impulsive control, synchronization,
leader-following.

I. INTRODUCTION
Coordination control problems of multi-agent systems have
been extensively discussed in recent decades, includ-
ing synchronization control (or equivalently consensus
control) [1]–[3], formation control [4]–[6], containment con-
trol [7]–[9] and so on (see literature review in [10]).
Particularly, synchronization control, aiming at regulating
the states or outputs of agents to converge to a common
value, plays an important role in seeking collaborative poli-
cies such that collective behaviors among agents can emerge.
The synchronization of coupled harmonic oscillators, which
can be considered as a second-order system with a restoring-
force-like term [11], has potential applications in various
aspects, such as the coordination of mobile robots [12] and
the design of electrical networks [13]. In this sense, it is of
both theoretical and practical significance to investigate the
synchronization problem of coupled harmonic oscillators.

According to the available measurements therein,
the existing synchronization protocols for coupled harmonic
oscillators can be classified into velocity-based [14]–[17] and
position-based methods [18], [19]. Ren in [14] designed dis-
tributed synchronization law using velocity measurements,
and analyze the convergence under directed fix and switching
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topologies. Su et al. developed a control law to achieve
synchronization without any connectivity assumption on the
agents [15]. It is worth noting that the control laws in [14]
and [15] were continuous-time, which results in a high com-
munication consumption, therefore authors in [16] and [17]
proposed sampled-velocity-based control laws, and further
considered the practical issues including communication and
input delays. Nevertheless, velocity measurements are not
always available due to some technological difficulties and
external disturbances, and the position states are relatively
more convenient to obtain [20]. In [18], synchronization
control law was designed using the delayed position mea-
surements. In [19], two sampled-position-based control algo-
rithms were subsequently designed to reach synchronization
using position information obtained at current and previ-
ous sampling time, respectively. Sampled-data-based control
can effectively reduce the communication burdens, however,
the periodic interactions and control still result in unnecessary
energy and resource consumption. An alternative approach is
called event-triggered control [21], wherein the sampling is
activated if and only if the state-dependent error signals are
beyond certain thresholds. Consequently, event-based control
can reduce the computation and transmission costs compared
with time-based sampling.

Recently, event-triggered control has achieved great pro-
gresses in synchronization of coupled harmonic oscillators.
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Authors in [22] proposed centralized and decentralized
event-triggered control strategy by designing state-dependent
threshold to achieve asymptotic synchronization, and further
extended results to an event-triggered control with fixed
threshold such that the synchronization errors approach a
small bound around zero. In [23], an edge event-triggered
control mechanism was developed, under which each oscil-
lator only needed to update some of the relative states of its
neighbors. This is different from the event-triggered rules in
[22], where all relative states of the neighbors were required
to update once an event happens. Dai and Xiao extended
the results in [23] to edge-self-triggered control for coupled
harmonic oscillators with quantization and time delays [24].
In [25], small gain technology and the integral quadratic
constraints were employed to analyze the stability conditions
under event-triggered control scheme. It is worth mentioning
that a basic requirement of event-triggered control is that the
events should not occur arbitrarily. In other words, the time
interval between any two consecutive events should not be
zero, which is also known as Zeno-behavior. Otherwise,
the sampling frequency will be increased and the objective
of reducing the resource consumption cannot be satisfied.
However, if Zeno-behaviour is avoided, the synchronization
rate of the oscillators will slow down because the events
are triggered with low frequency [26]. Therefore, how to
handle the contradiction between excluding Zeno-behavior
and promoting convergence speed should be further
considered.

To achieve the synchronization with faster speed, impul-
sive strategy has been found important application in coupled
harmonic oscillators. In [27], distributed impulsive control
strategy was proposed to achieve the synchronization using
only positionmeasurement, and demonstrated that the desired
sampling period can be determined by the positive gain
and the eigenvalues of Laplacian matrix associated with
the network. Liu et al. studied bipartie consensus control
problem of oscillators on the basis of impulsive control
[28]. Song et al. further investigated the impulsive-controlled
convergent behaviors of coupled harmonic oscillators using
current and previous sampled positions [11]. Note that the
impulsive frequency in [11], [27], and [28] were typically
predefined and constant, which results in high computational
and communication costs. To remove such constraint,
researchers have proposed event-triggered impulsive con-
trol, under which the impulsive instants are determined by
well-defined event conditions. Therefore, no signal transmis-
sion or computation is required between two consecutive
triggering instants, and the impulsive control signal can
promote the synchronization performance. Some related
control approaches for multi-agent systems can be found
in [26], [29], and [30]. Nevertheless, these methods can-
not be always applied to coupled harmonic oscillators,
because they required that both position and velocity should
be measurable. In other words, event-triggered impul-
sive control for coupled harmonic oscillators using either

position or velocity measurements is an issue worthy of
study.

Motivated by the above considerations, this paper intends
to address the synchronization problem of coupled har-
monic oscillators via event-triggered impulsive control.
We respectively design the position-only and velocity-only
event-triggered impulsive mechanisms, and provide neces-
sary conditions to ensure the synchronization in the absence
of Zeno behavior. The main contribution of this paper is
threefold, as follows:

1) We extend the event-based approaches in [22]–[25] and
impulse-based approaches in 11], [27], and [28], such
that a tradeoff between sampling frequency and conver-
gence speed is achieved. By integrating event-triggered
method into impulsive control, the control input is
only activated at the triggered instants, i.e., no control
input is required during any two consecutive triggered
instants. In this sense, event-triggered impulsive con-
trol can reduce the resource consumption.

2) Compared with event-triggered impulsive control
methods presented in [26], [29], and [30] where both
position and velocity measurements are needed, our
method only require either position or velocity mea-
surement, which is less restricted and more flexible.

3) We present the global asymptotic and exponential sta-
bility criteria to achieve synchronization. In addition,
the Zeno-behavior is guaranteed to be excluded.

The remainder of this paper is organized as follows.
Section II provides some preliminaries and formulates
the synchronization problem of coupled harmonic oscil-
lators. Then we present position-only and velocity-only
event-triggered impulsive control approaches in Section III.
Numerical experiment results are given in Section IV to
show the effectiveness of the proposed synchronization pro-
tocols. Conclusions are summarized in Section V.

Notation: Rn denotes the Euclidean space with dimension
n.Rn×m is the set of n×m real matrices. Let In ∈ Rn×n be the
identity matrix. The symbol ⊗ is the Kronecker product. ‖·‖
denotes the L2 norm. λmin (P) and λmax (P) are the smallest
and largest eigenvalue of the matrix P. exp (·) stands for an
exponential function.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. GRAPH THEORY
The interactions among oscillators can be characterized by
directed or undirected graphs, and we particularly focus on
directed case in this research. A directed graph is denoted
by G = (V, E), where V = {1, . . . , n} is a vertex set and
E = {(i, j) : i, j ∈ V} is the edge set. A directed edge (j, i)
means that vertex i can receive information from vertex j. The
neighbor set of vertex i is denoted by Ni = {j ∈ V| (j, i) ∈ E}.
The adjacency matrix A =

[
aij
]
∈ Rn×n is defined as aij > 0

if (j, i) ∈ E and aij = 0 otherwise. Note that aii = 0
for all vertices. The Laplacian matrix L =

[
lij
]
∈ Rn×n is
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defined as lij = −aij if i 6= j, otherwise lii =
∑n

j=1,j6=i aij.
A directed path from vertex i0 to vertex ik is a sequence
of directed edges with the form of (il, il+1), where il ∈
V (l = 0, 1, . . . , k − 1). A directed graph contains a spanning
tree if there exists at least one vertex connecting to all the
other vertices through directed paths.

If there exists a leader, interactions from leader to fol-
lowers can be characterized by adjacency matrix B =

diag {b1, . . . , bn}, where bi = 1 if follower i can receive
information from the leader. Let the leader be represented
by vertex 0, and we denote the augmented graph containing
leader and followers by Ḡ =

(
V̄, Ē

)
, where V̄ = V ∪{0} and

Ē includes E and edges from the leader to followers. Denote
matrix H ∈ Rn×n as H = L + B. From [25], matrix H is
positive definite if Ḡ contains a spanning tree with the leader
being the root vertex.

B. PROBLEM FORMULATION
Consider a group of n coupled harmonic oscillators described
by following dynamic equations [22]:{

ṙi (t) = vi (t)
v̇i (t) = −αri (t)+ ui (t) ,

i = 1, 2, . . . , n (1)

where ri (t) , vi (t) ∈ R denote the position and velocity of the
ith oscillator.

√
α is the frequency of the oscillator and ui (t)

is the control input to be designed.
The leader oscillator can be described with the following

dynamics: {
ṙ0 (t) = v0 (t)
v̇0 (t) = −αr0 (t)

(2)

where r0 (t) , v0 (t) ∈ R are the position and velocity of the
leader.
Definition 1: A group of coupled harmonic oscillators is

said to achieve synchronization with the leader, if for any
ri (0) , vi (0) ∈ R, the position and velocity of the follower
converge to that of the leader, i.e., lim

t→∞
‖ri (t)− r0 (t)‖ = 0

lim
t→∞
‖vi (t)− v0 (t)‖ = 0,

i = 1, 2, . . . , n (3)

Assumption 1: The directed graph Ḡ contains a spanning
tree with the leader as the root.

The objective of this paper is to design the event-triggered
impulsive control strategies such that a synchronization
among oscillators is achieved. Fig. 1 shows the diagram of
the event-triggered impulsive control. Each oscillator contin-
uously computes the triggering function fi (t) via the states
(position or velocity) of the neighboring oscillators and itself.
Once fi (t) violates the well-designed condition, a triggering
instant tki is determined and oscillator is required to calcu-
late the error signal pi

(
tki
)
at the instant tki . Subsequently,

the impulse generator will be activated and generates the
corresponding discrete-time control input ui

(
tki
)
. Therefore,

FIGURE 1. A diagram of event-triggered impulsive control scheme,
wherein the continuous-time and discrete-time signals are denoted by
solid arrow and dashed arrow, respectively.

the oscillator will update the states and continue monitoring
fi (t) until the next event happens.
Remark 1: From the above analysis, it can be observed that

event-triggered impulsive control is discrete-time and non-
periodic. This is different from conventional event-triggered
control [22]–[25] where the control inputs are maintained
constant and non-zero between any two consecutive event
instants. In addition, most impulsive control such as [11],
[27], [28] assumed that the impulsive frequency is typi-
cally predefined and constant. For the sake of fast conver-
gence speed, the impulsive frequency must be designed high
enough. In this sense, event-triggered impulsive control can
effectively reduce the energy cost.

Before introducing the main results, we introduce a useful
lemma, namely Gronwall inequality.
Lemma 1 [31]: Let x (t) be a continuous function on

[t0,T ), T ≤ +∞, which satisfies the inequality

x (t) < h+
∫ t

t0
wx (s) ds, t ∈ [t0,T ) (4)

where h is a non-negative constant and w is a constant. Then

x (t) ≤ hew(t−t0), t ∈ [t0,T ) (5)

III. MAIN RESULTS
This section will present two event-triggered impulsive
control strategies using respectively position and velocity
measurements, and then theoretically analyze the conver-
gence behavior and the exclusion of Zeno behavior.

A. POSITION-ONLY EVENT-TRIGGERED IMPULSIVE
CONTROL STRATEGY
For i-th oscillator with dynamics described by Eq. (1), let
xi (t) = [ri (t) , vi (t)]T . We then define the position error
relative to the neighboring oscillators as

pi (t) =
n∑
j=1

aij
(
rj (t)− ri (t)

)
+ bi (r0 (t)− ri (t))

= lp

 n∑
j=1

aij
(
xj (t)− xi (t)

)
+ bi (x0 (t)− xi (t))


(6)

where lp = [1, 0].
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We design the following distributed event-triggered impul-
sive control law:

ui (t) = γ pi
(
tki
)
δ
(
t − tki

)
(7)

where γ > 0 is the impulsive strength and δ (·) is the Dirac
delta function.

{
tki |k = 0, 1, . . .

}
is the triggering sequence

satisfying t0 = t0i < t1i < . . . < tki < . . . and
lim
k→∞

tki = +∞. Different from the impulsive control where

the impulsive interval is predefined and constant, the trigger-
ing sequence is defined by

tki = inf
{
t : t > tk−1i , fi (t) ≥ 0

}
, k = 1, 2, . . . , (8)

where fi (t) is the triggering function defined by

fi (t) =
∥∥∥Ei (tki )− Ei (t)∥∥∥2 − (β∥∥∥Ei (tki )∥∥∥2+ η

(t − t0)2

)
(9)

where β > 0, η > 0 and Ei (t) = [−pi (t) ,−ṗi (t)]T .
It is worth noting that impulsive control law (7) is only

activated at the event instant tki . In other words, ui (t) =
0,∀t /∈

{
tki |k = 0, 1, . . .

}
. Therefore, for these non-event

instants, the system dynamics is updated as

ẋi (t) = Axi (t) , t ∈
[
tk−1i , tki

)
(10)

where

A =
[

0 1
−α 0

]
(11)

At event instant tki , using the property of Dirac function,
apply impulse control law (7) to Eq. (1) yielding

xi
(
tki
)
= xi

(
tki
−
)
− γCp

( n∑
j=1

aij
(
xi
(
tki
−
)
− xj

(
tki
−
))

+bi
(
xi
(
tki
−
)
− x0

(
tki
−
)))

(12)

where xi
(
tki
−
)
= limt→tki

−xi (t) and

Cp =

[
0 0
γ 0

]
(13)

Define the synchronization error as ei (t) = xi (t)− x0 (t),
using Eqs. (2), (10) and (12), the error dynamics is given by

ėi (t) = Aei (t) , t ∈
[
tk−1i , tki

)
ei
(
tki
)
= ei

(
tk−i

)
− Cp

(
n∑
j=1

aij
(
ei
(
tk−i

)
−ej

(
tk−i

))
+ biei

(
tk−i

))
(14)

For convenience, we rearrange all the triggering
sequences

{
tki |k = 0, 1, . . . , i ∈ V

}
with chronological

order: {tk |k = 0, 1, . . .} =
{
tsi |s = 0, 1, . . . , i ∈ V

}
satisfy-

ing t0 < t1 < . . . < tk < . . . and lim
k→∞

tk = +∞.

Algorithm 1 Distributed Event-Triggered Impulsive Control
Algorithm for Coupled Harmonic Oscillators Using Only
Position Measurements
Input: Initial position ri (t0) and velocity vi (t0), i =

0, 1, . . . , n;
Objective: lim

t→∞
‖ei (t)‖ = 0

1: Initialize controller parameters γ , β and η;
2: k ← 0;
3: Initialize event instant tki ← t0;
4: while t ≤ tend do
5: Update leader’s position r0 (t) and velocity v0 (t);
6: for i from 1 to n do
7: Receive position information rj (t) from neighbor-

ing oscillators, j ∈ Ni;
8: Compute position error pi (t) using Eq. (6);
9: Compute triggering function fi (t) using Eq. (9);
10: if fi (t) ≥ 0 then
11: k ← k + 1;
12: Update event instant tki and save Ei

(
tki
)
;

13: Activate impulse input ui (t) using Eq. (7);
14: Update ri

(
tki
)
and vi

(
tki
)
using Eq. (12);

15: else
16: Update ri (t) and vi (t) using Eq. (10);
17: end if
18: end for
19: end while

At triggering instant tk , we define the activation function
σi (tk) to indicate whether ith oscillator is triggered or not:
σi (tk) = 1 if tk ∈

{
tsi |s = 0, 1, . . .

}
, and σi (tk) = 0

otherwise. Let e =
[
eT1 (t) , . . . , e

T
n (t)

]T , we rewrite Eq. (14)
in a compact form as{

ė (t) = (In ⊗ A) e (t) , t ∈ [tk−1, tk)
e (tk) = (In ⊗ I2) e

(
t−k
)
−
(
σ (tk)H ⊗ Cp

)
e
(
t−k
) (15)

where σ (tk) is the event-triggered matrix defined as

σ (tk) =


σ1 (tk) 0 · · · 0

0 σ2 (tk) · · · 0
...

...
. . .

...

0 0 · · · σn (tk)

 (16)

We summarize the event-triggered impulsive control algo-
rithm in Algorithm 1. Then, several sufficient conditions will
be given to converge the synchronization error signal e (t)
to zero under our proposed event-triggered impulsive control
scheme, as specified in the following theorem.
Theorem 1: Consider the coupled harmonic oscilla-

tors (1) with event-triggered impulsive control law (7), under
Assumption 1, for any β > 0 and η > 0, if there exists
positive constant µ, positive definite matrix P ∈ R2n×2n and
event-triggered matrix σ (k), such that

(In ⊗ A)TP + P (In ⊗ A)+ µ (In ⊗ I2) ≤ 0 (17)
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and
k∑
j=1

(
ln

(√
λmax (P)
λmin (P)

∥∥Zp (tj)∥∥)

−
µ

2λmin (P)

(
tj+1 − tj

))
≤ ϕ (t, t0) (18)

where k = 1, 2, . . ., Zp (tk) = In ⊗ I2 − σ (tk)H ⊗ Cp and
ϕ (t, t0) is a continuous function satisfying

lim
t→∞

ϕ (t, t0) = −∞ (19)

then synchronization error e (t) globally asymptotically con-
verges to zero. Moreover, if there exists a positive constant
c > 0 such that

ϕ (t, t0) ≤ −c (t − t0) , (20)

then synchronization error e (t) converges to zero globally
exponentially. Additionally, Zeno-behavior can be excluded
under triggering function (9).

Proof: We consider the Lyapunov function V (e (t)) =
eT (t)Pe (t). For t ∈ [tk−1, tk), k = 1, 2, . . ., the derivative
of V (e (t)) along Eq. (14) is given by

V̇ (e (t)) = eT (t)
[
(In ⊗ A)TP + P (In ⊗ A)

]
e (t)

≤ −µ‖e (t)‖2 (21)

wherein we use the inequality (17). Moreover, for any t ∈
[tk−1, tk), one has

λmin (P) ‖e (t)‖2 ≤ V (e (t))

≤ V (e (tk−1))+
∫ t

tk−1
−µ‖e (s)‖2ds

≤ λmax (P) ‖e (tk−1)‖2

+

∫ t

tk−1
−µ‖e (s)‖2ds (22)

Using the Gronwall inequality, one has

‖e (t)‖2 ≤
λmax (P)
λmin (P)

‖e (tk−1)‖2

× exp
(∫ t

tk−1
−

µ

λmin (P)
ds
)

(23)

Therefore, we have

‖e (t)‖ ≤

√
λmax (P)
λmin (P)

× ‖e (tk−1)‖

× exp
(∫ t

tk−1
−

µ

2λmin (P)
ds
)

≤ ‖Z (k − 1)‖

√
λmax (P)
λmin (P)

×
∥∥e (t−k−1)∥∥

× exp
(∫ t

tk−1
−

µ

2λmin (P)
ds
)

(24)

where the last inequality uses e (tk) = Zp (tk) e
(
t−k
)
, given

in Eq. (15).

Via a similar procedure as shown in Eq. (24), it can be
derived that∥∥e (t−k−1)∥∥ ≤ ‖Z (k − 2)‖

√
λmax (P)
λmin (P)

×
∥∥e (t−k−2)∥∥

exp
(∫ tk−1

tk−2
−

µ

2λmin (P)
ds
)

(25)

Introducing Eq. (25) into Eq. (24), we can obtain

‖e (t)‖ ≤
∥∥e (t−k−2)∥∥ (‖Z (k − 1)‖ ‖Z (k − 2)‖)

×
λmax (P)
λmin (P)

exp
(∫ t

tk−2
−

µ

2λmin (P)
ds
)

(26)

Consequently, we have

‖e (t)‖ ≤ ‖e (t0)‖

k−1∏
j=1

‖Z (j)‖

√
λmax (P)
λmin (P)


× exp

− k−1∑
j=1

µ

2λmin (P)
ξ
(
Tj (t0, t)

)
≤ ‖e (t0)‖ exp

k−1∑
j=1

(
ln

(√
λmax (P)
λmin (P)

∥∥Zp (j)∥∥)

−
µ

2λmin (P)
ξ
(
Tj (t0, t)

)))
≤ ‖e (t0)‖ exp (ϕ (t, t0)) (27)

where the last inequality uses Eq. (18), and ξ
(
Tj (t0, t)

)
is the

Lebesgue measure of the set Tj (t0, t) [26].
From Eq. (27), we can conclude that the synchroniza-

tion error e (t) globally asymptotically converges to zero if
Eq. (19) is satisfied, and e (t) globally exponentially con-
verges to zero if Eq. (20) is satisfied.

It rest to demonstrate that Zeno-behavior can be excluded
using the triggering function (9). Let hi denote the i-th row
of matrix H , then Eq. (6) can be rewritten as pi (t) =
−
(
hi ⊗ lp

)
e (t).

Referring to Ei (t) = [−pi (t) ,−ṗi (t)]T , we obtain
Ei (t) = (hi ⊗ I2) e (t). In addition, for any t ∈

[
tki , t

k+1
i

)
,

the derivative of Ei (t) is given by Ėi (t) = (hi ⊗ A) e (t).
Let Y i (t) = Ei (t)−Ei

(
tki
)
and0i (t) = YTi (t) Ẏ i (t), one

has 0̇i (t) = 2YTi (t) Ẏ i (t) ≤ YTi (t)Y i (t) + Ẏ
T
i (t) Ẏ i (t).

Furthermore, we have

0̇i (t) ≤ 0i (t)+eT (t)
(
hTi ⊗ AT

)
(hi ⊗ A) e (t)

≤ 0i (t)+ eT (t)
(
hTi hi ⊗ ATA

)
e (t)

≤ 0i (t)+ ‖A‖2‖Ei (t)‖2

≤ 0i (t)+ ‖A‖2
∥∥∥Y i (t)+ Ei (tki )∥∥∥2

≤ 0i (t)+ ‖A‖2
(
20i(t)+ 2

∥∥∥Ei (tki )∥∥∥2)
≤

(
1+ 2‖A‖2

)
0i (t)+ 2‖A‖2

∥∥∥Ei (tki )∥∥∥2 (28)

VOLUME 9, 2021 126235



G. Ma et al.: Distributed Event-Triggered Impulsive Control for Synchronization

Using the fact Y i
(
tki
)
= 0, we obtain

‖Y i (t)‖2 ≤
2‖A‖2

∥∥Ei (tki )∥∥2
1+ 2‖A‖2

(
e
(
1+2‖A‖2

)(
t−tki

)
− 1

)
(29)

Referring to the triggering function (9), after instant tki ,
the next triggered instant will arrive if

‖Y i (t)‖2 = β
∥∥∥Ei (tki )∥∥∥2 + η

(t − t0)2

≤
2‖A‖2

∥∥Ei (tki )∥∥2
1+ 2‖A‖2

(
e
(
1+2‖A‖2

)(
t−tki

)
− 1

)
(30)

For any t ∈
[
tki , t

k+1
i

)
, one has

η

(t − t0)2
≤

2‖A‖2
∥∥Ei (tki )∥∥2

1+ 2‖A‖2

(
e
(
1+2‖A‖2

)(
t−tki

)
− 1

)
(31)

Let T ki = tk+1i − tki , we have

η(
T ki +t

k
i − t0

)2 ≤ 2‖A‖2
∥∥Ei (tki )∥∥2

1+ 2‖A‖2

(
e
(
1+2‖A‖2

)
T ki − 1

)
(32)

Zeno behavior means that there exists an infinite number of
events occurring in a finite time interval, in other words, T ki
will be equal to zero if Zeno behavior happens. In this case,
Eq. (32) will be rewritten as η

/(
T ki +t

k
i − t0

)2
≤ 0, which

means η ≤ 0. This is a contradiction with triggering function
Eq. (9) where η is a positive constant. Therefore, T ki should
be non-zero, and Zeno-behavior can be excluded. �
Remark 2: From Eq. (30), it can be noticed that if the

parameters β and η are increased, the next event-triggered
instant will be delayed, i.e., the interval between two consec-
utive event instants will be enlarged, therefore the impulse
frequency will be decreased.

B. VELOCITY-ONLY EVENT-TRIGGERED
IMPULSIVE CONTROL
It is worth noting that position measurement is not always
available in practice. To extend the application domain, in this
section, we attempt to design event-triggered impulsive con-
trol law via only velocity measurements.

Similarly, for ith oscillator, we define the velocity error
relative to the neighboring oscillators as

zi (t) =
n∑
j=1

aij
(
vj (t)− vi (t)

)
+ bi (v0 (t)− vi (t))

= lz

 n∑
j=1

aij
(
xj (t)− xi (t)

)
+ bi (x0 (t)− xi (t))


(33)

where lz = [0, 1]. Subsequently, we propose the following
control law

ui (t) = γ zi
(
tki
)
δ
(
t − tki

)
(34)

FIGURE 2. The network topology among six harmonic oscillators in
numerical simulations.

The triggering function fi (t) is defined as

fi (t) =
∥∥∥Ẽi (tki )− Ẽi (t)∥∥∥2 − (β∥∥∥Ẽi (tki )∥∥∥2+ η

(t − t0)2

)
(35)

where Ẽi (t) =
[
żi (t)

/
α,−zi (t)

]T .
Similar to the procedure established in Eq. (14), the error

dynamics under control law (34) is given by{
ė (t) = (In ⊗ A) e (t) , t ∈ [tk−1, tk)
e (tk) = (In ⊗ I2) e

(
t−k
)
− (σ (tk)H ⊗ Cv) e

(
t−k
) (36)

where

Cv =

[
0 0
0 γ

]
(37)

Theorem 2: Consider the coupled harmonic oscillators (1)
with event-triggered impulsive control law (34), under
Assumption 1, for any β > 0 and η > 0, if there exists
positive constant µ and positive definite matrix P ∈ R2n×2n

and event-triggered matrix σ (k), such that Eq. (17) and

k∑
j=1

(
ln

(√
λmax (P)
λmin (P)

∥∥Zv (tj)∥∥)

+
µ

2λmin (P)

(
tj − tj+1

))
≤ ϕ (t, t0) (38)

where Zv (tk) = In ⊗ I2 − σ (tk)H ⊗ Cv, then synchroniza-
tion error e (t) converges to zero globally asymptotically if
Eq. (19) exists, and converges to zero globally exponentially
if Eq. (20) exists.

Proof: The proof is similar to that of Theorem 1, and
therefore we omit the proof due to page limitation. �

IV. SIMULATION RESULTS
In this section, numerical simulation results are provided
to validate the effectiveness of the proposed event-triggered
impulsive control algorithms. We consider a group of six
harmonic oscillators with α = 2, and the interactions among
oscillators are presented in Fig. 2. The initial conditions
of oscillators are given by x0 (0) = [0, 1]T , x1 (0) =
[0.5, 0]T , x2 (0) = [1, 0.2]T , x3 (0) = [1.5, 0.2]T , x4 (0) =
[−0.5, 0]T , x5 (0) = [1.2, 0]T .
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FIGURE 3. Positions of oscillators using position-only synchronization protocol (7).

FIGURE 4. Velocities of oscillators using position-only synchronization protocol (7).

FIGURE 5. Synchronization errors under position-only synchronization
protocol (7).

A. SYNCHRONIZATION OF OSCILLATORS UNDER
POSITION-ONLY PROTOCOL
We firstly evaluate the synchronization behaviors of oscil-
lators using position-only protocol (7). The parameters of
triggering function (9) is given by β = 6 and η = 2, and
the impulse strength parameter is γ = 1. Using Matlab LMI

FIGURE 6. Event instants of the five oscillators under position-only
synchronization protocol (7).

toolbox to solve inequality (17), we can obtain µ = 0.869
and matrix P ∈ R10×10 (which is omitted due to page
limitation).

The simulation results are plotted in Figs. 3-6. Fig. 3
and Fig. 4 present the position and velocity evolution
of six oscillators, respectively. It can be seen that the
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FIGURE 7. Positions of oscillators using velocity-only synchronization protocol (34).

FIGURE 8. Velocities of oscillators using velocity-only synchronization protocol (34).

FIGURE 9. Synchronization errors under velocity-only synchronization
protocol (34).

follower oscillators approaches the leader oscillator under the
designed protocol. The evolution of synchronization errors
is given in Fig. 5, from which we can notice that the syn-
chronization errors converge to zero. The event instants
of five followers are also presented in Fig. 6. From the
above analysis, we can conclude that oscillators can achieve

FIGURE 10. Event instants of the five oscillators under velocity-only
synchronization protocol (34).

synchronization under our proposed position-only synchro-
nization protocol.

B. SYNCHRONIZATION OF NETWORK UNDER
VELOCITY-ONLY PROTOCOL
In this subsection, we will verify the performance of the
velocity-only protocol (34). The parameters are given by
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β = 0.1, η = 1 and γ = 0.8. The parameter µ =
0.869 and matrix P is consistent with that in position-only
protocol, this is because Eq. (17) is same for both
methods.

The position and velocity trajectories of the oscillators are
depicted in Figs. 7 and Fig. 8, respectively, which demon-
strates that oscillator synchronization is achieved under the
proposed velocity-only protocol. The synchronization errors
are shown in Fig. 9, which converge to zero after nearly
20 seconds. Fig. 10 depicts the triggering instants of the oscil-
lators. This simulation example validates the effectiveness of
the velocity-only synchronization protocol.

V. CONCLUSION
This paper investigates the distributed synchronization prob-
lem of harmonic oscillators using event-triggered impul-
sive control. Specifically, we design position-only and
velocity-only protocols to achieve synchronization in the
absence of Zeno-behavior, respectively. It is worth noting
that the impulsive control of each oscillator is activated if
and only if the triggering function is violated, which can
effectively reduce the resource consumption. Two simulation
examples are provided to validate the proposed synchroniza-
tion protocols. There are two shortcomings in this research:
continuous communication between neighboring agents are
required, and the effect of time delay on the synchronization
is not considered. Therefore, it is of our great interest to study
synchronization problem of harmonic oscillator systems
with discrete communication and time delay in the future
work.
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